
HaploBlocker: Creation of subgroup specific haplotype blocks
and libraries

Torsten Pook1,2*, Martin Schlather2,3, Gustavo de los Campos4, Chris Carolin Schoen5,
Henner Simianer1,2

1 Department of Animal Sciences, Animal Breeding and Genetics Group, University of
Goettingen, Goettingen, Germany
2 Center for Integrated Breeding Research, University of Goettingen, Goettingen,
Germany
3 Stochastics and Its Applications Group, University of Mannheim, Mannheim,
Germany
4 Departments of Epidemiology & Biostatistics and Statistics & Probability, Institute
for Quantitative Health Science and Engineering, Michigan State University, Michigan,
USA
5 Plant Breeding, TUM School of Life Sciences Weihenstephan, Technical University of
Munich, Freising, Germany

¤University of Goettingen, Animal Breeding and Genetics Group, Albrecht-Thaer-Weg
3, 37075 Goettingen, Germany
* torsten.pook@uni-goettingen.de

Abstract

The concept of haplotype blocks has been shown to be useful in genetics. Fields of
application range from the detection of regions under positive selection to statistical
methods that make use of dimension reduction. We propose a novel approach
(“HaploBlocker”) for defining and inferring haplotype blocks that focuses on linkage
instead of the commonly used population-wide measures of linkage disequilibrium (LD)
which fail to identify segments shared by individuals in only a subset of the population.
We define a haplotype block as a sequence of alleles that has a predefined minimum
frequency in the population and only haplotypes with a similar sequence of alleles are
considered to be carrying that block, effectively screening a dataset for group-wise
identity-by-descent (IBD). Different to most other approaches these blocks are not
restricted to shared start or end positions, but can overlap or even contain each other.
From these haplotype blocks we construct a haplotype library that represents a large
proportion of genetic variability of a population with a limited number of blocks. Our
method is implemented in the associated R-package HaploBlocker and provides
flexibility to not only optimize the structure of the obtained haplotype library for
subsequent analyses (e.g., identification of shared segments between different
populations), but is also able to handle datasets of different marker density and genetic
diversity. By using haplotype blocks instead of SNPs, local epistatic interactions can be
naturally modelled and the reduced number of parameter enables a wide variety of new
methods for further genomic analyses. We illustrate our methodology with a dataset
comprising 501 doubled haploid lines in a European maize landrace genotyped at
501’124 SNPs. With the suggested approach, we identified 2’851 haplotype blocks with
an average length of 2’633 SNPs (compared to 27.8 SNPs per block in HaploView) that
together represent 94% of the dataset.
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Author summary

Whereas it is quite easy to identify segments of shared DNA between pairs of
individuals, the problem becomes far more complex when analyzing a population.
Especially for livestock and crop populations under strong selection one can observe
long and possibly favourable segments that are segregating at high frequency. We
propose here an adaptive and flexible approach to identify such segments (“haplotype
blocks”). The main conceptual difference to other approaches is that we allow
haplotype blocks to overlap so that patterns shared by a subset of the population can
be mapped adequately. Afterwards, we select a set of those haplotype blocks that form
a representation of the whole population (“haplotype library”). This haplotype library
can be used similar to a SNP-dataset for subsequent genomic approaches with the
advantage of a massive reduction of the number of parameters compared to standard
haplotyping approaches. Since many breeding goals (e.g. grain yield, milk production)
are known to be caused by complex interactions in genomic regions (or even the whole
genome) using haplotype blocks instead of single base pairs provides a natural model for
local interactions and enables the use of more complex models to incorporate distant
interactions between genes, for instance.

Introduction 1

Over the years, the concept of haplotype blocks has been shown to be highly useful in 2

the analysis of genomes. Fields of application range from population genetics, e.g. the 3

mapping of positive selection in specific regions of the genome [1,2], to statistical 4

applications that make use of dimension reduction [3] to tackle the p� n− problem [4]. 5

Existing methods define haplotype blocks as a set of adjacent loci, using either a fixed 6

length of markers/variants per block [5] or population-wide linkage disequilibrium (LD) 7

measures [6–9] in the identification process. The methods and software (e.g., 8

HaploView, [10]) available for inferring haplotype blocks have become increasingly 9

sophisticated and efficient. Although those approaches to infer haplotype blocks have 10

been proven to be useful, existing methods share some key limitations [11]. In 11

particular, the use of population-wide measures of LD limits the ability of existing 12

methods to capture cases of high linkage characterized by the presence of long shared 13

segments caused by absence of crossing over (typically within families or close ancestry). 14

To illustrate this, consider the following toy example of four different haplotypes: 15

11111111, 10101010, 01010101, and 00000000. If all four haplotypes have the same 16

frequency in the dataset, pairwise LD (r2) of neighboring SNPs is zero and LD-based 17

algorithms would not retrieve any structure. However, in this example, knowledge of the 18

first two alleles fully determines the sequence in the segment. In this work we use the 19

term “haplotype” for a known sequence of alleles of a gamete, and not as often done as 20

a short sequence of alleles. 21

As the starting point of our approach (“HaploBlocker”) we assume a set of known 22

haplotypes which can be either statistically determined as accurately phased genotypes, 23

or observed via single gamete genotyping from fully inbred lines or doubled haploids. 24

When the interest is on inferring the longest possible shared segment between 25

haplotypes, a common approach is to identify segments of identity-by-descent (IBD). A 26

tool for the identification of IBD segments is BEAGLE [12], among others. Since IBD is 27

typically calculated between pairs of individuals an additional screening step is 28

necessary to identify haplotypes that are shared by multiple individuals. This can be 29

done with tools like IBD-Groupon [13] for explicitly defined segments. A method to 30

detect IBD segments directly for groups of individuals has been proposed by Moltke et 31

al. [14], but is not applicable to datasets with hundreds of haplotypes due to limitations 32
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of computation times. A further difficulty is that even minor variation tends to break 33

up IBD segments - this can even be caused by actual calling errors (0.2% on later used 34

Affymetrix Axiom Maize Genotyping Array, [15]). 35

The imputation algorithm of BEAGLE uses a haplotype library given by a 36

haplotype cluster [16]. The haplotype library in BEAGLE is used to initialize a Hidden 37

Markov Model for the imputing step and is only given in a probabilistic way. This 38

means that there are no directly underlying haplotype blocks that could be used for 39

later statistical application. 40

Our goal is to provide a conceptualization of haplotype blocks that can capture both 41

population-wide LD and subset-specific linkage, and does not suffer from some of the 42

limitations of IBD-based methods. Unlike common definitions that consider haplotype 43

blocks as sets of adjacent loci, we define a haplotype block as a sequence of alleles and 44

only those haplotypes with a similar sequence are assigned to a specific block. By doing 45

this, different blocks can cover the same regions of the genome but differ in the allele 46

variants they represent. We use here the term “allele” for a variant in the genome which 47

can be a single nucleotide polymorphism (SNP) or other variable sites like short indels. 48

Start and end points of the blocks can vary, thus a recombination hot spot appearing in 49

a subgroup of haplotypes does not affect block boundaries in the remaining sets of 50

haplotypes, leading to overall much longer blocks. Subsequently, we construct a 51

haplotype library, which is defined as a set of haplotype blocks representing the entire 52

dataset. This is done by reducing the set of all previously identified blocks to the most 53

relevant ones. The haplotype library is then a mosaic of a limited number of blocks that 54

serves as a condensed representation of the dataset/genome at hand. Depending on the 55

topic of interest, selection criteria for the relevance of each block can be varied 56

appropriately to identify predominantly longer blocks or focus on segments shared 57

between different subspecies. Based on this library one can create a block dataset that 58

contains dummy variables representing the presence/absence of a given block (0 or 1) or, 59

in case of heterozygotes, a quantification of the number of times (0, 1 or 2) a block is 60

present in an individual. This dataset can be used in a similar way as a SNP-dataset 61

with a massive reduction of the number of parameter. 62

Materials and methods 63

The aim of HaploBlocker is to represent genetic variation in a set of haplotypes with a 64

limited number of haplotype blocks as comprehensively as possible. The main idea of 65

our method is to cluster locally similar haplotypes into groups. To this end, we use a 66

graphical representation (“window cluster”) in which each node represents a sequence of 67

alleles in a given segment. An edge indicates which and how many haplotypes transition 68

from node to node, allowing an efficient screening of the dataset. To identify common 69

segments in the haplotypes, we first screen short windows of fixed length for shared 70

allele sequences. The size of these analysed segments is increased in an iterative 71

procedure involving the following steps: 72

� Cluster-building 73

� Cluster-merging 74

� Block-identification 75

� Block-filtering 76

� Block-extension 77

� Fixed-coverage (optional) 78

June 18, 2018 3/19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/339788doi: bioRxiv preprint 

https://doi.org/10.1101/339788


For a schematic overview of HaploBlocker we refer to Fig 1. Before we elaborate on 79

each step in the following subsections, we give an outline of the legs. The first leg 80

derives the window cluster. This is done by grouping small chunks of adjacent markers 81

and subsequent cluster-building. By this we incorporate the handling of errors and 82

minor deviations in the dataset. The second leg extracts candidates for the haplotype 83

library from the window cluster. We call this step block-identification and use it to 84

generate a large set of candidate blocks. In the third and last leg (block-filtering) this 85

set is reduced to the most relevant haplotype blocks and thereby generating the 86

haplotype library. Since our haplotype blocks are subgroup specific, we have to, in 87

addition to the physical position, derive which haplotypes are included in each block. 88

This in turn makes a direct identification of the most relevant blocks more complicated 89

and enforced us to split this task into two separate, but closely connected legs 90

(block-identification and block-filtering). 91

Minor steps in our procedure are the cluster-merging and the block-extension. The 92

former reduces the computation time in the subsequent steps, whereas the latter 93

increases the precision of the result. However, neither step has a major impact onto the 94

final haplotype library. Since various parameters are involved in the procedure, their 95

value might be chosen by means of an optimization approach. We discuss the choice of 96

one of the crucial parameter in the subsection on fixed-coverage. 97

The last three subsections deal with the graphical depiction of the haplotype library, 98

the information loss through the suggested condensation of genomic data, and the 99

datasets under consideration. Our method is available for users by the correspondent 100

R-package HaploBlocker [17,18]. There, the default settings of the arguments 101

correspond to the thread of the following subsections. 102

Cluster-building 103

In the first step of HaploBlocker we divide the entire sequence of SNPs into short 104

segments with limited number of variants. We use a window size of 20 SNPs as the 105

default setting and group all haplotypes with at most one allele different to the major 106

variant of that group to allow for some calling errors. We start with the most common 107

sequence in the window and include a new group whenever the current sequence does 108

not fit in any of the previous groups. Since we allow 5% of the sequence to be different, 109

this causes actually different haplotypes to be grouped together in this step. In later 110

steps, we will introduce methods to split these grouped haplotypes into different blocks 111

if necessary. The choice of 20 SNPs as a default is rather arbitrary and should not have 112

a major effect as long as it is much smaller than the genuine block sizes one wants to 113

detect - we will present ways to use flexible window sizes in the block-identification-step. 114

As an example consider a dataset with the allele sequences for a window of 5 SNPs 115

given in Table 1. The two most common sequences form separate groups, whereas 116

CCCCA is different to CCCCC by only one allele and thus assigned to the same group. 117

For graphical reasons in later steps we assign CCCCC to group 3 even though it is the 118

second group created. 119

Table 1. Exemplary dataset of allele sequences and their assignment according to the
cluster-building step.

Frequency Allele-sequence Group

101 AAACC 1
54 CCCCC 3
40 CCCCA 3
3 CAACC 1
2 ACAAC 2
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Cluster-merging 120

Based on the grouping of the previous step we are able to create a window cluster (cf. 121

Fig 2). Here, each node represents a sequence of alleles of a major variant for a single 122

window and the edges indicate how many of the haplotypes of each node transition into 123

which neighboring node. A window cluster can be simplified without losing any relevant 124

information for later steps of the algorithm by three different techniques: 125

� simple-merge (SM): Combine two nodes if all haplotypes of the first node 126

transition into the same neighboring node and no other haplotypes are in the 127

destination node. 128

� split-groups (SG): Split a node into two if haplotypes from different nodes 129

transition into the same node and split into the same groups afterwards. 130

� neglect-nodes (NN): Remove a node from the cluster if it contains a very small 131

(less than 5 in the default setting) number of haplotypes. Removed haplotypes are 132

still considered when calculating transition probabilities between nodes in later 133

steps. 134

Since the only actual loss of information in this step stems from neglecting nodes, we 135

first alternately apply SM and SG until no further changes occur, before additionally 136

applying NN. We neglect rare nodes, since a block with few haplotypes (in the most 137

extreme case a block with one haplotype over the whole genome) does not reflect much 138

of the population structure and would have little relevance for genomic prediction (GP) 139

or genome wide association studies (GWAS) anyway. We do not increase the minimum 140

number of haplotypes per node depending on the sample size as is done by using a 141

minor allele frequency filter since long shared segments in only a small number of 142

haplotypes could still be relevant. 143

As an example for the cluster-merging-step consider a dataset with four windows and 144

five different sequences of groups (104x 1111, 54x 3212, 39x 3223, 2x 2111, 1x 3233, Fig 145

2). In the first step nodes A3 and B2 are merged by SM. Next, node C1 is split up into 146

two nodes via SG. This triggers additional SM (B1-C1a-D1 and C1b-D2). Afterwards, 147

no SM or SG are possible anymore and NN is performed removing A2 and C3. No 148

further merges are possible after this - consider here that even though D3 is the only 149

node following C2 no SM is possible because removed haplotypes are still considered in 150

later transition probabilities and therefore D3 contains one more haplotype than C2. 151

Block-identification 152

In the third step of HaploBlocker we identify the haplotype blocks themselves. Our 153

suggested approach here is to start with each node and edge of the previously obtained 154

window cluster as a starting block and extend these initial blocks based on transition 155

probabilities to adjacent nodes. A starting block using a node spans over the boundaries 156

of that node and contains its haplotypes. Using an edge is a variant of this procedure 157

using the boundaries of the two connected nodes. A block is extended if at least 97.5% 158

of the haplotypes in a block transition into the same node; deviating haplotypes are 159

removed. Haplotypes filtered out in this step can rejoin the block if their sequence of 160

alleles matches that of the major variant of the final haplotype block in at least 99% of 161

the SNPs. To obtain even more candidate haplotype blocks one can consider computing 162

multiple window clusters under different parameter settings (especially concerning 163

window sizes and minimum probabilities). The use of multiple window clusters based on 164

different initial segment lengths is recommended when the genuine length of the final 165

blocks is not known. Note that not all blocks identified here are part of the final 166
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haplotype library and instead are just used as the candidates blocks when selecting the 167

most relevant ones in the block-filtering-step. 168

To illustrate the method, consider an excerpt of a window cluster given in Fig 3. 169

Nodes 2, 3, 4 represent the sequence of groups 3223 of Fig 2. When considering the 170

second node as a starting block, we cannot extend the block because there are multiple 171

variants with a non-minor share (> 2.5%) of the transitions in both directions. When 172

using the fourth node of the excerpt, the block can be extended until the second and 173

fifth node of the cluster. One ends up with the same block when using the third node or 174

the edges including 39, 39 and 40 haplotypes. In case all included haplotypes transition 175

into the same node in the first window the block could be extended even further. Note 176

that in this step different variants of a particular group of the cluster-building-step can 177

be in different blocks if they transition into different nodes in later steps (e.g CCCCC 178

(54) and CCCCA (39+1) in the first window (cf. Table 3 & Fig 2). 179

Block-filtering 180

After the identification of haplotype blocks, we reduce the set of all haplotype blocks to 181

a haplotype library of the most relevant blocks representing a high proportion of the 182

dataset with a small number of blocks. To set priorities between the importance of the 183

length of the blocks (lb) and the number of haplotypes (nb) in this selection process we 184

first compute a rating rb for each block b: 185

rb = lb
wl · nbwn .

Here wl and wn represent weighting factors with default values wl = 1 and wn = 1. 186

Note that only the ratio between both parameters matters. 187

We define a position as an entry of the matrix containing haplotype data. Then, we 188

determine the number of positions in the dataset in which each block is the major block, 189

meaning locally highest rb, covering that position and iteratively remove the block with 190

the least number of major positions in the dataset. This procedure is executed until 191

each block has a minimum number of major positions (MNMP) remaining. For our 192

dataset 5’000 was a suitable value for this but without prior information about the 193

dataset we recommend instead setting a target on what share of the dataset is 194

represented by at least one block (“coverage”). We refer to the fixed-coverage-step 195

below for details. In case of our example given in Fig 3 we end up with a block b1 196

including 94 haplotypes ranging from node 2 to 3 (including 5 SNPs/node) with a 197

rating rb1 = 94 · 10 = 940 and a second block b2 ranging from node 2 to 5 with a rating 198

rb2 = 39 · 25 = 975. To simplify the example we assume here that no other blocks have 199

been identified. Block 2 has a higher rating and is therefore the major variant in all 200

39 · 25 = 975 covered positions. Block 1 is not the major block in those haplotypes 201

included in both blocks resulting in (94 − 39) · 10 = 550 positions as the major block. It 202

has to be noted here that the blocks in the final haplotype library can overlap. In case 203

the MNMP is 550 or smaller, overlap occurs in our example and typically can be 204

observed when a short segment is shared in the majority of the population and a 205

smaller subgroup shares a longer segment which includes the short segment. 206

Block-extension 207

The haplotype blocks that have been identified in the previous step are limited to the 208

boundaries of the nodes of the window cluster. Even though haplotypes are split up into 209

different nodes, these nodes can still represent the same sequence of alleles in adjacent 210

markers. This is caused by the fact that nodes can range over multiple windows. Blocks 211

are extended if haplotypes in a block are similar in neighboring segments. 212
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First, haplotype blocks are extended by full windows if all haplotypes are in the 213

same group in the adjacent window. If the haplotypes of a specific block include 214

multiple variants in the adjacent window the block is still extended if at least the 215

following 20 windows are the same for all haplotypes of a block. By doing this we 216

account for possible errors that could for example be caused by translocations or 217

genotyping/phasing errors. The choice of 20 windows is again somehow arbitrary and 218

should be chosen according to the minimum length of a block one is interested in. In 219

any case, all SNPs with variation in a block are identified and reported in the outcome 220

as a possible important information for later analysis. 221

Second, blocks are extended by single adjacent SNPs following similar rules as the 222

window extension. As a default we do not allow for any differences here since the 223

adjacent window must have some differences based on the block not being extended in 224

the step before. In case of working with a large number of haplotypes and aiming at 225

identifying the exact end of a block, one might consider allowing for minor differences. 226

Fixed-coverage (optional) 227

In the following we will denote the share of the dataset that is represented by a 228

haplotype library as the coverage of the dataset. To control the coverage we propose an 229

adaptive fitting of the MNMP. Especially for different marker densities the choice of the 230

MNMP is relevant to control the minimum size of each block and thereby the resulting 231

obtained coverage. The MNMP is fitted by iteratively increasing/decreasing the MNMP 232

when the coverage is too high/low. We double/halve the value of the MNMP from step 233

to step. When there are two libraries with coverage below and above the target, 234

respectively, the mean of the two MNMP values (one above/below) of the two haplotype 235

libraries with coverage closest to the target is used next. This procedure is done until 236

the MNMP is 1 or the target coverage is reached. For datasets with a high diversity or 237

a low number of haplotypes a high coverage might not be reached since only blocks with 238

a minimum number of haplotypes in it should be considered. Decreasing this minimum 239

would lead to the identification of long blocks with low frequency in the population 240

which might not be informative in later steps of the analysis. 241

Graphical representation of haplotype blocks 242

We suggest a graphical representation of haplotype blocks to show transition rates 243

between blocks in analogy to bifurcation plots [1]. To this end, we first sort the blocks 244

of the haplotype library according to the physical position of the first SNP of the block. 245

In case of identical starting points the shorter block is considered first. Our aim in 246

sorting the haplotypes is to cluster haplotypes according to their similarity around a 247

specific position (default: SNP in the middle of the dataset). The sorting process itself 248

is executed in two alternating steps: 249

Step 1: Adding new haplotypes 250

In the first iteration of this step we select all haplotypes in the most common block that 251

includes the marker we want to align against. In later iterations, we add the haplotypes 252

of that block with the biggest overlap of haplotypes with the previously considered 253

block. In case no block has overlapping haplotypes, we choose the block with the most 254

haplotypes not considered so far. 255

Step 2: Sorting new haplotypes 256

The newly added haplotypes are ordered according to their presence in neighboring 257

blocks. We do this by iteratively comparing the haplotypes of other blocks starting with 258
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the directly adjacent ones. Whenever only some of the currently considered haplotypes 259

are in the block, we split the group of haplotypes into two and proceed with both 260

groups separately. We stop when every group has either exactly one haplotype left or 261

the end of the haplotype library has been reached. 262

Assessment of information content of haplotype blocks 263

The method described above will provide a condensed representation of the genomic 264

data. We next discuss how to quantify the amount of information lost in the process of 265

condensing genotype data to haplotype blocks. A common method to assess the 266

similarity of two multivariate datasets is to use canonical correlation [19]. A limitation 267

of this approach is that it only assesses the similarity of different datasets and therefore 268

does not provide insight on whether one dataset contains information not included in 269

the other one. Recently, de los Campos [20] proposed three methods for estimating the 270

proportion of variance of an omics set (e.g. high-dimensional gene expression data, 271

methylation or markers) that can be explained by regression on another type of omics 272

data. We used a modified version of the second method proposed by de los Campos [20] 273

to estimate the proportion of variance of the full SNP-set genotypes that can be 274

explained by a regression on the blocks of a haplotype library. For the computations in 275

this work the R-packages sommer [21] and minqa [22] were used with overall very 276

similar results. The methodology can be briefly described as follows: 277

In traditional SNP-based genomic models [23], a phenotype (y) is regressed on a 278

SNP-dataset (X) using a linear model of the form: 279

y = Xb+ ε,

assuming that the markers have only additive effects b. Hence, the vector of genomic
values g = Xb is a linear combination of the SNP genotypes. In order to estimate the
proportion of g explained by the haplotype library we regress the genomic values g onto
the haplotype blocks (Z):

g = Za+ δ.

From this perspective, genomic prediction based on haplotype blocks searches for a 280

vector Za that is optimal in some sense. For instance, in ridge regression, such a vector 281

is obtained by minimizing a penalized residual sum of squares. It has to be noted here 282

that ε is an error term that includes non-genetic effects whereas δ is an error term 283

resulting from genetic effects that can not be explained by additive effects (a) of single 284

blocks. In random effect models the proportion of the variance of g explained by linear 285

regression on the haplotype library can be estimated using either Bayesian or likelihood 286

methods (e.g. REML, [24]). This proportion of variance explained will vary from trait 287

to trait. We estimate the distribution of the proportion of variance of “genomic vectors” 288

(i.e., linear combinations of SNP genotypes) using a Monte Carlo method. The method 289

proceeds as follows: 290

1. Sample a vector of weights (bs) completely at random (e.g. from a standard 291

Gaussian distribution) 292

2. Compute “actual” effects by forming the linear combination: gs = Xbs 293

3. Estimate the proportion of variance of gs that can be explained by regression on 294

haplotype blocks 295

4. Repeat 1.- 3. for a large number of random vectors bs 296
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As the direct estimation of the heritability using REML variance components has 297

recently been shown to be biased (Schreck and Schlather, [25]), we use their proposed 298

estimator. For the traditional estimates using REML estimates as used in [20] we refer 299

to the supplementary - overall results were similar. 300

In contrast to penalized canonical correlation [19], this method is asymmetric in that 301

it leads to different results by switching the roles of X and Z. In that case the “actual” 302

effect is generated by the block dataset (gs = Zbs) and is then regressed on the 303

SNP-dataset X. Since we compute the share of the variance of one dataset explained by 304

the other dataset, the share of variation that is not explained can be interpreted as 305

previously underused information. An example for underused information are local 306

epistatic interactions that can be modeled via a block but are often not fully captured 307

by linear regression. The use of the traditional genomic relationship matrix [26] in a 308

mixed model indirectly simplifies reality by assuming only additive single marker effects. 309

Consider as a toy example a dataset (cf. Table 2) with three markers, six haplotypes 310

and a genetic effect of 1 occurring in the present of the allele sequence AAA. When 311

assuming no environmental effects, phenotypes are equal to genetic values and fitting an 312

ordinary least squares model (OLS) on single markers (using coding A=̂1, C=̂0) would 313

assign marker 1 the effect of 0.75, marker 2 the effect of 0.5 and marker 3 the effect of 314

0.5 with an intercept of -1. This in turn leads to small but nevertheless non-zero 315

residuals to the genetic values showing that a model based on single markers can 316

approximate but not fully explain the genetic effect here. 317

Table 2. Estimated genetic values using an OLS model assuming single marker
additive effects.

Allelic variant Genetic value Fitted value in linear model

AAA 1 0.75
ACC 0 -0.25
CAA 0 0
AAC 0 0.25
ACA 0 0.25
CAA 0 0

Genotype data used 318

We applied HaploBlocker to multiple datasets from different livestock and crop 319

populations. In the following we report results obtained with a dataset of doubled 320

haploid (DH) lines of two European maize (Zea mays) landraces (n = 501 Kemater 321

Landmais Gelb (KE) & n = 409 Petkuser Ferdinand Rot (PE)) genotyped with an 322

Affymetrix Axiom Maize Genotyping Array [15] containing 616’201 markers (609’442 323

SNPs and 6’759 short indels). Markers were filtered for being assigned to the best 324

quality class (PolyHighResolution, [27]) and having a callrate >90%. As we would not 325

expect heterozygous genotypes for DH lines, markers showing an excess of 326

heterozygosity might result from unspecific binding at multiple sites of the genome. 327

Thus markers were also filtered for having <5% heterozygous calls. This resulted in a 328

dataset of 501,124 usable markers. The remaining heterozygous calls of the dataset were 329

set as NA and imputed using BEAGLE 4.0 [28] with modified imputing parameters 330

(buildwindow=50, nsamples=50). As DH lines conceptually are fully homozygous, 331

haplotype phases were directly observed. 332
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Results and Discussion 333

Here, we will focus on the results obtained for chromosome 1 (80’200 SNPs) in maize. 334

All tests were also performed on other chromosomes with similar results. Unless 335

otherwise mentioned, we limit ourselves here to a single landrace (KE). Results for PE 336

were similar and haplotype libraries for the joint set were basically a combination of 337

both individual landrace libraries. All results were obtained by means of the associated 338

R-package HaploBlocker [17,18]. 339

Using the previously described default settings of HaploBlocker we identified 452 340

blocks which represent 94.2% of the dataset and have an average length of 2’575 SNPs 341

(median: 1’627 SNPs). For the whole genome we identified 2’851 blocks representing 342

93.9% of the dataset with an average/median length of 2’634/1’280 SNPs. A graphical 343

representation of the block structure for the first 20’000 markers of the set is given in 344

Fig 4. Haplotypes were sorted according to their similarity around SNP 10’000. Since 345

there is only limited linkage between markers further apart, the graphical representation 346

gets fuzzy with increasing distance from the target SNP. If one is interested in a specific 347

region of the dataset, we recommend orientating the block structure according to that 348

region. A position in the dataset can be covered by multiple haplotype blocks (e.g. if a 349

short segment is present in many haplotypes and this group includes a subgroup with a 350

longer shared segment). Because of this there are dependencies in the presence of 351

different blocks that can be addressed similar to linkage disequilibrium between markers. 352

To reduce this overlap one might consider to remove overlapping sections in a long block 353

when there is a shorter block in that region including all of the haplotypes present in 354

the longer block, however the dependency of the presence/absence between blocks in the 355

dataset will of course still be there. On the other hand, some positions of the dataset 356

are not covered by any block and unlike singletons are not easily included in later 357

analysis. When further investigating these segments in our data we could observe that 358

these segments are often a combination of multiple blocks in that region possibly 359

indicating a recent crossing over. Not obtaining full coverage should not cause major 360

concern since the assignment of effects to that kind of rare segments is generally 361

difficult. These rare variants and especially regions with low coverage can be used as 362

candidates for further investigation. The start and end points of a block can be seen as 363

candidates for positions of ancient (or at least non-recent) recombination. For example, 364

four different blocks start at SNPs 8’572 (green), 8’575 (yellow), 8’575 (purple) and 365

8’601 (brown), indicating a high tendency for variation around that region (cf. Fig 4). 366

Effect of change in the MNMP 367

The MNMP imposes a weighting between the number of blocks and the coverage of the 368

dataset (cf. Table 3). Higher MNMP lead to a stronger filtering of the haplotype blocks 369

and thereby to a haplotype library with lower coverage and decreased number of blocks. 370

For our data using a parametrization of 5’000 for the MNMP worked fine, ensuring a 371

high coverage while obtaining a haplotype library with a relatively low number of blocks. 372

It has to be noted that this highly depends on the marker density and for less dense 373

data other choices might be more suitable requiring the usage of a target coverage. 374

When choosing a higher value for the MNMP the decrease in coverages becomes 375

stronger in relation to the decrease in the number of blocks. For some analysis 376

optimizing the proportion of the dataset not covered by any block might not be the best 377

indicator for the quality of the haplotype library - instead one could consider preserving 378

a certain share in variation of a SNP-dataset. 379
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Table 3. Coverage/number of blocks depending on the MNMP in chromosome 1 of maize.

MNMP Coverage Number of Blocks Average block length
(# of SNPs)

1 96.4% 1’075 1’309
1000 95.9% 748 1’777
5000 94.2% 452 2’575

20000 89.6% 264 3’300
50000 81.1% 150 3’940

Haplotypes out of the sample 380

To assess how well HaploBlocker identifies haplotype block structures that also pertain 381

to haplotype block structures of other datasets we split our data into a training and 382

testing set and compared the share of both datasets represented by blocks created in the 383

training set only. In all cases the coverage in the test set was below that of the training 384

set, but with higher number of haplotypes in the training set the difference gets smaller. 385

In case of 400 haplotypes in the training set the difference in coverage is down to 2.5% 386

(cf. Fig 5) indicating that analyses done in a sufficiently large dataset can be extended 387

to individuals outside of the sample if they have similar genetic origin. Similar results 388

were obtained when setting a target coverage (90%) for the test set and choosing the 389

MNMP accordingly. 390

Controlling length and number of haplotypes per block 391

The window size chosen in the cluster-building-step has a noteworthy influence on the 392

window cluster and hence on the structure of the haplotype library. By using a shorter 393

window size more haplotypes are classified in the same variant of a window (“group”) 394

leading to overall shorter nodes with more haplotypes in the window cluster. Since 395

haplotypes in those nodes tend to split up earlier, the set of haplotype blocks contains 396

more and shorter haplotype blocks, leading to a haplotype library with higher coverage 397

and shorter blocks with more haplotypes per block (cf. Table 4). 398

Table 4. Influence of the window size on the haplotype library.

Window size Number of Blocks Average block length
(# of SNPs)

Haplotypes per Block Coverage

5 779 1’535 148.3 95.0%
10 579 2’112 121.6 94.5%
20 452 2’575 107.5 94.2%
50 329 2’984 94.4 92.6%

In the block-filtering-step the weighting between segment length (wl) and number of 399

haplotypes (wn) in each block also influences the structure of the later obtained 400

haplotype library (cf. Table 5). As one would expect, a higher weighting for the length 401

of a block leads to longer blocks being present in less haplotypes. The effect of a lower 402

relative weighting for the number of haplotypes in each block was found to have only a 403

minor effect in our data. A possible reason for this is that even with wl = wn the longest 404

blocks previously identified were still selected in the haplotype library. To identify 405

longer blocks in this case one should consider decreasing the minimum transition 406

probability to extend a block in the block-identification-step and thereby allow for the 407

extension of blocks even when there is variation in a block. Even if wl or wn is set to 408

zero there is still an implicit weighting on both the length and the number of haplotypes 409
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since each block is identified using the window cluster and has to contain at least a 410

minimum number of major positions. The overall effect of wl and wn is higher when 411

more blocks (starting values) are considered in the block-identification-step. This can be 412

achieved by creating multiple window clusters using different window sizes for instance. 413

Table 5. Influence of the weighting of block length (wl) and number of haplotypes (wn) on the haplotype library.

wl wn Number of Blocks Average block length
(# of SNPs)

Haplotypes per Block Coverage

1 0 456 2’765 90.2 94.1%
1 0.5 442 2’768 98.2 94.1%
1 1 452 2’575 107.5 94.2%

0.5 1 500 2’250 130.2 94.5%
0 1 875 1’258 174.6 95.9%

Information content 414

We investigated the information content in a simulation study where bs is sampled from 415

a standard Gaussian distribution and a REML approach is used for fitting the model. 416

We found that 96.0% of the variance of the SNP-dataset can be explained by the default 417

haplotype library (cf. Table 6). As one would expect, the share of variance explained is 418

increasing when increasing the number of blocks in the haplotype library. On the other 419

hand, the share of the variance of the haplotype library that can be explained by the 420

SNP-dataset is 95.2%. Even though the number of parameters in the block dataset (Z) 421

is much smaller than in the full SNP set (X), the share of the variance explained by the 422

respective other dataset is similar. Additionally to the high share of the variation 423

preserved, the haplotype library provides a natural model for the inclusion of locally 424

interacting SNPs (local epistatic) and simplyfies the inclusion of interactions between 425

distant blocks as the number of parameters is heavily reduced [29]. Here, further 426

analyses are needed to find an ideal weighting between information loss, parameter 427

reduction and ways to account for local and distant epistatic interactions. 428

An alternative for reducing the number of variables for latter applications is to use a 429

subset of SNPs (Xs) instead. A SNP-subset of the same size as the number of 430

haplotype blocks on average explains a slightly lower proportion of the variation of the 431

full SNP-dataset (95.1%) than the block dataset. In contrary to the haplotype library, 432

the variation of the SNP-subset is basically fully explained by the full SNP-dataset 433

(99.99%) which is not surprising since Xs is a genuine subset of X. Even though a 434

similar share in variation of the SNP-dataset is preserved, the block dataset should be 435

preferred as it is able to incorporate effects that can not be explained by linear effects of 436

single markers (c.f. Table 2). 437

Table 6. Proportion of variance explained between the full SNP-dataset (X), a SNP-subset (Xs) and the block dataset (Z).
For comparability the number of parameters of Xs and Z were chosen equally.

Number of Blocks/SNPs X ∼ Z Z ∼ X X ∼ Xs Xs ∼ X

1’075 99.2% 97.7% 98.5% 99.99%
748 98.4% 96.9% 97.5% 99.99%
452 96.0% 95.2% 95.1% 99.99%
264 92.3% 93.7% 90.4% 99.99%
150 86.2% 92.0% 82.5% 99.99%
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Impact of misplaced SNPs 438

Haplotypes included in the same block can have minor differences. Reasons for such 439

deviations can be diverse, but by comparing the structure in different blocks some 440

explanations become plausible. If the same SNPs tend to have variation in all blocks of 441

that segment, this can be seen as an indication for a misplacement in the used map (e.g. 442

via a translocation or a duplication not represented in the reference map), whereas 443

differences in only one block likely indicate a recent mutation in that specific subgroup. 444

We further investigated this and replaced 0.2% of all markers by a binomial 445

distributed random variable with p = 0.5 so that these markers are not linked to the 446

other markers in the segment. On average, each block contains 4.16 of the replaced 447

markers and 4.14 (99.6%) of those are reported to have variation. In 4.09 (98.4%) of 448

those SNPs both alleles were present with a frequency above 20%. To compare this to 449

the case of a recent mutation we replaced 0.2% of all markers in specific blocks and 450

fixed these markers in all haplotypes outside of the particular block. These changes 451

resulted in an average of 76.3 alleles per SNP that were replaced by a binomial random 452

variable. In the resulting haplotype library 130.6 haplotypes are in blocks with variation 453

in the replaced markers - 76.0 of those were previously replaced alleles (Type I error: 454

0.33%, Type II error: 14.81%). When only reporting those blocks with at most 20% 455

minor allele frequency only 93.2 haplotypes are in reported blocks with 75.7 being truly 456

replaced by a binomial random variable (Type I error: 0.76%, Type II error: 4.75%). 457

We refer to Fig 6 for a more detailed overview of the influence of the chosen minimum 458

minor allele frequency for a marker of a block to be reported as a block with variation 459

in that marker on Type I and II errors. Most Type II error are caused by overlapping 460

blocks resulting in actual changes in other blocks as well. When excluding those cases, 461

Type II error is reduced to 0.22%. Since all those allele changes were performed based 462

on the previously identified haplotype library and HaploBlocker is robust against smaller 463

deviations, those numbers should be taken with caution but nevertheless show promise 464

to identify translocations and distinguish those from subgroup specific variation. 465

Overlapping segments in multiple landraces 466

When using HaploBlocker on the joint dataset of both landraces (KE & PE), the 467

resulting haplotype library contains essentially the same haplotype blocks that were 468

identified in the two single landrace libraries as shared segments between landraces are 469

often too short leading to a small rating rb in the block-filtering-step. To specifically 470

identify those sequences present in both landraces, we added the constraint that each 471

block had to be present in at least five haplotypes of both landraces. This results in the 472

identification of 1’618 blocks which are present in both landraces. Those blocks are 473

much shorter (avg. length: 209 SNPs) and represent only 62.7% of the genetic diversity 474

of the dataset. This is not too surprising since the haplotypes of a single landrace are 475

expected to be much more similar than haplotypes from different landraces. Explicitly 476

this is not an indicator for 62.7% of the chromosome of both landraces to be the same. 477

Shared haplotype blocks can be found across the whole chromosome but only some 478

haplotypes of the landraces have those shared segments. 479

Comparison with the results of HaploView 480

Overall, the structure of the haplotype blocks generated with our approach is vastly 481

different from blocks obtained with LD-based approaches such as HaploView [10]. 482

When applying HaploView on default settings [6] to chromosome 1 of the maize data, 483

2’666 blocks are identified (average length: 27.8 SNPs, median: 20 SNPs) and 4’865 484

SNPs (6.1%) are not contained in any block. If one would use a similar coding to the 485
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blocks obtained in HaploBlocker and use a separate variable for each variant of a block, 486

one would have to account for 12’550 different variants (excluding singletons). For the 487

whole genome this would result in 16’904 blocks with 79’718 variants. When using a 488

dataset with both landraces (or in general more diversity), LD-based blocks get even 489

smaller (4’367 blocks, 24’511 variants, average length: 17.3 SNPs, median: 9 SNPs, 490

4’718 SNPs in no block). In comparison, the haplotype library identified in our 491

approach with multiple landraces is, with minor exceptions, an exact combination of 492

both individual landrace haplotype libraries (1’043 blocks, average length: 2’271 SNPs, 493

median: 1’403 SNPs, coverage: 94.2%). Overall, the potential to detect long range 494

associations between markers and to reduce the number of parameters in the dataset is 495

much higher when using haplotype blocks generated by HaploBlocker. It should be 496

noted that HaploView was developed with slightly different objectives in mind [10]. 497

Influence of marker density 498

A common feature of conventional approaches to identify haplotype blocks is that with 499

increasing marker density the physical size of blocks is strongly decreasing [30,31]. To 500

assess this, we executed HaploBlocker on datasets with different marker densities by 501

only including every second/fifth/tenth/fortieth marker in the model. Since the physical 502

length of a window with a fixed number of SNPs is vastly different, we compared the 503

structure of the obtained haplotype library using the adaptive mode in HaploBlocker 504

(multiple window clusters with window sizes 5,10,20,50 and adaptive MNMP to obtain a 505

target coverage of 95%) instead of default settings. As there are far less markers with 506

possible variation, less blocks are needed to obtain the same coverage in the low-density 507

datasets (cf. Table 7). Additionally, the general structure of the haplotype blocks in the 508

library is changing: since the windows for lower density dataset span over a longer part 509

of the genome, the groups in the cluster-building-step tend to be smaller, leading to less 510

frequent nodes in the window cluster. Since the haplotypes in a node are on average 511

more related to each other, the identified blocks tend to be longer and include less 512

haplotypes. 513

Table 7. Structure of the haplotype library under different marker densities using the adaptive mode in HaploBlocker with
target coverage of 95%.

Density Number of Blocks Average block length
(# of SNPs on full array)

Haplotypes per Block Used MNMP

Every SNP 534 2’317 116.4 2’813
Every second SNP 523 2’281 112.7 1’563
Every fifth SNP 450 2’557 96.9 945
Every tenth SNP 401 2’811 90.6 758
Every fortieth SNP 319 3’637 79.9 294

In a second step, we manually adapted the window size (50/25/10/5/5) and the 514

MNMP (5000/2500/1000/500/125) according to the marker density of the dataset. 515

When manually adapting the parameters, the number of blocks in the haplotype library 516

is largely independent of the marker density (cf. Table 8). The length of the blocks is 517

decreasing whereas the number of haplotypes per block is increasing. A possible reason 518

for this is that haplotypes in the same node of the window cluster are less similar in the 519

region than when using bigger window sizes. This will lead to shorter haplotype blocks 520

which are carried by more but less related haplotypes. In case of the dataset where we 521

used every fortieth marker we additionally considered a value of 250 for the MNMP 522

since the resulting coverage was a lot higher indicating that less overall variation is 523

present in the dataset, resulting in fewer blocks needed to obtain similar coverage. 524

June 18, 2018 14/19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 19, 2018. ; https://doi.org/10.1101/339788doi: bioRxiv preprint 

https://doi.org/10.1101/339788


Table 8. Structure of the haplotype library under different marker densities when adjusting parameters according to data
structure.

Density Number of Blocks Coverage Average block length
(# of SNPs on full array)

Haplotypes per Block

Every SNP 454 94.9% 2’547 95.6
Every second SNP 453 94.9% 2’599 101.8
Every fifth SNP 460 94.8% 2’431 109.8
Every tenth SNP 491 95.6% 2’082 134.2
Every fortieth SNP (MNMP=125) 456 97.8% 2’144 141.3
Every fortieth SNP (MNMP=250) 370 96.6% 2’351 139.4

Haplotype libraries for all marker densities were similar indicating that a much lower 525

marker density than the high-density chip applied here would be sufficient to use 526

HaploBlocker. 527

Conclusions and Outlook 528

HaploBlocker provides a natural technique to model local epistasis and thereby solves 529

some of the general problems of actual markers being correlated but not causal 530

individually [32, 33]. This can be seen as one of the factors contributing to the “missing 531

heritability” phenomenon in genetic datasets [34]. 532

Even though results were only presented for maize, methods are not 533

species-dependent and also tested on human and livestock datasets. However, the 534

opportunities for identifying long shared segments will be higher in datasets from 535

populations subjected to a recent history of intensive selection. When using 536

heterozygous datasets the use of triplets or a highly accurate reference panel is 537

recommended to obtain high phasing accuracy. 538

It should be noted that by using blocks, an assignment of effects to fixed positions 539

(like in a typical GWAS study) is not obtained. A subsequent analysis is needed to 540

identify which section of the significantly trait-associated haplotype block is causal for a 541

trait and/or which parts of that block differ from the other blocks in that region. 542

A future topic of research is the explicit inclusion of larger structural variants like 543

duplications, insertions or deletions as is done in methods to generate a pangenome [35]. 544

Since blocks in HaploBlocker are of large physical length most structural variants should 545

still be modelled implicitly and an application to sequence data is perfectly possible. 546

HaploBlocker provides an innovative and flexible approach to screen a dataset for 547

block structure and to reduce the number of parameters for further statistical 548

applications. It produces a library of DNA segments shared by subsets of individuals 549

and a condensed representation of the genotype data. The latter can mitigate some of 550

the problems regarding typical p� n– settings in genetic datasets [4] and allows for 551

more complex statistical models that include epistasis or even apply deep learning 552

methods with a reduced risk of over-fitting. 553

HaploBlocker is available as an R-package [17,18], at 554

https://github.com/tpook92/HaploBlocker, including an extensive user manual and 555

example datasets. 556

Supporting information 557

S1 Table. Influence of the weighting of block length (wl) and number of 558

haplotypes (wb) on the haplotype library when using multiple window 559

cluster. Window cluster were generated using a target coverage of 95%, window sizes 560
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of 5,10,20,50 and a maximum of one different allele to the major variant for all window 561

sizes and cases (CSV). 562

S2 Table. Proportion of variance explained between the full SNP-dataset 563

(X), a SNP-subset (Xs) and the block dataset (Z) using BLUP variance 564

components (CSV). 565

S1 File. Chromosome 1 Maize SNP-Dataset containing 80’200 markers and 910 566

DH-lines(501 Kemater Landmais Gelb & 409 Petkuser Ferdinand Rot) (CSV). 567
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Fig 1. Schematic overview of the steps of the HaploBlocker method. Steps
include (1) Cluster-building: Classify local haplotype variants in short windows into
groups. (2) Cluster-merging: Simplify window cluster by merging and neglecting nodes.
(3) Block-identification: Identify blocks based on transition probabilities between nodes.
(4) Block-filtering: Creation of a haplotype library by reducing the set of blocks to the
most relevant ones for the later application. (5) Block-extension: Extend blocks by
single windows and SNPs.

Fig 2. Cluster-merging-step: Development of the window cluster in the
Cluster-merging-step after each application of SM, SG, NN.

Fig 3. Excerpt of a window cluster. This included all edges (transitions) from the
nodes of one of the common paths in the example dataset.
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Fig 4. Graphical representation of the block structure for the first 20’000
SNPs of chromosome 1 in maize. Haplotypes are sorted for similarity in SNP
10’000. In that region block structures are most visible and transitions between blocks
can be tracked easily.

Fig 5. Proportion of the dataset represented by the haplotype library
(coverage) of the training and test set in regard to size of the training set.

Fig 6. Influence of the minimum minor allele frequency set to identify
subgroups with variable markers.
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