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Abstract

Motivation

Stochastic gene expression simulations often assume steady-state transcript levels, or they model tran-
scription in more detail than translation. Moreover, they lack accessible programming interfaces, which
limits their utility.

Results

We present Pinetree, a step-wise gene expression simulator with codon-specific translation rates. Pinetree
models both transcription and translation in a stochastic framework with individual polymerase and
ribosome-level detail. Written in C++ with a Python front-end, any user familiar with Python can
specify a genome and simulate gene expression. Pinetree was designed to be efficient and scale to
simulate large plasmids or viral genomes.

Availability

Pinetree is available on GitHub (https://github.com/benjaminjack/pinetree) and the Python Package
Index (https://pypi.org/project/pinetree/).

1 Introduction

Advances in synthetic biology enable biologists to precisely manipulate gene expression. As the complexity
of genetic engineering techniques increases, biologists need tools to simulate and predict gene expression.
Computational models of gene expression fall into three broad categories based on their granularity and
underlying assumptions. Differential equation-based models treat the gene as the smallest simulated unit
[1–3]. Totally asymmetric simple exclusionary process (TASEP) models account for the step-wise motion
of individual ribosomes on transcripts, and provide mean-field approximations of protein production [4–6].
Stochastic simulations offer the most detailed tracking of individual molecules. However, existing stochastic
models support either step-wise transcription or step-wise translation, but not both [7,8]. The simulator we
present here, Pinetree, extends these prior models. Pinetree tracks the stochastic movements of individual
molecules in both transcription and translation.

2 Results

Each Pinetree simulation begins with a single copy of a genome, and a pool of free polymerases and ribosomes
(Fig. 1A). The simulation proceeds according to the Gillespie algorithm [9] in discrete, dynamic time steps.
RNA polymerases bind to promoters in the genome, initiate transcription, and generate individual transcripts
by transcribing one base pair per time step (Fig. 1B). As a given transcript extends from a polymerase,
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ribosomes bind to exposed ribosome binding sites and initiate translation. These ribosomes translate one
base per time step, and, depending on the codon, may translate at different speeds. Ribosomes may collide
with and stall behind upstream ribosomes or the RNA polymerase synthesizing the transcript on which the
ribosome is translating. Likewise, polymerases may collide with and stall behind upstream polymerases.

To test the design and implementation of Pinetree, we developed a three-gene plasmid simulation. The
plasmid was simulated in a mini-cell containing 100 ribosomes, and 10 RNA polymerases. We assumed stable
transcripts that do not degrade over the course of the simulation so the system never reached equilibrium.
Our goal was to determine if changes in codon usage bias produced changes in protein abundance that are
consistent with our current understanding of molecular biology. The simulated three-gene plasmid contained
a promoter activated by an RNA polymerase immediately upstream of the polymerase gene. Thus, expression
of the RNA polymerase was autoregulatory. There was only a single terminator, so all transcripts were
polycistronic. We constructed two versions of this plasmid. The first contained uniform translation rates. In
the second, all preferred codons in the third gene (Y) were replaced with rare codons. Since all three genes
are controlled by the same promoter, protein abundance in this model is determined by the order of the
genes, the length of each gene, and codon usage (Fig. 1C). As expected, we observed a decrease in protein
abundance for gene Y in the recoded plasmid but no difference in transcript abundances between the two
plasmids (not shown). Along gene Y, we also observed a higher rate of ribosome collisions and stalling and
an increase in ribosomal density in the recoded plasmid (Fig. 1D).

To test the performance of Pinetree, we simulated the infection of a simplified E. coli cell model by
bacteriophage T7. The T7 genome is 40kb and contains 60 genes, with an infection cycle of 12 minutes.
Simulating gene expression of this phage across the infection cycle took approximately 3 hours.

3 Discussion

Pinetree offers two main advantages over prior simulations of translation. First, Pinetree simulates dynamic
transcript abundances and transcript lengths. Transcript abundances can change over the course of the
simulation, and precise transcript lengths can be determined dynamically through mechanisms like termina-
tor readthrough. Past simulations require that you pre-specify both transcript abundances and transcript
lengths [4–7, 10]. Second, unlike TASEP models, ribosome movements are modeled explicitly on each tran-
script [4–6]. Together, these two properties of Pinetree allow the user to explore non-steady state dynamics of
gene expression at the single base pair resolution, all without pre-specifying transcript lengths or abundances.

Of course, such a detailed simulation structure comes at a performance cost. While implemented in C++
and designed to be highly-efficient, Pinetree’s performance will never be able to compete with simulations
in which translation rates are estimated via mean-field approximations, and simulations that do not model
transcription. Future versions of Pinetree could implement alternate versions of the Gillespie algorithm that
make some approximations in order to decrease run times and increase efficiency [11,12].

Despite the performance cost of single-base pair resolution, we have demonstrated that Pinetree is scalable
to the size of viral genomes. We envision that Pinetree could be used to simulate small bacterial genomes,
and facilitate in silico viral evolution experiments.

4 Methods

We designed designed and prototyped Pinetree in Python. After validating the Python implementation,
we rewrote portions of the Python source code into C++ to improve performance. A C++ header library
pybind11 provides Python wrappers for C++ classes so that C++ objects interact seamlessly with the
Python interpreter.

Pinetree is available as a user-friendly Python package. All Pinetree source code is available on Github
(https://github.com/benjaminjack/pinetree) and the Python Package Index (https://pypi.org/project/
pinetree/). All documentation is available on Read the Docs (https://pinetree.readthedocs.io/). We
are in the process of archiving Pinetree version 0.1.0 with documentation on Zenodo.
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Figure 1: Design and example output of Pintree. Pinetree is a generic gene expression simulator that tracks
individual RNA polymerases on DNA, and ribosome and RNases on mRNA transcripts. (A) A specialized set
of reactions mediates binding and movement of ribosomes, RNA polymerases, and RNases. These reactions
convert molecules from a species pool into individually modeled ribosomes, polymerases, and RNases. (B)
Pinetree tracks individual ribosomes and RNA polymerases on transcripts and DNA, respectively. Lightning
bolts represent potential collisions. Ribosomes may begin translation before a full transcript has been
synthesized by the RNA polymerases. Likewise, an RNase may begin degrading an RNA transcript before
the polymerase has synthesized the full transcript. Together, Pinetree allows the end user to define arbitrary
reactions between molecules in the free species pool, while still modeling transcription and translation at
the single-molecule level. (C) Simulation of a three-gene plasmid with one gene (proteinY) recoded to use
rare codons. No RNases are present in this simulation, so no degradation occurs. Translation of proteinY is
slower than that of proteinX and rnapol. (D) Ribosome densities on the transcript of proteinY are higher
in the recoded gene than in the wildtype. The recoded gene has lower per-codon translation rates than that
of the wild type.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/339994doi: bioRxiv preprint 

https://doi.org/10.1101/339994
http://creativecommons.org/licenses/by/4.0/


References

[1] D Endy, D Kong, and J Yin. Intracellular kinetics of a growing virus: A genetically structured simulation
for bacteriophage T7. Biotechnol Bioeng, 55:375–89, 1997.

[2] D Endy, L You, J Yin, and I J Molineux. Computation, prediction, and experimental tests of fitness
for bacteriophage T7 mutants with permuted genomes. Proc Natl Acad Sci USA, 97:5375–80, 2000.

[3] J Yin and J Redovich. Kinetic modeling of virus growth in cells. Microbiol Mol Biol Rev, 82:e00066–17,
2018.

[4] S Reuveni, I Meilijson, M Kupiec, E Ruppin, and T Tulle. Genome-scale analysis of translation elonga-
tion with a ribosome flow model. PLOS Comput Biol, 7:1–18, 2011.

[5] A Raveh, M Margaliot, E D Sontag, and T Tuller. A model for competition for ribosomes in the cell.
J R Soc Interface, 13:20151062, 2016.

[6] Y Zarai, M Margaliot, and T Tuller. On the ribosomal density that maximizes protein translation rate.
PLOS One, 11:e0177650, 2016.

[7] P Shah, Y Ding, M Niemczyk, G Kudla, and J B Plotkin. Rate-limiting steps in yeast protein translation.
Cell, 153:1589–1601, 2013.

[8] S Kosuri, J R Kelly, and D Endy. TABASCO: A single molecule, base-pair resolved gene expression
simulator. BMC Bioinf, 8:480, 2007.

[9] D T Gillespie. Exact stochastic simulation of coupled chemical reactions. J Phys Chem, 81:2340–61,
1977.

[10] M A Ferrin and A R Subramaniam. Kinetic modeling predicts a stimulatory role for ribosome collisions
at elongation stall sites in bacteria. eLife, 6:e23629, 2017.

[11] D T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem
Phys, 115:1716–33, 2001.

[12] R Ramaswamy and I F Sbalzarini. A partial-propensity variant of the composition-rejection stochastic
simulation algorithm for chemical reaction networks. J Chem Phys, 132:044102, 2010.

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 7, 2018. ; https://doi.org/10.1101/339994doi: bioRxiv preprint 

https://doi.org/10.1101/339994
http://creativecommons.org/licenses/by/4.0/

