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ABSTRACT 29	

 30	

Bats are among the most diverse animals on the planet and harbor numerous bacterial, 31	

viral, and eukaryotic symbionts. The interplay between bacterial community composition 32	

and parasitism in bats is not well understood and may have important implications for 33	

studies of similar systems. Here we present a comprehensive survey of dipteran and 34	

haemosporidian parasites, and characterize the gut, oral, and skin microbiota of 35	

Afrotropical bats. We identify significant correlations between bacterial community 36	

composition of the skin and dipteran ectoparasite prevalence across four major bat 37	

lineages, as well as links between the oral microbiome and malarial parasitism, suggesting 38	

a potential mechanism for host selection and vector-borne disease transmission in bats. In 39	

contrast to recent studies of host-microbe phylosymbiosis in mammals, we find no 40	

correlation between chiropteran phylogenetic distances and bacterial community 41	

dissimilarity across the three anatomical sites, suggesting that host environment is more 42	

important than shared ancestry in shaping the composition of bat-associated bacterial 43	

communities.  44	

 45	

 46	
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SIGNIFICANCE 48	

 49	

Animals rely on bacterial symbionts for numerous biological functions, such as digestion 50	

and immune system development. Increasing evidence suggests that host-associated 51	

microbes may play a role in mediating parasite burden. This study is the first to provide a 52	

comprehensive survey of bacterial symbionts from multiple anatomical sites across a 53	

broad taxonomic range of Afrotropical bats, demonstrating significant associations 54	

between the bat microbiome and parasite prevalence. This study provides a framework for 55	

future approaches to systems biology of host-symbiont interactions across broad 56	

taxonomic scales, emphasizing the interdependence between microbial symbionts and 57	

vertebrate health in the study of wild organisms and their natural history. 58	

 59	

 60	

 61	

 62	

 63	

 64	

 65	

 66	

 67	

 68	

 69	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/340109doi: bioRxiv preprint 

https://doi.org/10.1101/340109
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

 70	

INTRODUCTION 71	

 72	

Humans and other animals rely on bacterial symbionts for numerous biological 73	

functions, such as digestion and immune system development (1, 2). Many studies have 74	

found significant associations between host phylogeny (shared common ancestry) and 75	

bacterial community composition (3, 4), while others have identified dietary or 76	

spatiotemporal variables as significant drivers of host-microbe associations over the course 77	

of an individual lifespan (5-7). The influence of microbes on their hosts may be context 78	

dependent, such that the presence of a particular microbe may be beneficial under one set 79	

of ecological conditions and harmful under another. Thus, patterns of association 80	

between animals and bacterial symbionts provide a unique lens through which to explore 81	

evolutionary and ecological phenomena. 82	

Recognition of the interdependence between microbial symbionts and animal 83	

health has led to a growing paradigm shift in the study of wild organisms and their 84	

natural history. In addition to exhibiting variation in life history characteristics, animals 85	

serve as hosts to myriad bacteria, archaea, viruses, fungi, and eukaryotic organisms. Many 86	

relationships between eukaryotic parasites and hosts have ancient origins, and the same 87	

may be true for host-microbial associations. It is possible that bacterial symbionts of 88	

vertebrate hosts interact with eukaryotic parasites, viruses, or fungal symbionts in ways 89	

that could shape host evolution (8). For example, evidence from human and 90	

anthropophilic mosquito interactions suggests that the skin microbiome can influence 91	

vector feeding preference, thereby affecting transmission patterns of mosquito-borne 92	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/340109doi: bioRxiv preprint 

https://doi.org/10.1101/340109
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

pathogens (such as West Nile virus, yellow fever, dengue, malaria, etc.), and ultimately 93	

imposing selective pressures on human populations - indeed, positive selection of 94	

malaria-protective genes can be seen in the human genome (9). Despite the potential 95	

significance of such interactions between hosts, microbes, and pathogen-transmitting 96	

vectors, they have not been well studied in most wild vertebrate systems. 97	

 Bats (Mammalia: Chiroptera) are an important system for comparison of the 98	

relative contributions of evolutionary and ecological factors driving host-symbiont 99	

associations. In addition to being one of the most speciose orders of mammals (second 100	

only to the order Rodentia), bats frequently live in large colonies, are long-lived, and 101	

volant, granting them access to a wide geographic range relative to their non-volant 102	

mammalian counterparts. The associations of diverse eukaryotic parasites (e.g. dipteran 103	

insects, haemosporidia, helminths) within numerous bat lineages have been well-104	

characterized (10-13). Furthermore, bats have received increasing attention due to their 105	

role as reservoirs of human pathogens (e.g. Ebola, Marburg, Nipah, SARS (14-18)). 106	

Taken together, these features make bats an important and tractable model for studying 107	

the interaction of bacterial symbionts and non-bacterial parasites and pathogens. 108	

 In this study, we conduct the first broad-scale study of Afrotropical bat-associated 109	

microbes. We test associations between bacterial community composition in the 110	

gastrointestinal tract, skin, and oral cavities from nine families and nineteen genera of 111	

bats.  We pair this information with host-parasite associations between bats and 112	

ectoparasites in the superfamily Hippoboscoidea (obligate hematophagous dipteran 113	

insects), and haemosporidian (malarial) parasites putatively vectored by these 114	

hippoboscoid insects. Using a combination of machine learning, network theory, and 115	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/340109doi: bioRxiv preprint 

https://doi.org/10.1101/340109
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

negative binomial distribution models, we test the hypothesis that host-associated 116	

bacterial communities predict prevalence of parasitism by obligate dipteran and malarial 117	

parasites.  118	

 119	

RESULTS 120	

 121	

1) Ectoparasite and malarial parasite prevalence among Afrotropical bats 122	

  123	

Sampling was conducted across 20 sites in Kenya and Uganda from July-August 124	

of 2016. Sites ranged from sea level to ~2500m in elevation (Fig. 1; Table S1). We 125	

collected gut, oral, and skin samples for bacterial community characterization from a total 126	

of 494 individual bats, comprising 9 families, 19 genera, and 28 recognized species. Bat 127	

families with the greatest representation included Hipposideridae (n = 80), Miniopteridae 128	

(n = 116), Rhinolophidae (n = 88), and Pteropodidae (n = 106). All host and parasite 129	

vouchers are accessioned at the Field Museum of Natural History (Chicago, IL, USA) 130	

(Table S2). Miniopterid bats experienced the highest prevalence of both ectoparasitism 131	

(M. minor, 89%) and malarial parasitism (M. minor, 67%) (Table 1). Bats with similarly 132	

high ectoparasite prevalence at the host species level included Rhinolophus eloquens (79% 133	

prevalence), Stenonycteris lanosus (62%), and Triaenops afer (60%). Unlike miniopterid 134	

bats, these bat species did not harbor any detectable malarial parasites (Table 1).  135	

 136	

 137	

 138	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/340109doi: bioRxiv preprint 

https://doi.org/10.1101/340109
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

Table 1. Bat sampling, ectoparasite prevalence (necto), and malarial parasite prevalence (nhaem) and 139	
identification.	140	
	141	
Bat family Bat species nbats necto (%) nhaem  (%) 
Emballonuridae Coleura afra 11 2 (18) 0 
Hipposideridae Hipposideros caffer 47 18 (38) 0 

 
Hipposideros camerunensis 1 0 0 

 
Hipposideros ruber 21 16 (76) 0 

 
Macronycteris vittatus 10 0 0 

Miniopteridae Miniopterus africanus 22 13 (59) 11 (50) 

 
Miniopterus natalensis  54 16 (30) 13 (24) 

 
Miniopterus rufus 22 20 (61) 20 (91) 

 
Miniopterus minor 18 16 (89) 12 (67) 

Molossidae Chaerephon bivittatus 14 0 0 

 
Otomops harrisoni 33 1 (3) 0 

Nycteridae Nycteris arge 3 0 0 

 
Nycteris thebaica 7 1 (14) 0 

 
Nycteris sp. 6 0 0 

Pteropodidae Epomophorus labiatus 2 0 0 

 
Epomophorus wahlbergi 11 0 3 (27) 

 
Micropteropus pusillus 4 0 0 

 
Myonycteris angolensis 5 0 0 

 
Rousettus aegyptiacus 47 24 (50) 0 

 
Stenonycteris lanosus 37 23 (62) 0 

Rhinolophidae Rhinolophus clivosus 43 8 (19) 0 

 
Rhinolophus eloquens 24 19 (79) 0 

 
Rhinolophus hildebrandti 4 1 (25) 0 

 
Rhinolophus landeri 14 0 3 (21) 

 
Rhinolophus sp. 3 0 

 Rhinonycteridae Triaenops afer 10 6 (60) 0 
Vespertilionidae Myotis tricolor 9 8 (89) 3 (33) 

 
Neoromicia nana 1 0 0 

 
Neoromicia sp. 3 0 

 
 

Pipistrellus sp. 2 0 0 

 
Scotoecus hindei 3 1 (25) 0 

 
Scotophilus dinganii 3 0 0 

Total   494 193 65 
	142	
 143	
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 144	

Figure 1. Sampling localities and elevation, grouped by county (see Table S1 for full 145	

locality information). Colors correspond to elevation, and white numbers and size of 146	

points correspond to number of bats collected. 147	

 148	

2) Microbial richness associated with bat skin is significantly greater than gut or oral 149	

microbial communities 150	

 151	

 Sequencing produced a total of 1,236 libraries, with an average read depth of 152	

32,950 reads per library (±19,850 reads). Analyses and statistical tests were performed on 153	

non-rarefied data (libraries containing >1000 reads and transformed to library read depth) 154	

and on rarefied data (libraries rarefied to a read depth of 10,000 sequences and 155	

subsequently transformed). The difference in library normalization methods only resulted 156	

in a decrease of total ASVs which did not affect the significance of alpha and beta-157	

diversity statistical tests. Therefore, the results reported hereafter are from the non-158	
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rarefied data set. Across all samples, 31,172 amplicon sequence variants (ASVs) were 159	

identified using Deblur (19) (for rarefied data set, 1,267 ASVs were dropped, resulting in 160	

a total of 29,890 ASVs identified across all samples). Total number of libraries per 161	

anatomical site, following filtering, included 396 libraries for gut, 374 libraries for oral, 162	

and 458 libraries for skin microbiomes (Table 2). Gut microbial communities exhibited 163	

the lowest overall diversity (8,204 ASVs), followed by oral (11,632 ASVs), and skin 164	

(29,149 ASVs), the latter being significantly greater than gut or oral (p < 2.2e-16, 165	

Kruskal-Wallis; Bonferroni corrected p-value p < 1e-113, Dunn’s test) (Fig. 2; Fig S1). 166	

The mean observed ASVs by anatomical site were 69, 96, and 587 for gut, oral, and skin 167	

samples, respectively (Table 2).  Shannon index score of skin microbial communities were 168	

also significantly greater than gut or oral microbial communities (p < 2.2e-16, Kruskal-169	

Wallis; Bonferroni corrected p-value p < 1e-119, Dunn’s Test) (Fig. 2; Fig. S1).  170	

171	
  172	

Figure 2. Alpha diversity of amplicon sequence variants (ASVs) by anatomical sites, 173	

including (A) Observed richness, (B) Shannon index of diversity, (C) ASVs shared 174	

between anatomical sites. Asterisks indicate significant differences between groups 175	

(Dunn’s Test, Bonferroni corrected p-value p < 0.0001). 176	
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Table	2.	Alpha	diversity	of	microbial	communities	across	anatomical	sites	within	each	host	genus,	177	
measured	by	Shannon	Index	of	diversity	(SI)	and	observed	ASV	richness	(obs);	n	corresponds	to	number	of	178	
libraries	included	in	each	calculation	(following	quality	filtering).	179	
	

	 	 	
Fecal	

	 	
Oral	

	 	
Skin	

	Host	Family	 Host	Genus	 SI	 obs	 nfecal	 SI	 obs	 noral	 SI	 obs	 nskin	

Emballonuridae	 Chaerephon	 1.16	 52	 12	 1.39	 57	 14	 3.57	 547	 14	
Hipposideridae	 Hipposideros	 1.70	 79	 65	 2.01	 155	 52	 4.95	 439	 74	

	
Macronycteris	 1.82	 74	 9	 2.12	 110	 9	 4.94	 883	 7	

Miniopteridae	 Miniopterus	 1.41	 70	 92	 1.55	 87	 74	 4.12	 403	 114	
Molossidae	 Coleura	 1.59	 52	 11	 0.38	 41	 11	 4.01	 566	 11	

	
Otomops	 0.88	 53	 26	 0.35	 22	 26	 3.88	 288	 33	

Nycteridae	 Nycteris	 1.60	 80	 10	 1.62	 78	 14	 4.48	 807	 14	
Pteropodidae	 Epomophorus	 1.44	 49	 11	 1.42	 46	 11	 3.78	 566	 13	

	
Micropteropus	 1.90	 39	 3	 2.21	 39	 4	 2.30	 84	 3	

	
Myonycteris	 1.14	 117	 4	 1.29	 195	 5	 5.21	 1246	 4	

	
Rousettus	 1.62	 93	 32	 1.95	 84	 34	 4.90	 1207	 34	

	
Stenonycteris	 1.55	 61	 41	 1.72	 97	 38	 4.59	 855	 33	

Rhinolophidae	 Rhinolophus	 1.34	 62	 58	 1.95	 81	 59	 4.71	 543	 79	
Rhinonycteridae	 Triaenops	 1.69	 82	 9	 1.28	 414	 9	 4.03	 508	 10	
Vespertilionidae	 Myotis	 1.62	 54	 1	 1.33	 72	 6	 5.41	 771	 3	

	
Neoromicia	 2.13	 65	 4	 1.47	 37	 4	 3.76	 267	 4	

	
Pipistrellus	 1.05	 NA	 1	 NA	 NA	 0	 4.80	 360	 2	

	
Scotoecus	 1.86	 92	 4	 1.97	 17	 3	 4.20	 360	 4	

		 Scotophilus	 1.23	 64	 3	 0.38	 96	 1	 4.08	 459	 2	

Mean	
	

1.51	 69	
nfecal	
396	 1.47	 96	

norall	
374	 4.30	 587	

nskin	
458	

	180	
 181	

3) Microbial communities significantly correlate with geographic locality, anatomical site, 182	

and host taxonomy, but not host phylogeny 183	

 184	

Permutational analysis of variance (PERMANOVA) identified geographic 185	

locality, host taxonomy, and anatomical sampling site (gut, oral, skin) as significant 186	

factors explaining variation in three independent measures of microbial beta diversity 187	

(Bray-Curtis, unweighted UniFrac, and weighted UniFrac) (p < 0.001, ADONIS) (Table 188	
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3). Measures of intraspecific beta dispersion among weighted UniFrac, unweighted 189	

UniFrac, and Bray-Curtis distances showed a continuum of dissimilarities across host 190	

species (Fig. S2); mean beta dispersion differed significantly between anatomical sites by 191	

all three dissimilarity measures (Dunn’s Test, Bonferroni corrected p-value p < 0.001).) 192	

Analysis of sites by elevation revealed that bats at higher elevations tended to host 193	

increased Shannon diversity (SI) and observed richness (OR) across oral (SI: R2 = 0.076, 194	

p < 3.1e-9; OR: R2 = 0.038, p < 2.5e-5), and skin (SI: R2 = 0.16, p < 2.2e-16; OR: R2 = 195	

0.100, p < 2.5e-14)  microbiomes (Fig. S3).  196	

Across all bat species, the gut microbiome was enriched for Proteobacteria (avg 197	

55.4%) (Enterobacteraceae, avg 50.0%) and Firmicutes (avg 21%) (Clostridiaceae, avg 198	

9.5%; Streptococcaceae, avg 5.5%). Oral microbiota were also enriched for Proteobacteria 199	

(avg 64.3%) (Pasteurellaceae, avg 47.5%; Neisseriaceae, avg 8.3%) and Firmicutes (avg 200	

11.4%) (Streptoccaceae, avg 8.8%; Gemellaceae, avg 3.61%). The skin microbiome was 201	

not enriched for a single bacterial family, and showed a pronounced increase in relative 202	

abundance of Actinobacteria (avg 10%) (Mycobacteraceae, avg 4.1%; 203	

Pseudonocardiaceae, avg 2.8%; Nocardiaceae, avg 2.3%) and Bacteroidetes 204	

(Moraxellaceae, avg 5.6%), and Euryarchaeota (Halobacteraceae, avg 4.2%) (Fig. 3). 205	

Fruit bats (pteropodids) showed enrichment of Clostridiaceae in the gut (avg 206	

24.8%) and Streptococcaeae in the oral microbiome (avg 31.0%) compared to all other 207	

bats. The oral microbiota of several insectivorous bat families were enriched for 208	

Firmicutes in the Mycoplasmataceae family (nycterids, avg 25.5% ; rhinolophids, avg 209	

13.8%; miniopterids, avg 8.4%). The skin microbiota of several insectivorous bat families 210	
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were enriched for Firmicutes in the Bacillaceae family (molossids, 14.0%; hipposiderids, 211	

8.6%; nycterids, 8.6%; rhinolophids, 6.3%).  212	

 213	

Figure 3. Relative abundance of top 11 bacterial families identified in gut, oral, and skin 214	

microniomes of bats. Individual points correspond to libraries. Bacterial families are 215	
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colored according to bacterial phylum. Number of libraries is indicated in the upper 216	

right-hand corner of each plot. Black bar graphs indicate average relative abundances. 217	

 218	

Host phylogeny from bat specimens collected during this study was reconstructed 219	

to test for significance of phylosymbiosis between bat species and their microbiome 220	

(Supplemental Figure 5; Figure 4). Mantel tests of host phylogenetic distances and 221	

microbial community dissimilarity (weighted (wuf) and unweighted UniFrac (uf) 222	

distances) revealed no correlation for gut (wuf: R2 = - 0.045, p = 0.63; uf: R2 = - 0.052, p = 223	

0.64), oral (wuf: R2 = - 0.11, p = 0.88), and skin (wuf: R2 = - 0.081, p = 0.79; uf: R2 = - 224	

0.108, p = 0.92) microbiota and host phylogenetic distance, with the exception of oral uf 225	

dissimilarity and host phylogenetic distance(uf: R2 = 0.223, p = 0.02) (Fig. 4). 226	

 227	
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Figure 4. Rate of microbiome divergence across phylogenetic distance of bats. Strengths of 228	

correlations assessed by Mantel tests (10,000 permutations) of microbial community 229	

dissimilarity (unweighted and weighted UniFrac) and patristic distances calculated from a 230	

maximum likelihood hypothesis of bat species from this study. Asterisk indicates significant 231	

correlation (p<0.05) as determined by Mantel test. 232	

 233	

4) Bat skin microbiome is associated with parasitism in African bats 234	

 235	

To test for significant associations between bacterial communities and eukaryotic 236	

parasites (obligate ectoparasitic dipteran insects, and obligate endoparasitic malarial 237	

parasites), we employed a combination of machine learning techniques, network analyses, 238	

and DESeq2 models (see methods). PERMANOVA analysis identified ectoparasite 239	

status and malarial infection status as significant predictors of bacterial beta diversity 240	

dissimilarity among skin and oral microbiota, respectively (p < 0.001, ADONIS). Tests of 241	

three independent measures of beta diversity (weighted UniFrac, unweighted UniFrac, 242	

and Bray-Curtis) produced congruent results, with the exception of oral microbiome, 243	

which was not significantly predictive of malarial infection based on unweighted UniFrac 244	

analysis (Table 4). 245	

 246	

 247	

 248	

 249	
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Table	4.	Permutational	multivariate	analysis	of	variance	using	distance	matrices,	with	distance	matrices	250	
among	sources	of	variation	partitioned	by	host	taxonomy	(species	nested	within	genus),	ectoparasite	251	
status,	malarial	infection	status,	and	locality	included	as	strata;	*	indicates	p-value	<	0.05.	252	
	253	
	254	

		 		 Weighted	UniFrac	 Unweighted	UniFrac	 Bray-Curtis	
Site	 Partition	Variable	 F	 R2	 Pr(>F)	 F	 R2	 Pr(>F)	 F	 R2	 Pr(>F)	

Fecal	 (Host	genus	(species))	 4.27	 0.162	 0.001*	 3.15	 0.120	 0.001*	 2.89	 0.110	 0.001*	

	
Ectoparasite	status		 0.47	 0.001	 0.912	 1.42	 0.004	 0.048*	 1.40	 0.004	 0.097	

	
Malarial	status		 1.34	 0.004	 0.21	 1.33	 0.004	 0.077	 1.98	 0.005	 0.011*	

	 	 	 	
		 		

	
		

	 	 	Oral	 (Host	genus	(species))	 6.82	 0.279	 0.001*	 3.50	 0.143	 0.001*	 6.69	 0.274	 0.001*	

	
Ectoparasite	status		 0.51	 0.001	 0.836	 1.41	 0.004	 0.057	 1.00	 0.003	 0.447	

	
Malarial	status		 2.78	 0.008	 0.015*	 1.17	 0.003	 0.2	 1.98	 0.006	 0.019*	

	 	 	 	
		 		

	
		

	 	 	Skin	 (Host	genus	(species))	 7.68	 0.329	 0.001*	 3.98	 0.170	 0.001*	 5.60	 0.240	 0.001*	

	
Ectoparasite	status		 2.42	 0.006	 0.01*	 1.54	 0.004	 0.02*	 2.07	 0.005	 0.001*	

		 Malarial	status		 0.92	 0.002	 0.513	 1.02	 0.002	 0.363	 1.06	 0.003	 0.32	
	255	
 256	

Supervised machine learning analyses (random forests) produced models that 257	

could classify the anatomical source of microbial communities and the host genus of gut, 258	

oral, and skin microbial samples with reasonable accuracy (ratio of baseline to observed 259	

classification error ≥2; i.e. random forest models performed at least twice as well as 260	

random). Random forest models also performed accurately when classifying ectoparasite 261	

status based on skin bacterial community composition, but were less accurate for 262	

classification of malarial status based on oral bacterial community composition (Table 5). 263	

 264	

 265	

 266	

 267	
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Table	5.	Supervised	machine	learning	results,	showing	random	forest	model	performance	with	respect	to	268	
different	classification	variables	and	input	data	sets	(fecal,	oral,	skin	microbiome).	Model	performance	is	269	
assessed	by	measuring	the	ratio	of	Out-of-bag	estimated	error	(OOB)	to	baseline	error.	270	
	271	
Classification	variable		 	Input	

Data	
Baseline	
error	

OOB	
error	 Baseline:OOB	

Anatomical	site		 	All	data	 0.68	 0.14	 4.8	
Host	Genus		 	Skin	 0.75	 0.17	 4.3	
Host	Genus		 	Oral	 0.78	 0.24	 3.2	
Host	Genus		 	Gut	 0.77	 0.35	 2.2	
Ectoparasite	Status		 	Skin	 0.53	 0.27	 2.0	
Malarial	Status	(Miniopteridae	only)	 	Oral	 0.46	 0.38	 1.2	
	272	
 273	

Following the application of statistical and machine learning approaches, we 274	

employed network analyses to characterize the co-occurrence topology of microbial 275	

communities (in terms of the relative abundance of co-occurring ASVs) across the skin 276	

microbiota of our four most well-sampled bat families (Hipposideridae (n = 80), 277	

Miniopteridae (n = 116), Rhinolophida (n = 88), and Pteropodidae (n = 106)). Network 278	

analyses produced strikingly consistent results, revealing a significant decrease in cluster 279	

size (p < 0.05, Mann-Whitney-Wilcoxon rank sum test) and median node degree (p < 280	

0.05, t test), as well as reduced network connectivity for parasitized bats from three of the 281	

four bat families examined (Fig. 5; Fig. S4). 282	
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 283	

Figure 5. (A) Distribution of skin microbial network clusters for parasitized and non-284	

parasitized bats, grouped by bat family (asterisks indicate signifiance at p < 0.005, 285	

Kruskal-Wallis) (B) Visualization of skin bacterial networks (based on Fruchterman-286	

Reingold algorithm); colored nodes correspond to unique clusters of co-occurring ASVs 287	

within each network. 288	

 289	

5) Bacterial taxa on skin correlated with presence or absence of obligate dipteran 290	

ectoparasites 291	

 292	

 DESeq2 analyses of the skin microbiota in four well-sampled bat families 293	

(Hipposideridae, Miniopteridae, Rhinolophidae, Pteropodidae) identified a number of 294	
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ASVs that were significantly associated with either ectoparasitized or non-ectoparasitized 295	

bats (Fig. 6). Overall, we identified 89 and 24 ASVs significantly associated with 296	

parasitized and non-parasitized bats, respectively (Table S3). Bacterial classes with the 297	

greatest representation among significant results were Actinobacteria (16 families), 298	

Gammaproteobacteria (11 families), Bacilli (5 families), and Alphaproteobacteria (3 299	

families). ASVs significantly enriched in parasitized bats from at least three out of four 300	

bat families included Mycobacteraceae (Actinobacteria), and Xanthomonadaceae 301	

(Gammaproteobacteria). ASVs significantly enriched in parasitized bats from at least two 302	

out of four bat families included Hyphomicrobiaceae (Alphaproteobacteria), 303	

Alcaligenaceae (Betaproteobacteria), Moraxellaceae (Gammaproteobacteria), 304	

Planococcaceae (Bacilli), Flavobacteraceae (Flavobacteria), Halobacteraceae 305	

(Halobacteria), and Chitinophagaceae (Saprospirae) (Fig. 6). 306	
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 307	

Figure 6. Log2fold change in relative abundance of skin-associated ASVs from the four 308	

most-sampled bat families estimated with DESeq2. ASVs shown were found to be 309	

significantly associated with ectoparasite status in bats based on analysis of negative 310	

binomial distributions of relative abundance (Banjamini-Hochberg FDR corrected p-311	

value p < 0.05). Positive values correspond to ASVs found to be enriched on parasitized 312	

bats, and negative values correspond to ASVs found to be enriched on non-parasitized 313	

bats. Gray bars highlight ASVs in bacterial families that were enriched in parasitized bats 314	

for three out of four bat families. 315	

 316	

 317	
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DISCUSSION 318	

 319	

 The bacterial diversity we observed among gut, oral, and skin microbiota of bats 320	

fall within ranges similarly observed in other vertebrate groups (3, 20-23). Although few 321	

studies have simultaneously compared gut, oral, and skin microbiota from the same 322	

individuals, our data reflect an apparent trend in the literature of skin bacterial diversity 323	

among vertebrates significantly outnumbering gut or oral bacterial diversity (24-27). Our 324	

data corroborate the findings of Nishida and Ochman (3), revealing no relationship 325	

between chiropteran phylogeny and gut bacterial community dissimilarity. We also found 326	

the same absence of phylogenetic signal among oral and skin microbial communities. As 327	

suggested in other studies of volant vertebrates (bats and birds), convergent adaptations 328	

driven by the evolution of flight may be influencing the nature and composition of 329	

microbial communities in both bats and birds (28-30). This differs markedly from studies 330	

of other non-volant mammals, such as primates and rodents, for which phylogenetic 331	

relatedness is generally a significant predictor of microbial community dissimilarity (21, 332	

31-33). 333	

Microbial community specificity can be assessed as a function of intraspecific 334	

variation in dissimilarity (beta dispersion), where a low variance of dispersion suggests a 335	

tight and perhaps co-evolutionary link between hosts and symbionts, and a high variance 336	

of dispersion suggests more random or non-specific associations between hosts and 337	

symbionts (34). Measures of beta dispersion among bat species revealed a continuum for 338	

all three anatomical sites, with oral bacterial communities showing lower levels of beta 339	

dispersion than gut or skin communities (Fig. S2). Given that we found no correlation 340	
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between bacterial community dissimilarity and host phylogenetic distance, and that we 341	

observed no taxonomic clustering of hosts in mean beta dispersion estimates, variation in 342	

beta dispersion is likely driven by ecological rather than evolutionary factors.  343	

Similar to recent studies in North American bats (35), we found sampling locality 344	

to be a significant factor influencing skin, gut and oral microbial composition (Table 3). 345	

Furthermore, we observed an apparent trend in increasing Shannon diversity and 346	

observed ASV richness along an elevational gradient that was most pronounced for skin 347	

microbiota (Fig. S3). A positive correlation between bacterial richness and elevation has 348	

been observed in studies of amphibian skin (36) and montane soil, and this pattern may 349	

be the result of climatological and other abiotic factors (e.g. pH) found along elevational 350	

gradients (37, 38). 351	

Table	3.	Permutational	multivariate	analysis	of	variance	using	distance	matrices,	with	distance	matrices	352	
among	sources	of	variation	partitioned	by	host	taxonomy	(species	nested	within	genus),	locality,	and	353	
anatomical	site;	*	indicates	p-value	<	0.05.	354	
	355	
	356	
		 Weighted	UniFrac	 Unweighted	UniFrac	 Bray-Curtis	
Partition	Variable	 SumSq	 F	 Pr(>F)	 SumSq	 F	 Pr(>F)	 SumSq	 F	 Pr(>F)	

		 		 		 		 		 		 		 		 		 		
Anatomical	site	 10.67	 198.01	 0.001*	 56.52	 82.90	 0.001*	 38.2	 36.97	 0.001*	
Host	Genus	 3.77	 13.09	 0.001*	 25.54	 7.02	 0.001*	 85.30	 15.06	 0.001*	
Locality	 1.56	 11.00	 0.001*	 20.62	 11.34	 0.001*	 23.85	 8.42	 0.001*	
Host	Genus:species	 1.39	 4.08	 0.001*	 11.20	 2.59	 0.001*	 25.25	 1.33	 0.001*	
		 		 		 		 		 		 		 		 		 		
	357	
 358	

 We found the general composition of gut microbiota in East African bats to be 359	

similar to that of Neotropical bats, with Proteobacteria being the dominant bacterial 360	

phylum present (39). Regardless of diet (insectivorous or frugivorous), the distal bat gut is 361	

dominated by bacteria in the family Enterobacteriaceae (Phylum: Proteobacteria), though 362	
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fruit bats do have an increased relative abundance of bacteria in the family Clostridiaceae 363	

(Phylum: Firmicutes) relative to insectivorous bats. In their study of neotropical bats, 364	

Phillips et al. (40) noted an increased relative abundance of Lactobacillales in frugivorous 365	

bats, and we note a similar pattern among pteropodid fruit bats in this study, which 366	

exhibited a slightly higher proportion of Streptococcaceae (Order: Lactobacillales) 367	

relative to insectivorous bats (Fig. 3). Overall, the predominant enrichment of the 368	

chiropteran gut by Proteobacteria differs markedly from other mammalian gut 369	

microbiomes, which are generally dominated by Firmicutes (21, 41, 42).  370	

Among most bat families, the oral microbiome was dominated by Pasteurellaceae 371	

(Phylum: Proteobacteria), and in some cases a high relative abundance of bacteria in the 372	

families Mycoplasmataceae (in nycterids), Neisseriaceae (in vespertilionids and 373	

rhinonycterids), and Streptococcaceae (in pteropodids) was also observed. Although the 374	

oral microbiome has received less attention than that of the gut, several studies have 375	

found diverse Pasteurellaceae and Neiserria lineages present in the oral microbiota of 376	

animals, including domestic cats (20) and marine mammals (43). Pasteurellaceae lineages 377	

have also recently been documented in the oral microbiota of Tasmanian devils (23, 44). 378	

In humans, Pasteurallaceae (genera Haemophilus and Aggregatibacter) and Neisseriaceae 379	

(genera Neisseria, Kingella, and Eikenella) play an important role in the formation 380	

supragingival plaque (22). Though these bacterial groups are present in lower proportions 381	

in other animals relative to bats, their presence in a broad range of host taxa suggest a 382	

conserved evolutionary niche. 383	

 Our analysis identified links between ectoparasitism, malarial parasitism, and 384	

bacterial communities on the skin and in oral cavities, respectively. Network analyses 385	
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identified consistent, stable, and species-rich clusters of bacteria on the skin of non-386	

ectoparasitized bats, compared to relatively disconnected and apparently transient bacteria 387	

on the skin of bats harboring ectoparasites. This result mirrors that found in human-388	

mosquito interactions, in which individuals with lower bacterial diversity on the skin are 389	

significantly more attractive to blood-seeking mosquitoes than individuals with higher 390	

diversity (45). In humans, skin bacteria play a known role in attracting mosquitoes via 391	

their production of volatile organic compounds (VOCs), and studies have shown that 392	

variation in skin microbial community composition can increase or decrease human 393	

attractiveness to blood-seeking mosquitoes (45-47). Similar mechanisms may be at play 394	

in the bat-ectoparasite system, particularly given the phylogenetic proximity of 395	

hippobscoid bat parasites to mosquitoes.  396	

Several bacterial families exhibited significant associations with presence of 397	

ectoparasitism in bats based on DESeq analyses. Bacteria found across multiple host 398	

families included (but were not limited to) Alcaligenaceae, Chitinophagaceae, 399	

Flavobacteriaceae, Moraxellaceae, Mycobacteriaceae (Mycobacterium spp.), and 400	

Xanthomonadaceae. In many cases, these bacterial families were associated with 401	

parasitism in some bat families, and absence of parasitism in others, suggesting a 402	

potential mechanism by which ectoparasites might be distinguishing between “correct” 403	

and “incorrect” hosts. As suggested by human-mosquito interaction studies (45, 46, 48), 404	

bacteria positively associated with increased rates of blood-feeding dipteran host selection 405	

may be producing VOCs on which the insects rely to identify their hosts. Bacteria that 406	

are negatively associated with such insects may be consuming the products of the former, 407	

or may be producing VOCs of their own that mask those of the former (suggested by 408	
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Verhulst et al. (45)). To better understand the mechanisms underlying these correlations 409	

in wild populations, future experiments should consider including sampling of VOCs in 410	

vivo. 411	

PERMANOVA analyses identified associations between the oral microbiome 412	

and malarial parasite prevalence among bats in the family Miniopteridae, although these 413	

associations were less robust than those of the skin bacteria and ectoparasitism. Upon 414	

further exploration of this potential association, we identified a single bacterial ASV in 415	

the genus Actinobacillus (99% similar to A. porcinus based on NCBI blastn search) as 416	

significantly reduced in malaria-free bats (baseMean 7.61, -24.2 log2FoldChange, p = 417	

1.7E-20). Network analyses indicated no significant differences in connectivity or node 418	

degree distribution (results not shown). Because no other bat groups experienced rates of 419	

malarial parasitism adequate for statistical analyses, we were unable to explore this 420	

relationship further. Future studies that incorporate greater sampling of malaria-positive 421	

species may reveal more robust microbial associations, as have been documented in 422	

numerous experiments with controlled rodent and human malaria infections (48-50). 423	

 Although we cannot ascertain causality of differences in the microbial 424	

composition of skin in this study, our results support the hypothesis that these differences 425	

suggest a mechanism by which ectoparasites can locate or distinguish hosts. Alternatively, 426	

observed differences in microbial composition could result from microbial transfer from 427	

parasites to hosts. Given the known effect of locality and apparent absence of host 428	

phylogenetic signal in microbial community composition of skin, one possible 429	

explanation is that local environmental variables play a greater role in determining host-430	

bacteria associations in bats. Indeed, in North America, multiple bat species have been 431	
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found to share many bacterial genera with soil and plant material (35). Thus, local 432	

conditions and bacterial composition of bat roosts are likely playing an important role in 433	

driving the composition of skin bacteria of bats.   434	

 435	

METHODS 436	

 437	

1) Sampling 438	

 439	

Sampling for this study was conducted from the eastern coast of Kenya to the northern 440	

border of Uganda during August-October 2016 (Fig. 1; Table S1, S2). Nine families and 441	

nineteen genera of bats (order: Chiroptera) were collected as part of bird and small 442	

mammal biodiversity inventories. All sampling was conducted in accordiance with the 443	

Field Museum of Natural History IACUC and voucher specimens are accessioned at the 444	

Field Museum of Natural History (Table S2). Blood samples were collected and screened 445	

for haemosporidia, and haemosporidian taxonomy was assigned using previously 446	

described molecular methods (13). Following blood sampling, ectoparasites were 447	

removed with forceps and placed directly into 95% EtOH; ectoparasites taxonomy was 448	

assigned based on morphological features. For the purposes of analysis with microbiome 449	

data, ectoparasite and malarial status were each scored separately as 1 (present) or 0 450	

(absent). Gut, skin, and oral samples were taken for each bat for microbial analyses. Gut 451	

samples consisted of fecal material collected directly from the distal end of the colon 452	

using sterilized tools, and preserved on Whatman® FTA® cards for microbiome analyses. 453	

For oral microbiome analyses, we preserved both buccal swabs in lN2 and tongue biopsies 454	
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in 95% ethanol (EtOH). Comparison of ASV diversity obtained from paired subsets of 455	

each sample type revealed greater diversity recovered from tongue biopsies (data not 456	

shown); tongues were therefore used for characterization of oral microbiomes in this 457	

study. Lastly, skin samples from five regions of the body (ear, wing membrane, tail 458	

membrane, chest, back) were collected and pooled in 95% EtOH using sterile Integra® 459	

Miltex® 5mm biopsy punches. The goal of sampling from five body regions was to 460	

maximize bacterial diversity recovered from the external skin surface of each individual. 461	

We based our storage media selections on the recent study by Song et al. (51).  462	

 463	

2) Microbiome sequencing, characterization, and parasite association 464	

 465	

DNA extractions were performed on gut, tongue, and skin samples using the MoBio 466	

PowerSoil 96 Well Soil DNA Isolation Kit (Catalog No. 12955-4, MoBio, Carlsbad, 467	

CA, USA). We used the standard 515f and 806r primers (52-54) to amplify the V4 468	

region of the 16S rRNA gene, using mitochondrial blockers to reduce amplification of 469	

host mitochondrial DNA. Sequencing was performed using paired-end 150 base reads 470	

on an Illumina HiSeq sequencing platform. Following standard demultiplexing and 471	

quality filtering using the Quantative Insights Into Microbial Ecology pipeline 472	

(QIIME2) (55) and vsearch8.1 (56), ASVs were identified using the Deblur method (19) 473	

and taxonomy was assigned using the Greengenes Database (May 2013 release; 474	

http://greengenes.lbl.gov). According to a recent stuy by McMurdie and Holmes (57), 475	

rarefying 16s data is inappropriate for the detection of differentially abundant species. 476	

However, for the purposes of comparison, we compared both libraries rarefied to a read 477	
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depth of 10,000 reads and libraries filtered to those containined >1000 reads (negative 478	

controls all contained fewer than 1000 reads and were filtered at this step). Alpha and 479	

beta-diversity analyses produced statistically similar results, with no significant differences 480	

observed betweeh the rarefied and non-rarefied data. We thus chose to report results of 481	

non-rarefied data, based on these observations and the recommendation of McMurdie 482	

and Holmes (57).. Following filtering, data were subset for analyses according to sample 483	

type, host genus, and locality (or some combination thereof). Site-specific analyses were 484	

only performed for sites from which five or more individual bats were sampled.  We 485	

calculated alpha diversity for each sample type (gut, oral, skin) using the Shannon index, 486	

and measured species richness based on actual observed diversity. Significance of differing 487	

mean values for each diversity calculation was determined using the Kruskal-Wallis rank 488	

sum test, followed by a post-hoc Dunn test with bonferroni corrected p-values. Three 489	

measures of beta diversity (unweighted UniFrac, weighted UniFrac, and Bray-Curtis) 490	

were calculated using relative abundances of each ASV (calculated as ASV read depth 491	

over total read depth per library). Significant drivers of communitity similarity were 492	

identified using the ADONIS test with Bonferroni correction for multiple comparisons 493	

using the R package Phyloseq (58). To assess potential effect of imbalanced sampling, the 494	

ADONIS test was re-run on a subset of data comprising only data from the top four 495	

sampled bat families, which represented even sampling among families and across the 496	

localities from which they were collected. Results of this test (not reported) indicated the 497	

same significant drivers of community similarity as the test run on the entire data set.  498	
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Additional R packages used for analyses and figure generation included vegan (59), 499	

ggplot2(60), and dplyr(61). For a complete list of packages and code for microbiome 500	

analyses, see http://github.com/hollylutz/BatMP. 501	

 502	

3) Bat phylogenetic reconstruction 503	

 504	

DNA from bats collected during this study was extracted and sequenced for 505	

mitochondrial Cytochrome-b (cyt-b), using the primer pair LGL 765F and LGL 766R 506	

that amplify the entire cyt-b gene (Bickham et al. 1995, 2004). DNA extractions, PCR 507	

amplification, and sequencing were carried out as in Demos et al. 2018. The best-508	

supported model of nucleotide substitution for cyt-b was determined using the BIC on the 509	

maximum-likelihood topology estimated independently for each model in 510	

jMODELTEST2 (Darriba et al., 2012) on CIPRES Science Gateway v.3.1 (Miller et al., 511	

2010). Maximum-likelihood estimates of cyt-b gene trees were made using the program 512	

IQ-TREE version 1.6.0 (Nguyen et al. 2017) on the CIPRES portal. Emballonuridae 513	

(Coleura afra) was constrained as sister to Nycteridae (Nycteris arge, N. thebaica; 514	

Amador et al. 2016). We conducted analyses using the ultrafast bootstrap algorithm and 515	

searched for best-scoring ML tree algorithm under the GTR+I+	FreeRate model with 516	

1000 bootstrap replicates. The resulting phylogenetic hypothesis and node support can be 517	

viewed in Fig. S5. 518	

 519	

4) Machine learning and network analyses 520	

 521	
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A supervised machine learning approach was used to produce random forests (RF) for the 522	

classification of different variables. RFs were constructed using 1000 decision trees and 523	

subsets of ASV data via the supervised_learning.py script implemented in QIIME (55), 524	

which utilized 80% of each input data set to train classification models, and tested the 525	

accuracy of the models on the remaining 20% of data. We tested the ability of RFs to 526	

accurately classify 1) anatomical site (using all data), 2) host genus (using gut, oral, or 527	

skin microbial data separately), 3) ecotparasite status (using skin microbial data), and 4) 528	

malarial status (using oral microbial data). Classification categories comprised 529	

approximately equal numbers of samples, with the exception of host genera, which varied 530	

substantially (see Table 1).  RF performance was assessed by comparing the out-of-bag 531	

estimated error (OOB) with baseline (random) error. If the ratio of OOB to baseline 532	

error was less than or equal to two, the model was considered to perform reasonably well, 533	

as it performed at least twice as well as random (62). To reconstruct microbial networks 534	

for skin and oral bacterial communities within bat family groupings (which were further 535	

sub-divided into parasitized or non-parasitized), we utilized the R package Sparse Inverse 536	

Covariance Estimation for Ecological Association Inference (SPIEC-EASI) (63). All 537	

network datasets were filtered to contain only ASVs that appeared in at least three 538	

individuals within each respective dataset. We used the neighborhood selection 539	

framework (MB method) with 20 repetitions. Network results produced with SPIEC-540	

EASI were summarized using the R packages CAVnet (64) and igraph (65). Network 541	

stability was assessed by sequentially removing network nodes (ordered by betweeness 542	

centrality and degree) and observing natural connectivity (i.e. eigenvalue of the graph 543	

adjacency matrix) as nodes are removed. To determine which, if any, bacterial ASVs were 544	
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significantly associated with ectoparasite or malarial prevalence, we performed analyses 545	

based on the negative binomial distribution of ASVs relative abundance, utilizing the R 546	

package DESeq2 (66). For ectoparasite-assocation tests, the data were subset into four 547	

categories that corresponded to the top-sampled bat families (Hipposideridae, 548	

Miniopteridae, Pteropodidae, and Rhinolophidae), each with similar propotions of 549	

parasitized to non-parasitzed individuals (see Table 1). For haemosporidian-associated 550	

tests, only the family Miniopteridae was analyzed, due to highly imbalanced prevalence or 551	

sample sizes across all other families (Table 1). Dispersion estimates and fit tests were 552	

implented using default DESeq2 parameters. False discovery rate (FDR) was calculated 553	

using the Benjamini-Hochberg method for each of the bat families analyzed, and p-554	

values were adjusted accordingly. 555	

 556	
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 747	

 748	

FIGURE LEGENDS 749	

 750	

Figure 1. Sampling localities and elevation, grouped by county (see Table S1 for full 751	

locality information). Colors correspond to elevation, and white numbers and size of 752	

points correspond to number of bats collected. 753	

 754	

Figure 2. Alpha diversity of amplicon sequence variants (ASVs) by anatomical sites, 755	

including (A) Observed richness, (B) Shannon index of diversity, (C) ASVs shared 756	

between anatomical sites. Asterisks indicate significant differences between groups 757	

(Dunn’s Test, Bonferroni corrected p-value p < 0.0001). 758	

 759	

Figure 3. Percent relative abundance of top 11 bacterial families identified in gut, oral, 760	

and skin microniomes of bats. Individual points represent the relative abundance of 761	

bacterial families within a single library. Results are faceted by anatomical site and 762	

arranged by host phylogenetic relationship. Bacterial families are colored according to 763	
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bacterial phylum. Number of libraries is indicated in the upper right-hand corner of each 764	

plot. 765	

 766	

Figure 4. Rate of microbiome divergence across phylogenetic distance of bats. Strengths of 767	

correlations assessed by Mantel tests (10,000 permutations) of microbial community 768	

dissimilarity (unweighted and weighted UniFrac) and patristic distances calculated from a 769	

maximum likelihood hypothesis of bat species from this study. Asterisk indicates significant 770	

correlation (p<0.05) as determined by Mantel test. 771	

 772	

Figure 5. (A) Distribution of skin microbial network clusters for parasitized and non-773	

parasitized bats, grouped by bat family (asterisks indicate signifiance at p < 0.005, 774	

Kruskal-Wallis) (B) Visualization of skin bacterial networks (based on Fruchterman-775	

Reingold algorithm); colored nodes correspond to unique clusters of co-occurring ASVs 776	

within each network. 777	

 778	

Figure 6. Log2fold change in relative abundance of skin-associated ASVs from the four 779	

most-sampled bat families estimated with DESeq2. ASVs shown were found to be 780	

significantly associated with ectoparasite status in bats based on analysis of negative 781	

binomial distributions of relative abundance (Banjamini-Hochberg FDR corrected p-782	

value p < 0.05). Positive values correspond to ASVs found to be enriched on parasitized 783	

bats, and negative values correspond to ASVs found to be enriched on non-parasitized 784	

bats. Gray bars highlight ASVs in bacterial families that were enriched in parasitized bats 785	

for three out of four bat families. 786	
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Figure S2. Intraspecific variation across anatomical sites measured as beta dispersion of (A) unweighted 
UniFrac, (B) weighted UniFrac, and (C) Bray-Curtis distances. Dotted lines indicate mean dispersion for 
anatomical groupings; numbers in parentheses indicate sample size per bat species. White and gray 
boxes correspond to the chiropteran suborders Yangochiroptera (microbats) and Yinpterochiroptera 
(fruits bats and kin), respectively.
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Figure S2 CONTINUED. Intraspecific variation across anatomical sites measured as beta dispersion of (A) 
unweighted UniFrac, (B) weighted UniFrac, and (C) Bray-Curtis distances. Dotted lines indicate mean 
dispersion for anatomical groupings; numbers in parentheses indicate sample size per bat species. White 
and gray boxes correspond to the chiropteran suborders Yangochiroptera (microbats) and Yinpterochi-
roptera (fruits bats and kin), respectively.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 20, 2018. ; https://doi.org/10.1101/340109doi: bioRxiv preprint 

https://doi.org/10.1101/340109
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40	

 791	

 Linear regression of (A) Shannon diveristy and (B) observed SV richness of gut, oral, 
and skin microbiomes against elevation from which host was sampled (~0 - 2500 meters above sea  
level). R2 and significance values are provided within each plot.
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Figure S Maximum likelihood phylogeny of bat species ased on the mitochondrial Cytochrome b locus (Cyt b). 
Phylogenetic distances were calculated as patristic distances based on maximum likelihood reconstruction of bat 
species-level phylogeny with 1000 bootstrap (bs) replicates. Closed circles > 97% bs support, open circles > 70% 
bs support. Voucher specimens are accessioned at the Field Museum of Natural History (Chicago, IL); accession 
information can be found in Table S3 (where specimens included in phylogenetic analyses highlighted in red).
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