1 As	sociations	between	Afrotropical	bats,	parasites,	and	microbial	symbionts
------	------------	---------	--------------	-------	------------	-----	-----------	-----------

3	Lutz, Holly L. ^{1,2} *	*, Jackson, F	Elliot W. ³ , Dick,	Carl W. ^{2,4} ,	Webala,	Paul W. ⁵ ,	Babyesiza,
---	---------------------------------	---------------	--------------------------------	--------------------------	---------	------------------------	------------

- 4 Waswa S.⁶, Kerbis Peterhans, Julian C.^{2,7}, Demos, Terrence C.², Patterson, Bruce D.²,
- 5 Gilbert, Jack A.^{1,8}*
- 6

7	¹ Department	of Surgery,	University of	Chicago,	Chicago,	Illinois,	USA.
---	-------------------------	-------------	---------------	----------	----------	-----------	------

- 8 ² Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, USA
- ³ Department of Microbiology, Cornell University, Ithaca, New York, USA
- 10 ⁴ Department of Biology, Western Kentucky University, Bowling Green, Kentucky, USA
- ⁵ Department of Forestry and Wildlife Management, Maasai Mara University, Narok,
- 12 Kenya
- 13 ⁶ Department of Wildlife Management, Sokoine University of Agriculture, Morogoro,
- 14 Tanzania
- 15 ⁷ Department of Biological Sciences, Roosevelt University, Chicago, Illinois, USA
- ⁸ Biosciences Division, Argonne National Laboratory, Argonne, Illinois, USA
- 17
- 18 Corresponding author:
- 19 Holly L. Lutz & Jack A. Gilbert
- 20 Department of Surgery
- 21 Division of the Biological Sciences
- 22 University of Chicago
- 23 5851 S. Maryland Avenue

24 Chicago, IL 60637 - 1508

- 25 hlutz@surgery.bsd.uchicago.edu
- 26 gilbertjack@uchicago.edu
- 27
- 28
- 29 ABSTRACT
- 30

31 Bats are among the most diverse animals on the planet and harbor numerous bacterial, 32 viral, and eukaryotic symbionts. The interplay between bacterial community composition 33 and parasitism in bats is not well understood and may have important implications for 34 studies of similar systems. Here we present a comprehensive survey of dipteran and 35 haemosporidian parasites, and characterize the gut, oral, and skin microbiota of 36 Afrotropical bats. We identify significant correlations between bacterial community 37 composition of the skin and dipteran ectoparasite prevalence across four major bat 38 lineages, as well as links between the oral microbiome and malarial parasitism, suggesting 39 a potential mechanism for host selection and vector-borne disease transmission in bats. In 40 contrast to recent studies of host-microbe phylosymbiosis in mammals, we find no 41 correlation between chiropteran phylogenetic distances and bacterial community 42 dissimilarity across the three anatomical sites, suggesting that host environment is more 43 important than shared ancestry in shaping the composition of bat-associated bacterial 44 communities.

- 45
- 46

47 Keywords: microbiome, malaria, vector-borne disease, Afrotropics, Chiroptera

48 SIGNIFICANCE

50	Animals rely on bacterial symbionts for numerous biological functions, such as digestion
51	and immune system development. Increasing evidence suggests that host-associated
52	microbes may play a role in mediating parasite burden. This study is the first to provide a
53	comprehensive survey of bacterial symbionts from multiple anatomical sites across a
54	broad taxonomic range of Afrotropical bats, demonstrating significant associations
55	between the bat microbiome and parasite prevalence. This study provides a framework for
56	future approaches to systems biology of host-symbiont interactions across broad
57	taxonomic scales, emphasizing the interdependence between microbial symbionts and
58	vertebrate health in the study of wild organisms and their natural history.
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	

70

71 INTRODUCTION

72

73	Humans and other animals rely on bacterial symbionts for numerous biological
74	functions, such as digestion and immune system development (1, 2). Many studies have
75	found significant associations between host phylogeny (shared common ancestry) and
76	bacterial community composition (3, 4), while others have identified dietary or
77	spatiotemporal variables as significant drivers of host-microbe associations over the course
78	of an individual lifespan (5-7). The influence of microbes on their hosts may be context
79	dependent, such that the presence of a particular microbe may be beneficial under one set
80	of ecological conditions and harmful under another. Thus, patterns of association
81	between animals and bacterial symbionts provide a unique lens through which to explore
82	evolutionary and ecological phenomena.
83	Recognition of the interdependence between microbial symbionts and animal
83 84	Recognition of the interdependence between microbial symbionts and animal health has led to a growing paradigm shift in the study of wild organisms and their
84	health has led to a growing paradigm shift in the study of wild organisms and their
84 85	health has led to a growing paradigm shift in the study of wild organisms and their natural history. In addition to exhibiting variation in life history characteristics, animals
84 85 86	health has led to a growing paradigm shift in the study of wild organisms and their natural history. In addition to exhibiting variation in life history characteristics, animals serve as hosts to myriad bacteria, archaea, viruses, fungi, and eukaryotic organisms. Many
84 85 86 87	health has led to a growing paradigm shift in the study of wild organisms and their natural history. In addition to exhibiting variation in life history characteristics, animals serve as hosts to myriad bacteria, archaea, viruses, fungi, and eukaryotic organisms. Many relationships between eukaryotic parasites and hosts have ancient origins, and the same
84 85 86 87 88	health has led to a growing paradigm shift in the study of wild organisms and their natural history. In addition to exhibiting variation in life history characteristics, animals serve as hosts to myriad bacteria, archaea, viruses, fungi, and eukaryotic organisms. Many relationships between eukaryotic parasites and hosts have ancient origins, and the same may be true for host-microbial associations. It is possible that bacterial symbionts of
84 85 86 87 88 89	health has led to a growing paradigm shift in the study of wild organisms and their natural history. In addition to exhibiting variation in life history characteristics, animals serve as hosts to myriad bacteria, archaea, viruses, fungi, and eukaryotic organisms. Many relationships between eukaryotic parasites and hosts have ancient origins, and the same may be true for host-microbial associations. It is possible that bacterial symbionts of vertebrate hosts interact with eukaryotic parasites, viruses, or fungal symbionts in ways

93 pathogens (such as West Nile virus, yellow fever, dengue, malaria, etc.), and ultimately 94 imposing selective pressures on human populations - indeed, positive selection of 95 malaria-protective genes can be seen in the human genome (9). Despite the potential 96 significance of such interactions between hosts, microbes, and pathogen-transmitting 97 vectors, they have not been well studied in most wild vertebrate systems. 98 Bats (Mammalia: Chiroptera) are an important system for comparison of the 99 relative contributions of evolutionary and ecological factors driving host-symbiont 100 associations. In addition to being one of the most speciose orders of mammals (second 101 only to the order Rodentia), bats frequently live in large colonies, are long-lived, and 102 volant, granting them access to a wide geographic range relative to their non-volant 103 mammalian counterparts. The associations of diverse eukaryotic parasites (e.g. dipteran 104 insects, haemosporidia, helminths) within numerous bat lineages have been well-105 characterized (10-13). Furthermore, bats have received increasing attention due to their 106 role as reservoirs of human pathogens (e.g. Ebola, Marburg, Nipah, SARS (14-18)). 107 Taken together, these features make bats an important and tractable model for studying 108 the interaction of bacterial symbionts and non-bacterial parasites and pathogens. 109 In this study, we conduct the first broad-scale study of Afrotropical bat-associated 110 microbes. We test associations between bacterial community composition in the 111 gastrointestinal tract, skin, and oral cavities from nine families and nineteen genera of 112 bats. We pair this information with host-parasite associations between bats and 113 ectoparasites in the superfamily Hippoboscoidea (obligate hematophagous dipteran 114 insects), and haemosporidian (malarial) parasites putatively vectored by these 115 hippoboscoid insects. Using a combination of machine learning, network theory, and

116	negative binomial distribution models, we test the hypothesis that host-associated
117	bacterial communities predict prevalence of parasitism by obligate dipteran and malarial
118	parasites.
119	
120	RESULTS
121	
122	1) Ectoparasite and malarial parasite prevalence among Afrotropical bats
123	
124	Sampling was conducted across 20 sites in Kenya and Uganda from July-August
125	of 2016. Sites ranged from sea level to ~2500m in elevation (Fig. 1; Table S1). We
126	collected gut, oral, and skin samples for bacterial community characterization from a total
127	of 494 individual bats, comprising 9 families, 19 genera, and 28 recognized species. Bat
128	families with the greatest representation included Hipposideridae ($n = 80$), Miniopteridae
129	($n = 116$), Rhinolophidae ($n = 88$), and Pteropodidae ($n = 106$). All host and parasite
130	vouchers are accessioned at the Field Museum of Natural History (Chicago, IL, USA)
131	(Table S2). Miniopterid bats experienced the highest prevalence of both ectoparasitism
132	(M. minor, 89%) and malarial parasitism (M. minor, 67%) (Table 1). Bats with similarly
133	high ectoparasite prevalence at the host species level included Rhinolophus eloquens (79%
134	prevalence), Stenonycteris lanosus (62%), and Triaenops afer (60%). Unlike miniopterid
135	bats, these bat species did not harbor any detectable malarial parasites (Table 1).
136	
137	

139	Table 1. Bat sampling, ectoparasite prevalence (n_{ecto}) , and malarial parasite prevalence (n_{haem}) and
4 4 0	

identification.

141

Bat family	Bat species	n _{bats}	n_{ecto} (%)	n _{haem} (%)
Emballonuridae	Coleura afra	11	2 (18)	C
Hipposideridae	Hipposideros caffer	47	18 (38)	C
	Hipposideros camerunensis	1	0	0
	Hipposideros ruber	21	16 (76)	C
	Macronycteris vittatus	10	0	C
Miniopteridae	Miniopterus africanus	22	13 (59)	11 (50)
	Miniopterus natalensis	54	16 (30)	13 (24)
	Miniopterus rufus	22	20 (61)	20 (91)
	Miniopterus minor	18	16 (89)	12 (67)
Molossidae	Chaerephon bivittatus	14	0	C
	Otomops harrisoni	33	1 (3)	(
Nycteridae	Nycteris arge	3	0	(
	Nycteris thebaica	7	1 (14)	(
	Nycteris sp.	6	0	(
Pteropodidae	Epomophorus labiatus	2	0	(
	Epomophorus wahlbergi	11	0	3 (27)
	Micropteropus pusillus	4	0	(
	Myonycteris angolensis	5	0	(
	Rousettus aegyptiacus	47	24 (50)	(
	Stenonycteris lanosus	37	23 (62)	(
Rhinolophidae	Rhinolophus clivosus	43	8 (19)	(
	Rhinolophus eloquens	24	19 (79)	(
	Rhinolophus hildebrandti	4	1 (25)	(
	Rhinolophus landeri	14	0	3 (21
	Rhinolophus sp.	3	0	
Rhinonycteridae	Triaenops afer	10	6 (60)	(
Vespertilionidae	Myotis tricolor	9	8 (89)	3 (33)
	Neoromicia nana	1	0	(
	Neoromicia sp.	3	0	
	Pipistrellus sp.	2	0	(
	Scotoecus hindei	3	1 (25)	(
	Scotophilus dinganii	3	0	(
Total		494	193	65

144

Figure 1. Sampling localities and elevation, grouped by county (see Table S1 for fulllocality information). Colors correspond to elevation, and white numbers and size of

147 points correspond to number of bats collected.

148

149 2) Microbial richness associated with bat skin is significantly greater than gut or oral150 microbial communities

- 160 identified using Deblur (19) (for rarefied data set, 1,267 ASVs were dropped, resulting in
- 161 a total of 29,890 ASVs identified across all samples). Total number of libraries per
- 162 anatomical site, following filtering, included 396 libraries for gut, 374 libraries for oral,
- 163 and 458 libraries for skin microbiomes (Table 2). Gut microbial communities exhibited
- 164 the lowest overall diversity (8,204 ASVs), followed by oral (11,632 ASVs), and skin
- 165 (29,149 ASVs), the latter being significantly greater than gut or oral (p < 2.2e-16,
- 166 Kruskal-Wallis; Bonferroni corrected *p*-value *p* < 1e-113, Dunn's test) (Fig. 2; Fig S1).
- 167 The mean observed ASVs by anatomical site were 69, 96, and 587 for gut, oral, and skin
- 168 samples, respectively (Table 2). Shannon index score of skin microbial communities were
- also significantly greater than gut or oral microbial communities (p < 2.2e-16, Kruskal-
- 170 Wallis; Bonferroni corrected *p*-value *p* < 1e-119, Dunn's Test) (Fig. 2; Fig. S1).

Figure 2. Alpha diversity of amplicon sequence variants (ASVs) by anatomical sites,
including (A) Observed richness, (B) Shannon index of diversity, (C) ASVs shared
between anatomical sites. Asterisks indicate significant differences between groups
(Dunn's Test, Bonferroni corrected *p*-value *p* < 0.0001).

177 Table 2. Alpha diversity of microbial communities across anatomical sites within each host genus,

measured by Shannon Index of diversity (SI) and observed ASV richness (obs); n corresponds to number of

179	libraries included in each calculation (following quality filtering).
-----	---

			Fecal			Oral			Skin	
Host Family	Host Genus	SI	obs	n _{fecal}	SI	obs	n _{oral}	SI	obs	n _{skin}
Emballonuridae	Chaerephon	1.16	52	12	1.39	57	14	3.57	547	14
Hipposideridae	Hipposideros	1.70	79	65	2.01	155	52	4.95	439	74
	Macronycteris	1.82	74	9	2.12	110	9	4.94	883	7
Miniopteridae	Miniopterus	1.41	70	92	1.55	87	74	4.12	403	114
Molossidae	Coleura	1.59	52	11	0.38	41	11	4.01	566	11
	Otomops	0.88	53	26	0.35	22	26	3.88	288	33
Nycteridae	Nycteris	1.60	80	10	1.62	78	14	4.48	807	14
Pteropodidae	Epomophorus	1.44	49	11	1.42	46	11	3.78	566	13
	Micropteropus	1.90	39	3	2.21	39	4	2.30	84	3
	Myonycteris	1.14	117	4	1.29	195	5	5.21	1246	4
	Rousettus	1.62	93	32	1.95	84	34	4.90	1207	34
	Stenonycteris	1.55	61	41	1.72	97	38	4.59	855	33
Rhinolophidae	Rhinolophus	1.34	62	58	1.95	81	59	4.71	543	79
Rhinonycteridae	Triaenops	1.69	82	9	1.28	414	9	4.03	508	10
Vespertilionidae	Myotis	1.62	54	1	1.33	72	6	5.41	771	3
	Neoromicia	2.13	65	4	1.47	37	4	3.76	267	4
	Pipistrellus	1.05	NA	1	NA	NA	0	4.80	360	2
	Scotoecus	1.86	92	4	1.97	17	3	4.20	360	4
	Scotophilus	1.23	64	3	0.38	96	1	4.08	459	2
Mean		1.51	69	n _{fecal} 396	1.47	96	n _{orall} 374	4.30	587	n _{skin} 458

¹⁸⁰ 181

182 3) Microbial communities significantly correlate with geographic locality, anatomical site,

- 183 and host taxonomy, but not host phylogeny
- 184

185 Permutational analysis of variance (PERMANOVA) identified geographic

- 186 locality, host taxonomy, and anatomical sampling site (gut, oral, skin) as significant
- 187 factors explaining variation in three independent measures of microbial beta diversity
- 188 (Bray-Curtis, unweighted UniFrac, and weighted UniFrac) (*p* < 0.001, ADONIS) (Table

189	3). Measures of intraspecific beta dispersion among weighted UniFrac, unweighted
190	UniFrac, and Bray-Curtis distances showed a continuum of dissimilarities across host
191	species (Fig. S2); mean beta dispersion differed significantly between anatomical sites by
192	all three dissimilarity measures (Dunn's Test, Bonferroni corrected p -value $p < 0.001$).)
193	Analysis of sites by elevation revealed that bats at higher elevations tended to host
194	increased Shannon diversity (SI) and observed richness (OR) across oral (SI: $R^2 = 0.076$,
195	<i>p</i> < 3.1e-9; OR: R ² = 0.038, <i>p</i> < 2.5e-5), and skin (SI: R ² = 0.16, <i>p</i> < 2.2e-16; OR: R ² =
196	0.100, p < 2.5e-14) microbiomes (Fig. S3).
197	Across all bat species, the gut microbiome was enriched for Proteobacteria (avg
198	55.4%) (Enterobacteraceae, avg 50.0%) and Firmicutes (avg 21%) (Clostridiaceae, avg
199	9.5%; Streptococcaceae, avg 5.5%). Oral microbiota were also enriched for Proteobacteria
200	(avg 64.3%) (Pasteurellaceae, avg 47.5%; Neisseriaceae, avg 8.3%) and Firmicutes (avg
201	11.4%) (Streptoccaceae, avg 8.8%; Gemellaceae, avg 3.61%). The skin microbiome was
202	not enriched for a single bacterial family, and showed a pronounced increase in relative
203	abundance of Actinobacteria (avg 10%) (Mycobacteraceae, avg 4.1%;
204	Pseudonocardiaceae, avg 2.8%; Nocardiaceae, avg 2.3%) and Bacteroidetes
205	(Moraxellaceae, avg 5.6%), and Euryarchaeota (Halobacteraceae, avg 4.2%) (Fig. 3).
206	Fruit bats (pteropodids) showed enrichment of Clostridiaceae in the gut (avg
207	24.8%) and Streptococcaeae in the oral microbiome (avg 31.0%) compared to all other
208	bats. The oral microbiota of several insectivorous bat families were enriched for
209	Firmicutes in the Mycoplasmataceae family (nycterids, avg 25.5%; rhinolophids, avg
210	13.8%; miniopterids, avg 8.4%). The skin microbiota of several insectivorous bat families

211 were enriched for Firmicutes in the Bacillaceae family (molossids, 14.0%; hipposiderids,

Figure 3. Relative abundance of top 11 bacterial families identified in gut, oral, and skinmicroniomes of bats. Individual points correspond to libraries. Bacterial families are

216 colored according to bacterial phylum. Number of libraries is indicated in the upper

- 217 right-hand corner of each plot. Black bar graphs indicate average relative abundances.
- 218
- 219 Host phylogeny from bat specimens collected during this study was reconstructed

220 to test for significance of phylosymbiosis between bat species and their microbiome

221 (Supplemental Figure 5; Figure 4). Mantel tests of host phylogenetic distances and

- 222 microbial community dissimilarity (weighted (wuf) and unweighted UniFrac (uf)
- distances) revealed no correlation for gut (wuf: $R^2 = -0.045$, p = 0.63; uf: $R^2 = -0.052$, p = -0.052
- 224 0.64), oral (wuf: $R^2 = -0.11$, p = 0.88), and skin (wuf: $R^2 = -0.081$, p = 0.79; uf: $R^2 = -$

225 0.108, p = 0.92) microbiota and host phylogenetic distance, with the exception of oral uf

dissimilarity and host phylogenetic distance(uf: $R^2 = 0.223$, p = 0.02) (Fig. 4).

Patristic distance based on Cyt-b Maximum likelihood phylogeny

228	Figure 4. Rate of microbiome divergence across phylogenetic distance of bats. Strengths of
229	correlations assessed by Mantel tests (10,000 permutations) of microbial community
230	dissimilarity (unweighted and weighted UniFrac) and patristic distances calculated from a
231	maximum likelihood hypothesis of bat species from this study. Asterisk indicates significant
232	correlation (p<0.05) as determined by Mantel test.
233	
234	4) Bat skin microbiome is associated with parasitism in African bats
235	
236	To test for significant associations between bacterial communities and eukaryotic
237	parasites (obligate ectoparasitic dipteran insects, and obligate endoparasitic malarial
238	parasites), we employed a combination of machine learning techniques, network analyses,
239	and DESeq2 models (see methods). PERMANOVA analysis identified ectoparasite
240	status and malarial infection status as significant predictors of bacterial beta diversity
241	dissimilarity among skin and oral microbiota, respectively ($p < 0.001$, ADONIS). Tests of
242	three independent measures of beta diversity (weighted UniFrac, unweighted UniFrac,
243	and Bray-Curtis) produced congruent results, with the exception of oral microbiome,
244	which was not significantly predictive of malarial infection based on unweighted UniFrac
245	analysis (Table 4).
246	
247	
248	

250 Table 4. Permutational multivariate analysis of variance using distance matrices, with distance matrices

among sources of variation partitioned by host taxonomy (species nested within genus), ectoparasite

status, malarial infection status, and locality included as strata; * indicates p-value < 0.05.

253

254

		We	ighted U	IniFrac	Unw	eighted	UniFrac		Bray-Cui	rtis
Site	Partition Variable	F	R2	Pr(>F)	F	R2	Pr(>F)	F	R2	Pr(>F)
Fecal	(Host genus (species))	4.27	0.162	0.001*	3.15	0.120	0.001*	2.89	0.110	0.001*
	Ectoparasite status	0.47	0.001	0.912	1.42	0.004	0.048*	1.40	0.004	0.097
	Malarial status	1.34	0.004	0.21	1.33	0.004	0.077	1.98	0.005	0.011*
Oral	(Host genus (species))	6.82	0.279	0.001*	3.50	0.143	0.001*	6.69	0.274	0.001*
	Ectoparasite status	0.51	0.001	0.836	1.41	0.004	0.057	1.00	0.003	0.447
	Malarial status	2.78	0.008	0.015*	1.17	0.003	0.2	1.98	0.006	0.019*
Skin	(Host genus (species))	7.68	0.329	0.001*	3.98	0.170	0.001*	5.60	0.240	0.001*
	Ectoparasite status	2.42	0.006	0.01*	1.54	0.004	0.02*	2.07	0.005	0.001*
	Malarial status	0.92	0.002	0.513	1.02	0.002	0.363	1.06	0.003	0.32

- 255 256
- 230

257 Supervised machine learning analyses (random forests) produced models that 258 could classify the anatomical source of microbial communities and the host genus of gut, 259 oral, and skin microbial samples with reasonable accuracy (ratio of baseline to observed 260 classification error ≥ 2 ; *i.e.* random forest models performed at least twice as well as 261 random). Random forest models also performed accurately when classifying ectoparasite 262 status based on skin bacterial community composition, but were less accurate for 263 classification of malarial status based on oral bacterial community composition (Table 5). 264 265

266

	268	Table 5. Supervised machine learning results, showing random forest model performance with respect to
--	-----	---

different classification variables and input data sets (fecal, oral, skin microbiome). Model performance is

assessed by measuring the ratio of Out-of-bag estimated error (OOB) to baseline error.

271

Classification variable	Input Data	Baseline error	OOB error	Baseline:OOB
Anatomical site	All data	0.68	0.14	4.8
Host Genus	Skin	0.75	0.17	4.3
Host Genus	Oral	0.78	0.24	3.2
Host Genus	Gut	0.77	0.35	2.2
Ectoparasite Status	Skin	0.53	0.27	2.0
Malarial Status (Miniopteridae only)	Oral	0.46	0.38	1.2

272

273

Following the application of statistical and machine learning approaches, we

275 employed network analyses to characterize the co-occurrence topology of microbial

276 communities (in terms of the relative abundance of co-occurring ASVs) across the skin

277 microbiota of our four most well-sampled bat families (Hipposideridae (n = 80),

278 Miniopteridae (n = 116), Rhinolophida (n = 88), and Pteropodidae (n = 106)). Network

analyses produced strikingly consistent results, revealing a significant decrease in cluster

size (p < 0.05, Mann-Whitney-Wilcoxon rank sum test) and median node degree (p < 0.05, Mann-Whitney-Wilcoxon rank sum test)

281 0.05, *t* test), as well as reduced network connectivity for parasitized bats from three of the

four bat families examined (Fig. 5; Fig. S4).

283

Figure 5. (A) Distribution of skin microbial network clusters for parasitized and nonparasitized bats, grouped by bat family (asterisks indicate signifiance at p < 0.005, Kruskal-Wallis) (B) Visualization of skin bacterial networks (based on Fruchterman-

287 Reingold algorithm); colored nodes correspond to unique clusters of co-occurring ASVs

- 288 within each network.
- 289
- 5) Bacterial taxa on skin correlated with presence or absence of obligate dipteran
- 291 ectoparasites
- 292

293 DESeq2 analyses of the skin microbiota in four well-sampled bat families

294 (Hipposideridae, Miniopteridae, Rhinolophidae, Pteropodidae) identified a number of

295 AS	We that man	a:			a at a manual time d	or non-ectoparasitized
772 A.	vs that were	SIGNIFICANTIV	z associated	with either	ectoparasitized	or non-ectoparasitized

- bats (Fig. 6). Overall, we identified 89 and 24 ASVs significantly associated with
- 297 parasitized and non-parasitized bats, respectively (Table S3). Bacterial classes with the
- 298 greatest representation among significant results were Actinobacteria (16 families),
- 299 Gammaproteobacteria (11 families), Bacilli (5 families), and Alphaproteobacteria (3
- 300 families). ASVs significantly enriched in parasitized bats from at least three out of four
- 301 bat families included Mycobacteraceae (Actinobacteria), and Xanthomonadaceae
- 302 (Gammaproteobacteria). ASVs significantly enriched in parasitized bats from at least two
- 303 out of four bat families included Hyphomicrobiaceae (Alphaproteobacteria),
- 304 Alcaligenaceae (Betaproteobacteria), Moraxellaceae (Gammaproteobacteria),
- 305 Planococcaceae (Bacilli), Flavobacteraceae (Flavobacteria), Halobacteraceae
- 306 (Halobacteria), and Chitinophagaceae (Saprospirae) (Fig. 6).

307

308 Figure 6. Log2fold change in relative abundance of skin-associated ASVs from the four 309 most-sampled bat families estimated with DESeq2. ASVs shown were found to be 310 significantly associated with ectoparasite status in bats based on analysis of negative 311 binomial distributions of relative abundance (Banjamini-Hochberg FDR corrected p-312 value p < 0.05). Positive values correspond to ASVs found to be enriched on parasitized 313 bats, and negative values correspond to ASVs found to be enriched on non-parasitized 314 bats. Gray bars highlight ASVs in bacterial families that were enriched in parasitized bats 315 for three out of four bat families. 316

318 DISCUSSION

319

320	The bacterial diversity we observed among gut, oral, and skin microbiota of bats
321	fall within ranges similarly observed in other vertebrate groups (3, 20-23). Although few
322	studies have simultaneously compared gut, oral, and skin microbiota from the same
323	individuals, our data reflect an apparent trend in the literature of skin bacterial diversity
324	among vertebrates significantly outnumbering gut or oral bacterial diversity (24-27). Our
325	data corroborate the findings of Nishida and Ochman (3), revealing no relationship
326	between chiropteran phylogeny and gut bacterial community dissimilarity. We also found
327	the same absence of phylogenetic signal among oral and skin microbial communities. As
328	suggested in other studies of volant vertebrates (bats and birds), convergent adaptations
329	driven by the evolution of flight may be influencing the nature and composition of
330	microbial communities in both bats and birds (28-30). This differs markedly from studies
331	of other non-volant mammals, such as primates and rodents, for which phylogenetic
332	relatedness is generally a significant predictor of microbial community dissimilarity (21,
333	31-33).
334	Microbial community specificity can be assessed as a function of intraspecific
335	variation in dissimilarity (beta dispersion), where a low variance of dispersion suggests a

tight and perhaps co-evolutionary link between hosts and symbionts, and a high variance

337 of dispersion suggests more random or non-specific associations between hosts and

338 symbionts (34). Measures of beta dispersion among bat species revealed a continuum for

339 all three anatomical sites, with oral bacterial communities showing lower levels of beta

340 dispersion than gut or skin communities (Fig. S2). Given that we found no correlation

341	between bacterial	community dissimi	larity and host p	hvlogenetic distanc	e, and that we
		2	7 1	10	,

- 342 observed no taxonomic clustering of hosts in mean beta dispersion estimates, variation in
- 343 beta dispersion is likely driven by ecological rather than evolutionary factors.
- 344 Similar to recent studies in North American bats (35), we found sampling locality
- to be a significant factor influencing skin, gut and oral microbial composition (Table 3).
- 346 Furthermore, we observed an apparent trend in increasing Shannon diversity and
- 347 observed ASV richness along an elevational gradient that was most pronounced for skin
- 348 microbiota (Fig. S3). A positive correlation between bacterial richness and elevation has
- been observed in studies of amphibian skin (36) and montane soil, and this pattern may
- be the result of climatological and other abiotic factors (*e.g.* pH) found along elevational

351 gradients (37, 38).

Table 3. Permutational multivariate analysis of variance using distance matrices, with distance matrices
 among sources of variation partitioned by host taxonomy (species nested within genus), locality, and
 anatomical site; * indicates p-value < 0.05.

356

	Wei	ighted Uni	Frac	Unwe	ighted Ur	niFrac	В	ray-Curt	is
Partition Variable	SumSq	F	Pr(>F)	SumSq	F	Pr(>F)	SumSq	F	Pr(>F)
Anatomical site	10.67	198.01	0.001*	56.52	82.90	0.001*	38.2	36.97	0.001*
Host Genus	3.77	13.09	0.001*	25.54	7.02	0.001*	85.30	15.06	0.001*
Locality	1.56	11.00	0.001*	20.62	11.34	0.001*	23.85	8.42	0.001*
Host Genus:species	1.39	4.08	0.001*	11.20	2.59	0.001*	25.25	1.33	0.001*

357

358

We found the general composition of gut microbiota in East African bats to be similar to that of Neotropical bats, with Proteobacteria being the dominant bacterial phylum present (39). Regardless of diet (insectivorous or frugivorous), the distal bat gut is dominated by bacteria in the family Enterobacteriaceae (Phylum: Proteobacteria), though

363	fruit bats do have an increased relative abundance of bacteria in the family Clostridiaceae
364	(Phylum: Firmicutes) relative to insectivorous bats. In their study of neotropical bats,
365	Phillips et al. (40) noted an increased relative abundance of Lactobacillales in frugivorous
366	bats, and we note a similar pattern among pteropodid fruit bats in this study, which
367	exhibited a slightly higher proportion of Streptococcaceae (Order: Lactobacillales)
368	relative to insectivorous bats (Fig. 3). Overall, the predominant enrichment of the
369	chiropteran gut by Proteobacteria differs markedly from other mammalian gut
370	microbiomes, which are generally dominated by Firmicutes (21, 41, 42).
371	Among most bat families, the oral microbiome was dominated by Pasteurellaceae
372	(Phylum: Proteobacteria), and in some cases a high relative abundance of bacteria in the
373	families Mycoplasmataceae (in nycterids), Neisseriaceae (in vespertilionids and
374	rhinonycterids), and Streptococcaceae (in pteropodids) was also observed. Although the
375	oral microbiome has received less attention than that of the gut, several studies have
376	found diverse Pasteurellaceae and Neiserria lineages present in the oral microbiota of
377	animals, including domestic cats (20) and marine mammals (43). Pasteurellaceae lineages
378	have also recently been documented in the oral microbiota of Tasmanian devils (23, 44).
379	In humans, Pasteurallaceae (genera Haemophilus and Aggregatibacter) and Neisseriaceae
380	(genera Neisseria, Kingella, and Eikenella) play an important role in the formation
381	supragingival plaque (22). Though these bacterial groups are present in lower proportions
382	in other animals relative to bats, their presence in a broad range of host taxa suggest a
383	conserved evolutionary niche.
384	Our analysis identified links between ectoparasitism, malarial parasitism, and
00-	1 · 1 · · · · · · · · · · · · · · · · ·

bacterial communities on the skin and in oral cavities, respectively. Network analyses

385

386	identified consistent, stable, and species-rich clusters of bacteria on the skin of non-
387	ectoparasitized bats, compared to relatively disconnected and apparently transient bacteria
388	on the skin of bats harboring ectoparasites. This result mirrors that found in human-
389	mosquito interactions, in which individuals with lower bacterial diversity on the skin are
390	significantly more attractive to blood-seeking mosquitoes than individuals with higher
391	diversity (45). In humans, skin bacteria play a known role in attracting mosquitoes via
392	their production of volatile organic compounds (VOCs), and studies have shown that
393	variation in skin microbial community composition can increase or decrease human
394	attractiveness to blood-seeking mosquitoes (45-47). Similar mechanisms may be at play
395	in the bat-ectoparasite system, particularly given the phylogenetic proximity of
396	hippobscoid bat parasites to mosquitoes.
397	Several bacterial families exhibited significant associations with presence of
398	ectoparasitism in bats based on DESeq analyses. Bacteria found across multiple host
399	families included (but were not limited to) Alcaligenaceae, Chitinophagaceae,
400	Flavobacteriaceae, Moraxellaceae, Mycobacteriaceae (Mycobacterium spp.), and
401	Xanthomonadaceae. In many cases, these bacterial families were associated with
402	parasitism in some bat families, and absence of parasitism in others, suggesting a
403	potential mechanism by which ectoparasites might be distinguishing between "correct"
404	and "incorrect" hosts. As suggested by human-mosquito interaction studies (45, 46, 48),
405	bacteria positively associated with increased rates of blood-feeding dipteran host selection
406	may be producing VOCs on which the insects rely to identify their hosts. Bacteria that
407	are negatively associated with such insects may be consuming the products of the former,
408	or may be producing VOCs of their own that mask those of the former (suggested by

409 Verhulst et al. (45)). To better understand the mechanisms underlying these correlations
410 in wild populations, future experiments should consider including sampling of VOCs *in*411 *vivo*.

412 PERMANOVA analyses identified associations between the oral microbiome 413 and malarial parasite prevalence among bats in the family Miniopteridae, although these 414 associations were less robust than those of the skin bacteria and ectoparasitism. Upon 415 further exploration of this potential association, we identified a single bacterial ASV in 416 the genus Actinobacillus (99% similar to A. porcinus based on NCBI blastn search) as 417 significantly reduced in malaria-free bats (baseMean 7.61, -24.2 log2FoldChange, p =418 1.7E-20). Network analyses indicated no significant differences in connectivity or node 419 degree distribution (results not shown). Because no other bat groups experienced rates of 420 malarial parasitism adequate for statistical analyses, we were unable to explore this 421 relationship further. Future studies that incorporate greater sampling of malaria-positive 422 species may reveal more robust microbial associations, as have been documented in 423 numerous experiments with controlled rodent and human malaria infections (48-50). 424 Although we cannot ascertain causality of differences in the microbial 425 composition of skin in this study, our results support the hypothesis that these differences 426 suggest a mechanism by which ectoparasites can locate or distinguish hosts. Alternatively, 427 observed differences in microbial composition could result from microbial transfer from 428 parasites to hosts. Given the known effect of locality and apparent absence of host 429 phylogenetic signal in microbial community composition of skin, one possible 430 explanation is that local environmental variables play a greater role in determining host-431 bacteria associations in bats. Indeed, in North America, multiple bat species have been

- found to share many bacterial genera with soil and plant material (35). Thus, local
- 433 conditions and bacterial composition of bat roosts are likely playing an important role in
- 434 driving the composition of skin bacteria of bats.
- 435
- 436 METHODS
- 437
- 438 1) Sampling
- 439

440 Sampling for this study was conducted from the eastern coast of Kenya to the northern 441 border of Uganda during August-October 2016 (Fig. 1; Table S1, S2). Nine families and 442 nineteen genera of bats (order: Chiroptera) were collected as part of bird and small 443 mammal biodiversity inventories. All sampling was conducted in accordiance with the 444 Field Museum of Natural History IACUC and voucher specimens are accessioned at the 445 Field Museum of Natural History (Table S2). Blood samples were collected and screened 446 for haemosporidia, and haemosporidian taxonomy was assigned using previously 447 described molecular methods (13). Following blood sampling, ectoparasites were 448 removed with forceps and placed directly into 95% EtOH; ectoparasites taxonomy was 449 assigned based on morphological features. For the purposes of analysis with microbiome 450 data, ectoparasite and malarial status were each scored separately as 1 (present) or 0 451 (absent). Gut, skin, and oral samples were taken for each bat for microbial analyses. Gut 452 samples consisted of fecal material collected directly from the distal end of the colon 453 using sterilized tools, and preserved on Whatman® FTA® cards for microbiome analyses. 454 For oral microbiome analyses, we preserved both buccal swabs in IN_2 and tongue biopsies

455	in 95% ethanol (EtOH). Comparison of ASV diversity obtained from paired subsets of
456	each sample type revealed greater diversity recovered from tongue biopsies (data not
457	shown); tongues were therefore used for characterization of oral microbiomes in this
458	study. Lastly, skin samples from five regions of the body (ear, wing membrane, tail
459	membrane, chest, back) were collected and pooled in 95% EtOH using sterile Integra®
460	Miltex® 5mm biopsy punches. The goal of sampling from five body regions was to
461	maximize bacterial diversity recovered from the external skin surface of each individual.
462	We based our storage media selections on the recent study by Song et al. (51).
463	
464	2) Microbiome sequencing, characterization, and parasite association
465	
466	DNA extractions were performed on gut, tongue, and skin samples using the MoBio
467	PowerSoil 96 Well Soil DNA Isolation Kit (Catalog No. 12955-4, MoBio, Carlsbad,
468	CA, USA). We used the standard 515f and 806r primers (52-54) to amplify the V4
469	region of the 16S rRNA gene, using mitochondrial blockers to reduce amplification of
470	host mitochondrial DNA. Sequencing was performed using paired-end 150 base reads
471	on an Illumina HiSeq sequencing platform. Following standard demultiplexing and
472	quality filtering using the Quantative Insights Into Microbial Ecology pipeline
473	(QIIME2) (55) and vsearch8.1 (56), ASVs were identified using the Deblur method (19)
474	and taxonomy was assigned using the Greengenes Database (May 2013 release;
475	http://greengenes.lbl.gov). According to a recent stuy by McMurdie and Holmes (57),
476	rarefying 16s data is inappropriate for the detection of differentially abundant species.
477	However, for the purposes of comparison, we compared both libraries rarefied to a read

478 depth of 10,000 reads and libraries filtered to those containined >1000 reads (negative 479 controls all contained fewer than 1000 reads and were filtered at this step). Alpha and 480 beta-diversity analyses produced statistically similar results, with no significant differences 481 observed betweeh the rarefied and non-rarefied data. We thus chose to report results of 482 non-rarefied data, based on these observations and the recommendation of McMurdie 483 and Holmes (57).. Following filtering, data were subset for analyses according to sample 484 type, host genus, and locality (or some combination thereof). Site-specific analyses were 485 only performed for sites from which five or more individual bats were sampled. We 486 calculated alpha diversity for each sample type (gut, oral, skin) using the Shannon index, 487 and measured species richness based on actual observed diversity. Significance of differing 488 mean values for each diversity calculation was determined using the Kruskal-Wallis rank 489 sum test, followed by a post-hoc Dunn test with bonferroni corrected *p*-values. Three 490 measures of beta diversity (unweighted UniFrac, weighted UniFrac, and Bray-Curtis) 491 were calculated using relative abundances of each ASV (calculated as ASV read depth 492 over total read depth per library). Significant drivers of communitity similarity were 493 identified using the ADONIS test with Bonferroni correction for multiple comparisons 494 using the R package Phyloseq (58). To assess potential effect of imbalanced sampling, the 495 ADONIS test was re-run on a subset of data comprising only data from the top four 496 sampled bat families, which represented even sampling among families and across the 497 localities from which they were collected. Results of this test (not reported) indicated the 498 same significant drivers of community similarity as the test run on the entire data set.

- 499 Additional R packages used for analyses and figure generation included vegan (59),
- 500 ggplot2(60), and dplyr(61). For a complete list of packages and code for microbiome
- analyses, see http://github.com/hollylutz/BatMP.

502

- 503 3) Bat phylogenetic reconstruction
- 504
- 505 DNA from bats collected during this study was extracted and sequenced for
- 506 mitochondrial Cytochrome-*b* (cyt-*b*), using the primer pair LGL 765F and LGL 766R
- 507 that amplify the entire cyt-*b* gene (Bickham et al. 1995, 2004). DNA extractions, PCR
- amplification, and sequencing were carried out as in Demos et al. 2018. The best-
- supported model of nucleotide substitution for cyt-*b* was determined using the BIC on the
- 510 maximum-likelihood topology estimated independently for each model in
- 511 jMODELTEST2 (Darriba et al., 2012) on CIPRES Science Gateway v.3.1 (Miller et al.,
- 512 2010). Maximum-likelihood estimates of cyt-*b* gene trees were made using the program
- 513 IQ-TREE version 1.6.0 (Nguyen et al. 2017) on the CIPRES portal. Emballonuridae
- 514 (*Coleura afra*) was constrained as sister to Nycteridae (*Nycteris arge*, *N. thebaica*;
- 515 Amador et al. 2016). We conducted analyses using the ultrafast bootstrap algorithm and
- searched for best-scoring ML tree algorithm under the GTR+I+ FreeRate model with
- 517 1000 bootstrap replicates. The resulting phylogenetic hypothesis and node support can be
- 518 viewed in Fig. S5.
- 519

520 4) Machine learning and network analyses

522	A supervised machine learning approach was used to produce random forests (RF) for the
523	classification of different variables. RFs were constructed using 1000 decision trees and
524	subsets of ASV data via the supervised_learning.py script implemented in QIIME (55),
525	which utilized 80% of each input data set to train classification models, and tested the
526	accuracy of the models on the remaining 20% of data. We tested the ability of RFs to
527	accurately classify 1) anatomical site (using all data), 2) host genus (using gut, oral, or
528	skin microbial data separately), 3) ecotparasite status (using skin microbial data), and 4)
529	malarial status (using oral microbial data). Classification categories comprised
530	approximately equal numbers of samples, with the exception of host genera, which varied
531	substantially (see Table 1). RF performance was assessed by comparing the out-of-bag
532	estimated error (OOB) with baseline (random) error. If the ratio of OOB to baseline
533	error was less than or equal to two, the model was considered to perform reasonably well,
534	as it performed at least twice as well as random (62). To reconstruct microbial networks
535	for skin and oral bacterial communities within bat family groupings (which were further
536	sub-divided into parasitized or non-parasitized), we utilized the R package Sparse Inverse
537	Covariance Estimation for Ecological Association Inference (SPIEC-EASI) (63). All
538	network datasets were filtered to contain only ASVs that appeared in at least three
539	individuals within each respective dataset. We used the neighborhood selection
540	framework (MB method) with 20 repetitions. Network results produced with SPIEC-
541	EASI were summarized using the R packages CAVnet (64) and igraph (65). Network
542	stability was assessed by sequentially removing network nodes (ordered by betweeness
543	centrality and degree) and observing natural connectivity (<i>i.e.</i> eigenvalue of the graph
544	adjacency matrix) as nodes are removed. To determine which, if any, bacterial ASVs were

545	significantly associated with ectoparasite or malarial prevalence, we performed analyses
546	based on the negative binomial distribution of ASVs relative abundance, utilizing the R
547	package DESeq2 (66). For ectoparasite-assocation tests, the data were subset into four
548	categories that corresponded to the top-sampled bat families (Hipposideridae,
549	Miniopteridae, Pteropodidae, and Rhinolophidae), each with similar propotions of
550	parasitized to non-parasitzed individuals (see Table 1). For haemosporidian-associated
551	tests, only the family Miniopteridae was analyzed, due to highly imbalanced prevalence or
552	sample sizes across all other families (Table 1). Dispersion estimates and fit tests were
553	implented using default DESeq2 parameters. False discovery rate (FDR) was calculated
554	using the Benjamini-Hochberg method for each of the bat families analyzed, and p -
555	values were adjusted accordingly.
556	
557	ACKNOWLEDGMENTS
558	
559	We thank the Kenya Wildlife Service and the Uganda Wildlife Authority for permission

560 to conduct research in national parks. For logistical support and assistance in the field, we

thank Mike Bartonjo of the National Museums of Kenya, Phausia Kweyu of Karatina

562 University, Dr. Robert Kityo, Solomon Sebuliba, and Cissy Akoth of the Makerere

563 University Zoological Museum, Drs. Brian Amman, Jonathan Towner, and Rebecca

Tiller of the Centers for Disease Control and Prevention, and Lauren Lutz. We thank

565 Neil Gottel for his knowledge and assistance with laboratory processing of microbial

samples, and other members of the Gilbert Lab, including Alyson Yee, Cesar Cardona,

- 567 Thomas Kuntz, Drs. Bea Penalver, Melissa Dsouza, and Naseer Sangwan for the
- 568 assistance with bacterial 16s analyses.
- 569

570 AUTHOR CONTRIBUTIONS

- 571 H.L.L. designed the research and wrote the first draft; H.L.L., E.W.J. analyzed data;
- 572 T.C.D. produced bat phylogeny; H.L.L., P.W.W., W.B.S., J.C.K. conducted field
- 573 research; J.A.G., B.D.P. provided funding and research support; all authors contributed to
- 574 writing.
- 575

576 REFERENCES

- 577
- 578
- Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. *Nature* 486(7402):207-214.
- 5812.Thaiss CA, Zmora N, Levy M, & Elinav E (2016) The microbiome and innate582immunity. *Nature* 535(7610):65-74.
- 5833.Nishida AH & Ochman H (2018) Rates of gut microbiome divergence in
mammals. *Mol Ecol* 27(8):1884-1897.
- 5854.Moeller AH, et al. (2014) Rapid changes in the gut microbiome during human586evolution. Proc Natl Acad Sci USA 111(46):16431-16435.
- 587 5. Kundu P, Blacher E, Elinav E, & Pettersson S (2017) Our Gut Microbiome: The
 588 Evolving Inner Self. *Cell* 171(7):1481-1493.
- 589 6. Li X, *et al.* (2017) Composition of Gut Microbiota in the Gibel Carp (Carassius auratus gibelio) Varies with Host Development. *Microb Ecol* 74(1):239-249.
 591 7. Kolodny o, *et al.* (2017).
- 592 8. McFall-Ngai M, *et al.* (2013) Animals in a bacterial world, a new imperative for the life sciences. *Proc Natl Acad Sci U S A* 110(9):3229-3236.
- 5949.Kwiatkowski DP (2005) How malaria has affected the human genome and595what human genetics can teach us about malaria. Am. J. Hum. Genet. 77:171-596190.
- 597 10. Dittmar K, Morse, Solo F., Dick, Carl W., Patterson, Bruce D. (2015) Bat fly
 598 evolution from the Eocene to the present (Hippoboscoidea, Streblidae and
 599 Nycteribiidae). *Parasite Diversity and Diversification: Evolutionary Ecology*600 *Meets Phylogenetics*, ed S. Morand BRK, D. T. J. Littlewood (Cambridge
 601 University Press, Cambridge, U. K.).

602	11.	Dick CW, Patterson, B. D. (2006) Micromammals and Macroparasites: From
603		Evolutionary Ecology to Management (Springer, Kato Bunmeisha, Japan).
604	12.	Schaer J, et al. (2013) High diversity of West African bat malaria parasites
605		and a tight link with rodent Plasmodium taxa. Proceedings of the National
606		Academy of Sciences 100:17415-17419.
607	13.	Lutz HL, et al. (2016) Diverse sampling of East African haemosporidians
608		reveals chiropteran origin of malaria parasites in primates and rodents. <i>Mol</i>
609		Phylogenet Evol 99:7-15.
610	14.	Towner JS, et al. (2009) Isolation of genetically diverse Marburg viruses from
611		Egyptian fruit bats. <i>PLoS Pathog</i> 5(7):e1000536.
612	15.	Olival KJ & Hayman DT (2014) Filoviruses in bats: current knowledge and
613		future directions. Viruses 6(4):1759-1788.
614	16.	Amman BR, et al. (2015) A Recently Discovered Pathogenic Paramyxovirus,
615		Sosuga Virus, is Present in Rousettus aegyptiacus Fruit Bats at Multiple
616		Locations in Uganda. J Wildl Dis 51(3):774-779.
617	17.	Li W, et al. (2005) Bats are natural reservoirs of SARS-like coronaviruses.
618		Science 310:676-679.
619	18.	Chua KB, et al. (2002) Isolation of Nipah virus from Malaysian island flying-
620		foxes. Microbes and Infection 4:145-151.
621	19.	Amir A, et al. (2017) Deblur Rapidly Resolves Single-Nucleotide Community
622		Sequence Patterns. <i>mSystems</i> 2(2).
623	20.	Sturgeon A, Pinder SL, Costa MC, & Weese JS (2014) Characterization of the
624		oral microbiota of healthy cats using next-generation sequencing. <i>Vet J</i>
625		201(2):223-229.
626	21.	Ley RE, et al. (2008) Evolution of mammals and their gut microbes. Science
627		320(5883):1647-1651.
628	22.	Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, & Borisy GG (2016)
629		Biogeography of a human oral microbiome at the micron scale. <i>Proc Natl</i>
630		Acad Sci U S A 113(6):E791-800.
631	23.	Brix L, Hansen MJ, Kelly A, Bertelsen MF, & Bojesen AM (2015) Occurrence of
632		Pasteurellaceae Bacteria in the Oral Cavity of the Tasmanian Devil
633		(Sarcophilus Harrisii). J Zoo Wildl Med 46(2):241-245.
634	24.	Grice EA & Segre JA (2011) The skin microbiome. <i>Nat Rev Microbiol</i> 9(4):244-
635	~ -	253.
636	25.	Ursell LK, et al. (2012) The interpersonal and intrapersonal diversity of
637		human-associated microbiota in key body sites. <i>J Allergy Clin Immunol</i>
638		129(5):1204-1208.
639	26.	Costello EK, <i>et al.</i> (2009) Bacterial community variation in human body
640	~ -	habitats across space and time. <i>Science</i> 326(5960):1694-1697.
641	27.	Chiarello M, Villéger, S., Bouvier, C., Bettarel, Y., Bouvier, T. (2015) High
642		diversity of skin-associated bacterial communities in marine fishes is
643		promoted by their high variability among body parts, individuals and species.
644		FEMS Microbiol Ecol 91(7):1-12.
645	28.	Caviedes-Vidal E, McWhorter, T. J., Lavin, S. R., Chediak, J. G., Tracy, C. R.,
646		Karasov, W. H. (2007) The digestive adaptation of flying vertebrates: High

647		intestinal paracellular absorption compensates for smaller guts. PNAS
648		104(48):19132-19137.
649	29.	Price ER, Brun A, Caviedes-Vidal E, & Karasov WH (2015) Digestive
650		adaptations of aerial lifestyles. <i>Physiology (Bethesda)</i> 30(1):69-78.
651	30.	Caviedes-Vidal E, <i>et al.</i> (2008) Paracellular absorption: a bat breaks the
652	01	mammal paradigm. <i>PLoS One</i> 3(1):e1425.
653	31.	Moeller AH, Car-Qintero, A., Mjungu, D., Georgiev, A. V., Lonsdorf, E. V., Muller,
654		M. N., Pusey, A. E., Peeters, M., Hahn, B. H., Ochman, H. (2016) Cospeciation of
655	22	gut microbiota with hominids. <i>Science</i> 353(6297):380-382.
656 657	32.	Sanders JG, <i>et al.</i> (2015) Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. <i>Nat Commun</i> 6:8285.
658	33.	Moeller AH, <i>et al.</i> (2017) Dispersal limitation promotes the diversification of
659	55.	the mammalian gut microbiota. <i>Proc Natl Acad Sci U S A</i> 114(52):13768-
660		13773.
661	34.	Thomas T, <i>et al.</i> (2016) Diversity, structure and convergent evolution of the
662	51.	global sponge microbiome. <i>Nat Commun</i> 7:11870.
663	35.	Avena CV, <i>et al.</i> (2016) Deconstructing the Bat Skin Microbiome: Influences
664	001	of the Host and the Environment. <i>Front Microbiol</i> 7:1753.
665	36.	Muletz Wolz CR, Yarwood SA, Campbell Grant EH, Fleischer RC, & Lips KR
666		(2018) Effects of host species and environment on the skin microbiome of
667		Plethodontid salamanders. J Anim Ecol 87(2):341-353.
668	37.	Bryant JA, Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J., Green, J. L.
669		(2008) Microbes and mountainsides: contrasting elevational patterns of
670		bacterial and plan diversity. <i>PNAS</i> 105:11505-11511.
671	38.	Singh D, et al. (2014) Strong elevational trends in soil bacterial community
672		composition on Mt. Halla, South Korea. Soil Biology and Biochemistry 68:140-
673		149.
674	39.	Carrillo-Araujo M, et al. (2015) Phyllostomid bat microbiome composition is
675		associated to host phylogeny and feeding strategies. Front Microbiol 6:447.
676	40.	Phillips CD, et al. (2012) Microbiome analysis among bats describes
677		influences of host phylogeny, life history, physiology and geography. <i>Mol Ecol</i>
678		21(11):2617-2627.
679	41.	Eckburg PB, Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M.,
680		Gill, S. R., Nelson, K. E., Relman, D. A. (2005) Diversity of human intestinal
681	40	microbial flora. <i>Science</i> 308(5728):1635-1638.
682	42.	Yildirim S, <i>et al.</i> (2010) Characterization of the fecal microbiome from non-
683		human wild primates reveals species specific microbial communities. <i>PLoS</i>
684	43.	One 5(11):e13963. Pik FM at al. (2016) Marina mammala harbar unique microhiotae chanad by
685 686	43.	Bik EM, <i>et al.</i> (2016) Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. <i>Nat Commun</i> 7:10516.
687	44.	Gutman N, Hansen MJ, Bertelsen MF, & Bojesen AM (2016) Pasteurellaceae
688	44.	bacteria from the oral cavity of Tasmanian devils (Sarcophilus Harrisii) show
689		high minimum inhibitory concentration values towards aminoglycosides and
690		clindamycin. <i>Lett Appl Microbiol</i> 62(3):237-242.
691	45.	Verhulst NO, <i>et al.</i> (2011) Composition of human skin microbiota affects
692	101	attractiveness to malaria mosquitoes. <i>PLoS One</i> 6(12):e28991.

693	46.	Busula AO, Takken W, JG DEB, Mukabana WR, & Verhulst NO (2017)
694		Variation in host preferences of malaria mosquitoes is mediated by skin
695		bacterial volatiles. <i>Med Vet Entomol</i> 31(3):320-326.
696	47.	Verhulst NO, et al. (2009) Cultured skin microbiota attracts malaria
697		mosquitoes. <i>Malar J</i> 8:302.
698	48.	Robinson A, et al. (2018) Plasmodium-associated changes in human odor
699		attract mosquitoes. Proc Natl Acad Sci U S A 115(18):E4209-E4218.
700	49.	De Moraes CM, et al. (2014) Malaria-induced changes in host odors enhance
701		mosquito attraction. Proc Natl Acad Sci USA 111(30):11079-11084.
702	50.	de Boer JG, et al. (2017) Odours of Plasmodium falciparum-infected
703		participants influence mosquito-host interactions. <i>Sci Rep</i> 7(1):9283.
704	51.	Song SJ, Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., Humphrey, G., Knight, R.
705		(2016) Preservation methods differ in fecal microbiome stability, affecting
706		suitability for field studies. <i>mSystems</i> 1(3):1 - 12.
707	52.	Caporaso JG, Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A.,
708		Turnbaugh, P. J., Fierer, N., Knight, R. (2011) Global patterns of 16S rRNA
709		diversity at a depth of millions of sequences per sample. PNAS 108:4516-
710		4522.
711	53.	Caporaso JG, et al. (2012) Ultra-high-throughput microbial community
712		analysis on the Illumina HiSeq and MiSeq platforms. <i>ISME J</i> 6(8):1621-1624.
713	54.	Kozich JJ, Westcott, S. L., Baxter, N. T., Highlander, S. K., Schloss, P. D. (2013)
714		Development of a dual-index sequencing strategy and curation pipeline for
715		analyzing amplicon sequence data on teh MiSeq Illumina sequencing
716		platform. <i>Applied and Environmental Microbiology</i> 79(17):5122-5120.
717	55.	Caporaso JG, Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D.,
718		Costello, E. K., Fierer, N., Gonzalez Peña, A., Goodrich, E. K., Gordon, J. I.,
719		Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A.,
720		McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh,
721		P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., Knight, R.
722		(2010) QIIME allows analysis of high-throughput community sequencing
723		data. <i>Nature Methods</i> 7(5):335 - 336.
724	56.	Rognes T, Flouri T, Nichols B, Quince C, & Mahe F (2016) VSEARCH: a
725		versatile open source tool for metagenomics. <i>PeerJ</i> 4:e2584.
726	57.	McMurdie PJ, Holmes, S. (2014) Waste not, want not: Why rarefying
727	-0	microbiome data is inadmissable. <i>PLoS Comput Biol</i> 10(4):1-12.
728	58.	McMurdie PJ & Holmes S (2013) phyloseq: an R package for reproducible
729		interactive analysis and graphics of microbiome census data. <i>PLoS One</i>
730	-	8(4):e61217.
731	59.	Oksanen J., <i>et al.</i> (2018) vegan: Community Ecology Package), R package
732	60	version 2.5-2.
733	60.	Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis (Springer-
734	(1	Verlag, New York, NY).
735	61.	Wickham H, François R, Henry L, & Müller K (2018) dplyr: A Grammar of
736	()	Data Manipulation), R package version 0.7.6.
737	62.	Breiman L (2001) Random Forests. <i>Machine Learning</i> 45:5-32.

738 739	63.	Kurtz ZD, <i>et al.</i> (2015) Sparse and compositionally robust inference of microbial ecological networks. <i>PLoS Comput Biol</i> 11(5):e1004226.				
740	64.	Cardona C (2017) CAVNet: Creation Analysis and Visualization of Networks).				
741	65.	Csardi G, Nepusz, T. (2006) The Igraph Software Package for Complex				
742	00.	Network Research. InterJournal, Complex Systems 1695.				
743	66.	Love MI, Huber W, & Anders S (2014) Moderated estimation of fold change				
744	00.	and dispersion for RNA-seq data with DESeq2. <i>Genome Biol</i> 15(12):550.				
745		and dispersion for River seq data with DESeq2. denome bior 13(12).550.				
746						
740						
747						
748						
749	FIGU	FIGURE LEGENDS				
750						
751	Figure 1. Sampling localities and elevation, grouped by county (see Table S1 for full					
752	locali	locality information). Colors correspond to elevation, and white numbers and size of				
753	point	points correspond to number of bats collected.				
754						
755	Figur	Figure 2. Alpha diversity of amplicon sequence variants (ASVs) by anatomical sites,				
756	inclue	including (A) Observed richness, (B) Shannon index of diversity, (C) ASVs shared				
757	betwe	between anatomical sites. Asterisks indicate significant differences between groups				
758	(Dun	(Dunn's Test, Bonferroni corrected p -value $p < 0.0001$).				
759						
760	Figur	e 3. Percent relative abundance of top 11 bacterial families identified in gut, oral,				
761	and s	and skin microniomes of bats. Individual points represent the relative abundance of				
762	bacte	bacterial families within a single library. Results are faceted by anatomical site and				
763	arran	arranged by host phylogenetic relationship. Bacterial families are colored according to				

bacterial phylum. Number of libraries is indicated in the upper right-hand corner of eachplot.

766

- Figure 4. Rate of microbiome divergence across phylogenetic distance of bats. Strengths of
- 768 correlations assessed by Mantel tests (10,000 permutations) of microbial community
- 769 dissimilarity (unweighted and weighted UniFrac) and patristic distances calculated from a
- 770 maximum likelihood hypothesis of bat species from this study. Asterisk indicates significant
- correlation (p<0.05) as determined by Mantel test.
- 772

773 Figure 5. (A) Distribution of skin microbial network clusters for parasitized and non-

parasitized bats, grouped by bat family (asterisks indicate signifiance at p < 0.005,

775 Kruskal-Wallis) (B) Visualization of skin bacterial networks (based on Fruchterman-

776 Reingold algorithm); colored nodes correspond to unique clusters of co-occurring ASVs

777 within each network.

778

Figure 6. Log2fold change in relative abundance of skin-associated ASVs from the four

780 most-sampled bat families estimated with DESeq2. ASVs shown were found to be

significantly associated with ectoparasite status in bats based on analysis of negative

782 binomial distributions of relative abundance (Banjamini-Hochberg FDR corrected *p*-

value p < 0.05). Positive values correspond to ASVs found to be enriched on parasitized

bats, and negative values correspond to ASVs found to be enriched on non-parasitized

785 bats. Gray bars highlight ASVs in bacterial families that were enriched in parasitized bats

786 for three out of four bat families.

787 Supplemental Figures

Figure S1. Alpha diversity measures of data rarefied to a read depth of 10,000. A) Observed ASV richness across anatomical site; gut and oral microbial richness differeed significantly from skin microbial richness (Kruskal-Wallis chi-squared = 677.01, df = 2, p < 2.2e-16, Dunn's test), but did not differ significantly from each other. B) Density plots of Shannon Index (SI) by anatomical site; SI of skin microbial richness and evenness differed significantly from the SI of both gut and oral microbiomes, which did not differ from each other (Kruskal-Wallis chi-squared = 678.0885, df = 2, p < 2.2e-16, Dunn's test). C) Venn diagram of shared and specific ESVs across different anatomical sites. As with analyses of the non-rarefied data set, skin exhibited the high-est diversity (27,825 ASVs), followed by the oral microbiome (10,696 ASVs), and lastly the gut (6,492 ESVs). Rarefying data led to a loss of 1,079 ASVs (4% of total ASVs) that did not appear in any sample after rarefaction, and the removal of 1,079 libraries that had <10,000 reads. D) Mean ASV richness as read depth increases, with removal of libraries containing fewer than the identified number of reads (note - color key in D differs from color key in A-C).

Figure S2. Intraspecific variation across anatomical sites measured as beta dispersion of (A) unweighted UniFrac, (B) weighted UniFrac, and (C) Bray-Curtis distances. Dotted lines indicate mean dispersion for anatomical groupings; numbers in parentheses indicate sample size per bat species. White and gray boxes correspond to the chiropteran suborders Yangochiroptera (microbats) and Yinpterochiroptera (fruits bats and kin), respectively.

Figure S2 CONTINUED. Intraspecific variation across anatomical sites measured as beta dispersion of (A) unweighted UniFrac, (B) weighted UniFrac, and (C) Bray-Curtis distances. Dotted lines indicate mean dispersion for anatomical groupings; numbers in parentheses indicate sample size per bat species. White and gray boxes correspond to the chiropteran suborders Yangochiroptera (microbats) and Yinpterochiroptera (fruits bats and kin), respectively.

Elevation (m)

Figure S3. Linear regression of (A) Shannon diveristy and (B) observed ASV richness of gut, oral, and skin microbiomes against elevation from which host was sampled (~0 - 2500 meters above sea-level). R² and significance values are provided within each plot.

791

Elevation (m)

Elevation (m)

Figure S4. Network Analyses. A) Node degree dsitribution of parasitized and non-parasitized bats, grouped by family. B) Network fragility plots, showing natural network connectivity with sequential removal of nodes ordered by betweenness and degree.

792

Figure S5. Maximum likelihood phylogeny of bat species based on the mitochondrial Cytochrome *b* locus (Cyt *b*). Phylogenetic distances were calculated as patristic distances based on maximum likelihood reconstruction of bat species-level phylogeny with 1000 bootstrap (bs) replicates. Closed black circles > 97% bs support, open circles > 70% bs support. Voucher specimens are accessioned at the Field Museum of Natural History (Chicago, IL); accession information can be found in Table S3 (where specimens included in phylogenetic analyses are highlighted in red).

