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Abbreviation Term 

RNA-seq Ribonucleic Acid Sequencing 

GWA Genome Wide Association 

SNP Single Nucleotide Polymorphism 

PCA Principal Component Analysis 

GTEX Genotype Tissue Expression 

K1 rate constant for forward reaction 

K2 rate constant for reverse reaction 

F6P fructose-6-phosphate 

G3P glycerol-3-phosphate 

S100Z S100 Calcium Binding Protein Z 

FBP2 Fructose-Bisphosphatase-2 

NADKD1 NAD Kinase, mitochondrial 

NAD Nicotinamide Adenine Dinucleotide 

NADP Nicotinamide Adenine Dinucleotide Phoshpate 

NADPH 

Nicotinamide Adenine Dinucleotide Phosphate, 

Reduced 

 31 

 32 

Abstract 33 

 We present results from a pipeline developed to integrate multi-omics data 34 

in order to explore the heat stress response in the liver of the modern broiler 35 

chicken.  Heat stress is a significant cause of productivity loss in the poultry 36 

industry, both in terms of increased livestock morbidity and its negative influence 37 

on average feed efficiency.  This study focuses on the liver because it is an important 38 

regulator of metabolism, controlling many of the physiological processes impacted 39 

by prolonged heat stress.  Using statistical learning methods, we identify genes and 40 

metabolites that may regulate the heat stress response in the liver and adaptations 41 

required to acclimate to prolonged heat stress.  Our findings provide more detailed 42 
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context for genomic studies and generates hypotheses about dietary interventions 43 

that can mitigate the negative influence of heat stress on the poultry industry.   44 

Background 45 

  Obtaining biological insight from large-scale transcriptome data is 46 

challenging due to biological and technical variance.  Careful experimental design 47 

can limit unwanted noise.  However, when properly harnessed, heterogeneity can be 48 

used to detect biological signals that elude traditional enrichment analysis.  For 49 

example, biological variation relating to a treatment response depends on many 50 

variables that are not easily controlled such as allelic or physiological variants.  This 51 

fact can be informative because many compounds involved in the same process will 52 

have similar patterns of heterogeneity.  This can be used to identify relationships 53 

between elements of the same pathway, even when their scales of expression and 54 

variance differ considerably, by relying on statistical learning strategies.  This 55 

approach allows the combination of transcriptome and metabolome data to gain a 56 

more comprehensive biological understanding of a system.  This is particularly 57 

helpful in identifying significant features from the large, complex datasets now 58 

common in multi-omics studies.  59 

  The modern broiler chicken is a fundamental source of poultry meat.  It has 60 

been under strong artificial selection during the past several decades for increased 61 

breast muscle yield (Tallentire et al., 2016).  This is thought to be at the expense of 62 

other systems, resulting in decreased heat tolerance and increased mortality during 63 

heat stress.  The relationship between the altered physiology of the broiler and 64 

susceptibility to heat stress is not fully understood, however.  It is believed to 65 
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involve altered appetite and preferential routing of resources to muscles tissue.  66 

Such changes are systemic, influenced by both behavior and metabolism.  67 

  One organ capable of exerting strong influence on both bird growth and 68 

thermoregulation is the liver.  This organ has recently proved as a subject for 69 

studies that leverage multiomics approaches including transcriptomics and 70 

metabolomics.  Such work has shed light on differentially regulated genes and 71 

metabolites.  However, a systems level understanding in which fluxes in metabolites 72 

are related to gene expression, are lacking.  This is partly because computational 73 

approaches exploring the totality of a biological response including gene expression 74 

and metabolite production is lacking.  We combine RNA-seq (Ribonucleic Acid 75 

Sequencing) expression and metabolites from the liver to identify genes and 76 

compounds that function as biomolecules associated with heat stress.  While 77 

metabolomics data identifies changes in biologically active compounds, RNA-Seq 78 

data identifies genes regulate metabolic changes.  We offer a geometric 79 

interpretation for our statistical procedures, describing how they recapitulate novel 80 

biology.   81 

Our analysis applies statistical learning approaches on metabolite and gene 82 

expression data restricts transcriptome analysis to a core module of liver enriched 83 

genes.  These are determined by a definition we propose that proves more stringent 84 

than other types of relative expression analysis.  Sub-setting in this fashion isolates 85 

tissue-enriched genes that reflect unique biology specific to the liver in a tissue 86 

diverse dataset.  The approach of selecting tissue enriched genes and focusing on 87 

patterns of heterogeneity within such a subset provides a framework to integrate 88 
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metabolite and transcriptome data. This approach of combining data from different 89 

high-throughput technologies makes it possible to identify important features of the 90 

high dimensional dataset.   91 

  Finally, extending the work of earlier GWA (genome wide association) 92 

studies that sought to model ratios of metabolites as functions of SNP’s, (single 93 

nucleotide polymorphisms) we model metabolite ratios in terms of other 94 

metabolites.  The original purpose of these GWA metabolite studies was to detect 95 

genetic basis of metabolic changes (Gieger et al., 2008).  However, modeling ratios 96 

as function of metabolites allows detection of metabolic forks, or small network 97 

motifs where precursors are selectively routed to different metabolic fates under 98 

heat stress.  The compounds used to compose triplets representing possible 99 

metabolic forks are selected from hypotheses developed through the combined k-100 

means, random forest and PCA (principal component analysis) pipeline.  A triplet is 101 

defined as a function of the form cor(A, (B/C)) where A, B and C are any 102 

combination of metabolites.  Candidates for A, B and C are chosen from amino acids 103 

known to be catabolized under heat stress (Jastrebski et al., 2017 ) and  sugar and 104 

fat molecules that may incorporate these molecules prioritized by our pipeline.  105 

  The combination of RNA-Seq with metabolite data identifies novel shifts in 106 

gene regulation that reflect pathway changes influencing metabolite levels. 107 

Our combined informatics strategy identifies elements under genetic control and 108 

which could be targets for selective breeding.  Additionally, the identification of heat 109 

stress responsive metabolites produces candidates for feed supplementation 110 

studies.   111 
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 112 

Methods 113 

 The heat stress response is multi-tiered and involves input from multiple 114 

tissues.  At the cellular level, the heat stress response unfolds across an intricate 115 

program of organelle specific changes.  Which changes are causal, and which merely 116 

correlative with underlying signal or sensing pathways, thus becomes a complex 117 

question.  However, the variability associated with most basal regulators of the heat 118 

stress response should be most closely related to the variation in the heat stress 119 

response.  By the transitive nature of biological communication, the introduction of 120 

noise into the signal diminishes the capacity of downstream molecules, which 121 

correlate with, but do not cause the heat stress response, to discriminate between 122 

treatment and control samples.  From this perspective, the problem of identifying 123 

causal molecules from expression profile is well posed as a statistical learning 124 

problem that can be addressed through random forests.  Random forests can rank 125 

candidates on their ability to correctly identify the class of samples as assigned to 126 

control or experimental treatment groups.  Our approach follows sorting 127 

compounds into clusters based off of their mean expression, using k-means 128 

clustering, prior to application of the random forest algorithm and finally 129 

prioritizing these top biomolecules with PCA.  After standardizing, we identify 130 

compounds most strongly associated with heat stress among liver enriched genes 131 

and metabolites.  All reads were mapped to the latest NCBI release of the chicken 132 

genome and accompanying annotation, GalGal5.  Mapping was done with Tophat2 133 
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and Cufflinks2, with raw counts quantification by featureCounts and differential 134 

expression accomplished with edgeR.   135 
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 136 

Figure 1:  Total pipeline, from data analysis to identifying hypothetical mechanisms.  137 

   138 
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  Biomolecules are identified and prioritized to extract pathways from whose 139 

elements triplets can be calculated.  Triplets showing differential behavior selected, 140 

which demonstrate equilibrium shifts at state assumptions and thus indicate 141 

behavior of a metabolic fork. 142 

 Figure 2A     Figure 2B 143 

 144 
 145 

Figure  2A and 2B: Example of possible models around specific cluster with 146 

different k-means selection, illustrating more uniform clustering results with k = 3 147 

(2B) compared to k = 2 (2A).  148 

 149 

Geometric And Biological Consideration Of K-means Step 150 

A goal of first leveraging k-means analysis is to build more biologically 151 

interpretable random forests, with compounds initially separated by expression 152 

level.  This reflects the idea that pathways involving essential biological compounds 153 

occur across a spectrum of expression levels.  Compounds with different levels of 154 

expression levels may have equally important biological roles.  Separating out 155 

compounds first by this dimension prevents compounds from one expression tier 156 

crowding out those from another tier when they have similar capacities for 157 

classifying samples as control or heat stress. However, the optimal partitioning 158 

should produce clusters that are similar in explanatory power.  Selecting k = 3 159 
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accomplishes this goal by distributing compounds across clusters that are as similar 160 

to one another as possible in terms of their explanatory power (Figure 2A and 2B). 161 

 162 

Figure 3: Under changes in gene expression that alter levels of the regulating 163 

enzymes, precursors are preferentially routed to one metabolic fate over another.  164 

Shifts in the ratio between metabolites representing fate 1 or fate 2 may represent 165 

shifts in biology. 166 

Metabolic Forks 167 

  Metabolic forks, in which ratio of metabolites represent activities of 168 

competing biological processes are an adaptation of concepts introduced by Giegier 169 

et al, in which ratio of metabolites represent biological activity of processes 170 

influence by genotype.  We refer to these regulatory triplets as such, because they 171 

represent divergent fates for metabolites.  Candidates for components of metabolic 172 

forks are determined via prior knowledge as compounds established in the broiler 173 

heat stress response through our previous work  (Jastrebski et al., 2017) and which 174 

are also biomolecules prioritized by the statistical learning components of the 175 

pipeline. 176 
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  Such functions serve as a more realistic description of the biochemistry of 177 

pathway steps than simple correlations with raw data.  For example, pathway steps 178 

where one enzyme regulates the forward reaction and another the reverse, the 179 

regulation through gene expression can cause relative increases in one enzyme 180 

compared to corresponding enzyme that regulates the opposing reaction. This shifts 181 

the favorability of the pathway step towards either the products or reactants, 182 

depending on the function of the enzyme.  The shift in favorability towards one 183 

metabolic fate, at the expense of another, under regulation thus represents a 184 

“metabolic fork”.  Having hypothesized that amino acids from catabolized proteins 185 

fuel production of sugar and fats by providing carbon backbones, we calculated 186 

“metabolic forks” that included lipids, sugar and amino acids. P-values are 187 

determined from the interaction term of the resulting linear model of the metabolic 188 

fork, signifying a difference in slope between control and experimental conditions. 189 

 190 

Results 191 

PCA on Correlation Matrix of Top Biomolecules for Each Cluster Following K-192 

means and Random Forest 193 

 194 

Cluster 1: 195 
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 196 
 197 

1. 1_2soUnique_1_enyl_palmitoyl_    16. picolinate 

2 1_stearoyl_GPG__18_0_  17. pseudouridine 

3. 2__deoxyuridine  18. riboflavin_Vitamin_B2 

4. "2_hydroxyphenylacetate  19. sphingomyelin__d18_1_20_0

5. 2_palmitoyl_GPC__16_0_  20. sphingomyelin__d18_1_21_0

6. alanine  21. sphingomyelin__d18_1_22_1

7. behenoyl_sphingomyelin__d18_1_22_0_  22. thymine 

8.  dehydroascorbate  23. CAPSL 

9. dimethylarginine__SDMA___ADMA_  24. CPB2 

10. glutathione__oxidized__GSSG_  25. GFF 

11. glycine  26. GHR 

12. guanosine_2__monophosphate__2__GMP_  27. ITIH3 

13. hypotaurine  28. LOC395933 

14. N_formylmethionine  29. LOC417848 

15. N_methyl_GABA  

 198 

Figure 4: Biplot of PCA analysis on correlation matrix of the top biomolecules in 199 

cluster 1.  See keys to match numbers to compounds.  200 

 201 

 202 

 203 

g 

0__d16_1_

0__d17_1_

1__d18_2_
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Cluster 2: 204 

 205 
 206 

1. 

1_palmitoleoyl_3_oleoyl_glycerol__16_1_18_1_ 

 

 16. glucose_6_phosphate 

2. 1_palmitoyl_2_linoleoyl_GPE__16_0_18_2_  17. glutathione__reduced__GSH_ 

3. 1_palmitoyl_2_linoleoyl_GPS__16_0_18_2_  18. glycerophosphoethanolamine 

4. 1_palmitoyl_2_oleoyl_GPI__16_0_18_1_  

19. 

N_acetylglucosaminylasparagine 

5. 

1_palmitoyl_2_palmitoleoyl_GPC__16_0_16_1_ 

 

 20. N6_succinyladenosine 

6. 1_stearoyl_2_linoleoyl_GPE__18_0_18_2_  21. phosphopantetheine 

7. 1_stearoyl_2_linoleoyl_GPI__18_0_18_2_  22. pterin 

8. 3__dephosphocoenzyme_A  23. UDP_glucuronate 

9. adenosine  24. C5 

10. adenosine_5__monophosphate__AMP_  25. LOC421560 

11. coenzyme_A  26. LYG2 

12. cysteinylglycine  27. METTL7A 

13. fructose_6_phosphate  28. NTSR1 

14. gamma_glutamylcysteine  29. TF 

15. glucosamine_6_phosphate  

 207 

 208 

g 
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Figure 5:Biplot of PCA analysis on correlation matrix of the top biomolecules in 209 

cluster 2.  See keys to match numbers to compounds. 210 

 211 

 212 

Cluster 3: 213 

 214 
 215 

1. 1__6soUnique_enyl_stearoyl_ 16. docosahexaenoate__DHA;_22_6n3 

2. 1__6soUnique_enyl_stearoyl_ 17. linoleate__18_2n6_ 

3. 1_arachidonoyl_GPC__20_4n6_ 18. linoleoylcarnitine 

4. 1_arachidonoyl_GPE__20_4n6_  19. margarate_17_0 

5. 

1_palmitoyl_2_linoleoyl_glycerol__16_0_18_2_ 20. N_acetyltaurine 

6. 1_palmitoyl_2_stearoyl_GPC__16_0_18_0_ 21. N_palmitoyltaurine 

7. 

1_stearoyl_2_arachidonoyl_GPE__18_0_20_4_ 22. N_stearoyltaurine 

8. 

1_stearoyl_2_arachidonoyl_GPI__18_0_20_4_ 23. oleoylcarnitine 

10. adipoylcarnitine 24. sphingomyelin__d18_1_24_1__d18_

11. arachidate__20_0_ 25. sphingomyelin__d18_2_24_1__d18_

12. arachidonate__20_4n6_ 26. stearoyl_ethanolamide 

13. beta_guanidinopropanoate 27. tartronate__hydroxymalonate_ 

14. betaine_aldehyde 28. taurine 

g 

_2_24_0_ 

_1_24_2_ 
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15. bilirubin_Z_Z 29. thiamin_diphosphate 

 216 
 217 

Figure 6: Biplot of PCA analysis on correlation matrix of the top biomolecules in 218 

cluster 3.  See keys to match numbers to compounds. 219 

 220 

Figure 7: Illustration of the components of a metabolic fork. 221 
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 222 
Figure 8:Fructose-6-phosphate (F6P), a sugar produced by gluconeogenesis, as a 223 

function of the ratio of glycerol-3-phosphate (G3P) and glycine.  All values are log 224 

transformed.  P-value of interaction term = 0.0005. 225 

 226 

Discussion 227 

 Our complete pipeline, which combines statistical learning techniques with 228 

hypothesis-free modeling of metabolite ratios, is able to propose novel hypotheses 229 

while recapitulating significant known biology from the liver metabolome and 230 

transcriptome (Figure 1).  Importantly, this perspective identifies changes in 231 

compounds with roles across organelles that are increasingly thought to have 232 

important functions in the heat stress response. 233 

  Much interesting biology, for example, relates to changes in the cell 234 

membrane. There are widespread shifts in levels of constituent lipids, for example.  235 

g 
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The exact mechanisms by which these shifts occur remain unclear, but accumulating 236 

evidence suggests these changes in the cell membrane exert important downstream 237 

effects on heat stress responsive genes and metabolites.  At least some of these may 238 

be driven by dietary changes. One such example is the essential fat linoleic acid, 239 

which is a precursor to arachidonic acid and emerges as a strong heat stress 240 

associated biomolecule and whose detected levels are lower under heat stress. The 241 

compound also correlates with two principal components among the heat stress 242 

associated biomolecules among its cluster (Additional File 1, Tables 2 and 3).  243 

Downstream arachidonic acid derivatives are similarly decreased, many of which 244 

have roles in inflammatory response.   245 

  Other biomolecules prioritized through correlation with the same principal 246 

component include other lipids, related to signaling and fatty acid oxidation – such 247 

as adipoylcarnitine and the taurine related endocannabinoids N-oleoyl taurine and 248 

N-Stearoyl taurine (Additional File 1, Tables 2 and 3).  These compounds represent 249 

a possible intersection between signaling lipids and sulfur metabolism via coupling 250 

with taurine.  All of these compounds occur at lower concentrations under heat 251 

stress.  While the mechanisms of such regulation remain unclear, there is much 252 

evidence that suggests lipid changes influence cell state and, potentially, bird 253 

metabolism.  Lipid changes, in fact, are increasingly recognized as potential 254 

regulators of heat stress at a fundamental level (Balogh et al., 2013).   255 

 Recent studies have focused on nuances of the heat stress response by 256 

revising the model that it is primarily triggered by the presence of unfolded proteins 257 

(Hoffman, 2007).  For example, lipids in the cell membrane may detect membrane 258 
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disorder and other physical consequences of heat stress and trigger signal cascades 259 

(Balogh et al., 2013).  The evolutionary value of using a thermo-sensitive organelle 260 

such as the cell membrane to refine the heat stress response is the advantage of 261 

being able to regulate homeostasis through sensitive adjustments that have 262 

meaningful influences on cell fate (Balogh et al., 2013).  The inflammatory response 263 

may be a significant component in the transition from heat stress to heat stroke. 264 

Heat Stress, Membranes and Lipids 265 

  The sophisticated signaling environment created by the cell membrane is 266 

comprised of a diverse set of lipids and proteins.  Among these is an abundance of 267 

sphingolipids that form rafts in the membrane and possess important signaling 268 

roles (Simons and Ikonen, 1997).  The organization of the cell membrane is intricate 269 

and becomes dynamic under stress response.  Important structural changes occur 270 

through interactions with membrane proteins, the gating of which possess thermal 271 

sensitivity (Torok et al., 2014).  Additionally, heat causes changes in physical 272 

attributes such as diffusion and dimerization rates.  Measurements suggest these 273 

characteristics change in a predictable fashion during even mild heat stress events 274 

(Torok et al., 2014).  Thus, the cell membrane is well equipped to sense relative 275 

temperature changes.    276 

  Not surprisingly, among the compounds prioritized by our pipeline are many 277 

lipids.  These shifts suggest mixture of changes in compounds with signaling and 278 

structural roles.  Alterations in lipid content are important in thermal shifts 279 

associated with both heat stress and extreme cold.  For example, a key adaptation to 280 

cold is the increase in membrane fluidity mediated by elevating the fraction of cis-281 
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unsaturated fatty-acyl groups in membrane lipids (Vigh et al., 1998).  Alternatively, 282 

during episodes of heat stress mechanisms to endure temperature shifts focus 283 

generally on maintaining the integrity of the cellular processes and such pathways 284 

can be causally regulated by changes in cell membrane disorder (Vigh et al., 1998).  285 

Regulation of heat shock factors can be influenced by addition of saturated and 286 

unsaturated fatty acids, with the former inducing expression and the latter 287 

suppressing it  (Carratu et al., 1996). 288 

  The possibility that the qualities of the cellular membrane make it an ideal 289 

substrate in which to store ‘memory’ or serve as a ‘control center’ for a physiological 290 

response in terms of the composition of density and sensors could be extremely 291 

interesting biologically. This could prove extremely important in terms of 292 

identifying mechanistic regulators of the general response.  Indeed, changes in 293 

membrane fluidity induced via alcohols triggers systemic responses paralleling 294 

those caused by heat stress, albeit in the absence of any thermal activation.  Such 295 

changes include hyperpolarization of the mitochondrial membrane (Balogh et al., 296 

2005).  Such experimental work confirms the role of lipids from a regulatory 297 

perspective and the influence of the heat stress response across organelles.  298 

  Among the cell membrane lipids influenced by heat stress and which are 299 

prioritized among their respective clusters is a number of sphingomyelin species.  300 

These are substantially down regulated under heat stress, and emerge as strong 301 

classifiers in clusters one and two.  This is a potentially significant observation in the 302 

context that sphingolipids are up-regulated in the early phases of acute heat stress 303 

in studies of yeast (Jenkins et al., 1997).  Many of these sphingomyelin species 304 
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correlate with principal components among their clusters that include the 305 

downregulated inflammatory arachidonic acid derivatives (Additional File 1, Tables 306 

7 and 8). Their general attenuation may be an important aspect of physiological 307 

adaptation to the long term heat stress experienced by the birds, with the pattern of 308 

hetereogeneity in their levels indicative of bird acclimatization.  309 

Anti-Oxidants and Energy Burden 310 

 311 

  Heat stress entails a number of challenges that endanger cell function and 312 

which must be addressed in order to preserve homeostasis.  The management and 313 

deployment of protective systems can be quite independent from the initial sensory 314 

capacity of the cell membrane. These, for example, can respond to states of cellular 315 

stress that could be ongoing in a state of heat stress.  Such pathways are essential to 316 

the heat stress response, as they relate to management of general consequences of 317 

oxidative damage. Several precursors of anti-oxidants, as well as such compounds 318 

themselves, are identified as strong classifiers of treatment assignment within each 319 

cluster.  These compounds manage the effects of toxic intermediates resulting from 320 

increased energy production, mitigating their ability to damage DNA or organelles. 321 

Their production may exploit the carbon backbones of amino acids released by 322 

catabolized protein.    323 

 Not surprisingly, given the relationship between oxidation and energy 324 

production, some of the classifiers suggest changes in mitochondrial activity.  Even 325 

slight changes in cell resting state can have dramatic changes on the production of 326 

reactive oxygen species and the behavior of the mitochondria (Akbarian, 2016).  327 

Molecules associated with mitochondrial performance are computationally 328 
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recognized as potential biomarkers of the heat stress response. This suggests that 329 

mitochondrial conditions are closely related to general heat stress, and that the cell 330 

adjusts antioxidant levels accordingly. 331 

  At the same time that sugars and other energy-related metabolites show 332 

upregulation, an important class of lipids involved in the carnitine shuttle system 333 

that transports fatty acids to the mitochondria shows consistent downregulation.  334 

These carnitine species (linoleoylcarnitine, stearoylcarnitine, adipoylcarnitine) are 335 

identified as strong heat stress associated biomolecules among their clusters and 336 

correlate strongly with resulting principal components (Additional File 1, Tables 1, 337 

2 and 3).  Such patterns suggest sweeping downregulation of fatty acid oxidation 338 

pathways, as metabolism is increasingly driven by gluconeogenesis.  Transcriptome 339 

changes support a coordinated shift in lipid and sugar management (Jastrebski et al., 340 

2017).    341 

  Genes that correlate most highly with the principal components that emerge 342 

from the k-means cluster containing gluconeogenesis biomolecules include 343 

Neurotensin Receptor 1 (NTSR1)  (Additional File 1, Tables 4 and 5). However, the 344 

correlation of this transcript with the first principal component, at .48, is relatively 345 

weak compared to the main metabolites associated with gluconeogenesis, i.e. .48. 346 

Glucosamine-6-phosphate and glucose-6-phosphate have correlations of .89 and .91, 347 

for comparison.  However, NTSR1 correlates much more strongly with the second 348 

principal component, at .75.   NTSR1 is a neurotensin receptor, and is associated 349 

with appetite regulation and blood sugar levels.  Another strong classifying gene 350 

associated with this cluster is the methyltransferase METTL7A, though it only 351 
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correlates significantly with the second principal component (.703) (Additional File 352 

1, Table 5).  Upregulated NTSR1 may be important to maintaining blood sugar 353 

homeostasis in the presence of enhanced gluconeogenesis, whereas METTL7A may 354 

be manage sulfur metabolism associated with enhanced antioxidant production.  In 355 

addition to  356 

 357 

 This shift towards gluconeogenesis is supported strongly from a mechanistic 358 

standpoint by the metabolic fork (Figure 10).   The metabolic fork provides evidence 359 

of large-scale redirection of carbon resources released from the catabolized glycine.  360 

This complements the statistical learning pipeline, which prioritizes biomolecules 361 

without determining whether they are causal or merely collinear to biological 362 

changes.  The detection of a potential metabolic fork also provides kinetic 363 

information about biochemical pathways that may be consequences of gene 364 

expression changes.  Directionality can be inferred through prior knowledge.  For 365 

example, the metabolic fork suggests that carbon released from catabolized glycine 366 

is preferentially routed to F6P through gluconeogenesis, as opposed to G3P, under 367 

heat stress.  This is supported by increased transcription of the rate-limiting gene 368 

controlling this step, FBP2, under heat stress.  The ability to identify concrete 369 

mechanisms which exhibit differential behavior under heat stress, and which are 370 

consistent with transcriptome changes, makes it possible to complement purely 371 

correlation-based strategies with mechanistic hypotheses.  372 

Metabolic Forks Resulting From Gene Regulation           373 

  One of the top differentially regulated triplets contains two compounds 374 
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prioritized through PCA on top biomolecules on a k-means cluster.  This is 375 

consistent with gene important expression changes, such as those involving FBP2.  376 

The three members of the triplet span gluconeogenesis (fructose-6-phosphate), 377 

glyceroneogenesis (glycerol-3-phosphate) and amino acid catabolism (glycine).  378 

Pairwise correlations between each node are provided on the edge corresponding 379 

edge.  A proposed mechanism for the observed pattern is that catabolized glycine is 380 

preferentially shunted towards gluconeogenesis under heat stress, thus 381 

contributing to F6P production.  Increasingly fueled by carbon backbones provided 382 

by amino acids from catabolized proteins, gluconeogenesis decouples from 383 

glyceroneogenesis under heat stress.  384 

  The ratio of G3P to glycine represents the tendency of catabolized amino 385 

acids to become backbones for fats, as opposed to sugars.  This changes as a function 386 

of increased demand for sugar under heat stress and is corroborated by increase in 387 

the gene Fructose-Bisphosphatase-2 (FBP2) encoding the rate-limiting gene for 388 

gluconeogenesis. 389 

Summary and Future Work   390 

  Interest in the heat stress response is broad, stretching from plant 391 

physiology to human clinical research, with insights potentially applicable across 392 

taxa due to the deep conservation of cell signaling pathways.  Next generation 393 

sequencing technologies provide new experimental perspectives from which to 394 

explore such systems. During the past several years, the advent of next generation 395 

sequencing tools has produced a deluge of data.  However, methods to process that 396 

data have been lacking.  Combining the information from multiomics and multi 397 
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organ datasets compounds this challenge.  The capacity to link patterns of 398 

heterogeneity to pathway importance is an approach that can ease the burden of 399 

prioritizing compounds in such a setting.  Here, we do so and leverage a 400 

combination of relative tissue enrichment and statistical learning approaches to 401 

prioritize compounds based on their ability to identify samples as belonging to heat 402 

stress or control conditions.  We demonstrate signatures of the heat stress response 403 

across several important systems.  Importantly, this is a very general strategy that 404 

works with any type of continuous data, rendering it applicable to both metabolome 405 

and transcriptome data and flexible enough to accommodate future “-omics” data.  406 

From both types of “-omics” data, we identify a diverse range of important 407 

mechanisms that may be influencing shifting biology. 408 

  We have leveraged a flexible method of analysis to process a complex dataset 409 

and identify important components of the heat stress response.  While 410 

recapitulating known biology, our analysis also proposes new hypotheses about 411 

heat stress regulation that relates to systems controlled by a diverse range of 412 

organelles.  These can be explored through future experimentation.  Additionally, 413 

the metabolic fingerprint of heat stress provides candidates for feed 414 

supplementation studies.  Thus, this study proposes a general workflow to integrate 415 

high dimensional, complex datasets in order to yield testable hypotheses about 416 

biology.      417 

 418 

 419 

 420 

 421 

 422 
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