
Ecological Network assembly: how the regional meta web influence

local food webs

Abstract

The idea that ecological networks are built in a sequence of colonization events is not new but has been

applied mostly to competitive interactions. Similar processes act in trophic networks, i.e. food webs: a

regional pool of species act as the source from which species colonize local areas, called the metaweb. Local

food webs are realizations of metawebs that result from assembly processes influenced by migration, habitat

filtering, stochastic factors, and dynamical constraints imposed by food-web structure. We analyse how the

structure of a metaweb influence local food webs with different spatial scales, using an assembly model, a

random model and properties at three levels: emergent global properties that take into account the whole

network e.g. modularity, sub-structural properties that consider several nodes e.g. motifs, and properties

related to one node e.g. topological roles. Three independent data-sets were included: the marine Antarctic

metaweb (34.8 million Km2), the Weddell Sea (3.5 million Km2) and Potter Cove (6.8 Km2) food webs.

Looking at the global properties, the metaweb presents a structure very different from the random model,

while the local food webs follow the same pattern and are very similar to the assembly model. The assembly

model only takes into account migration, local extinction and secondary extinctions. For sub-structural

properties the metaweb and the local food webs also showed the same pattern against the random model,

but we found differences compared to the assembly model that did not increase the local stability of food

webs. Topological roles also showed differences between the metaweb and local food webs that were explained

by the assembly model. We found that a great portion of the structure of the food webs is determined by

evolutionary processes that act on large temporal and spatial scales. On the contrary, dynamical processes

that favour stability have a small influence, but habitat filtering or dispersal limitations seem to be important

factors that determine food web structure.
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Introduction

The characterization of ecological systems as networks of interacting elements has a long history (Paine 1966,

May 1972, Cohen and Newman 1985). Much of this work has been devoted to investigate network structure

and its effects on dynamics and stability (Thebault and Fontaine 2010). In recent years a renewed emphasis

on structural stability (Rohr et al. 2014, Grilli et al. 2017) and new developments in random matrix theory

has greatly expanded our capability to analyse ecological networks (Allesina et al. 2015). However, the

analyses of the effects of ecological dynamical processes on food web structure are not so well developed.

One such dynamic process is community assembly: how species from a regional pool colonize a site and

build local interactions (Carstensen et al. 2013). Regional species pools are shaped by evolutionary and

biogeographical processes that imply large spatial and temporal scales (Carstensen et al. 2013, Kortsch et al.

2018). More specifically, the assembly of local communities is influenced by dispersal, environmental filters,

biotic interactions and stochastic events (HilleRisLambers et al. 2012). These processes have been studied

by means of metacommunity theory (Leibold et al. 2017), where different spatial assemblages are connected

through species dispersal.

Metacommunity theory provides a framework for assessing the roles of local- and regional-scale dynamics

(Leibold et al. 2004, Baiser et al. 2013). This approach has been applied mostly to competitive interactions,

whereas trophic interactions have received less attention (Baiser et al. 2016). Recently, there has been an

increase in food web assembly studies, integrating them with island biogeography (Gravel et al. 2011) and

with metacommunity (Pillai et al. 2011, Liao et al. 2016). These were mainly focused on complexity-stability

effects (Mougi and Kondoh 2016). Previous attempts to study the food web assembly process have used

motifs as building blocks of local communities (Baiser et al. 2016). Motifs are sub-structures in networks

composed of species and links whose frequency deviates from the expected in a random network (Milo et al.

2002). By comparing motif representation at different spatial scales—from local to regional—the process of

assembly of interactions may be revealed (Baiser et al. 2016), e.g. if the same processes structure the food

web across scales, motif representation should be the same. Besides, as local food webs should have tighter

links and stronger interaction rates, other structural properties should change as scale changes (Coll et al.

2011).

The objective of the present study is to analyse the process of food web assembly addressing how multilevel

network properties change across different spatial scales. For this we considered: the Antarctic metaweb,

representing an area of 34.8 million Km2, and build from a dietary database (Raymond et al. 2011); the

Weddell Sea food web that represents 3.5 million Km2 (Jacob et al. 2011); and the Potter Cove network
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that represents 6.8 Km2, (Marina et al. 2018a).

There are several approaches to characterize the structure of ecological networks: emergent or global prop-

erties that focus on averages over the entire network (e.g. modularity or connectance), and more local

properties that focus on how one or several species are related to the whole. Global properties related to

resilience and stability are fundamental to understand the response of ecological networks to global threats

like climate change and biological invasions. One of these properties is the small-world pattern, associated

with rapid responses to disturbances and resistance to secondary extinctions (Montoya and Solé 2002). The

small-world pattern is related to two global properties: the average of the shortest distance between all

species, called the characteristic path length, and the clustering coefficient, the probability that two species

linked to the same species are linked. Then, small- world patterns imply a high level of clustering and a short

average path length compared to random networks (Watts and Strogatz 1998). This pattern comes from

the general network theory, beyond ecological networks, and has been recently applied to marine food webs

(Gray et al. 2016, Navia et al. 2016, Bornatowski et al. 2017, Marina et al. 2018b).

Since the early studies of May (1972) stating that larger and more connected ecosystems will be unstable,

there has been a search for factors that would stabilize food webs (García-Callejas et al. 2018); one of the

potential properties is trophic coherence (Johnson et al. 2014). Trophic coherence is based on the distances

between the trophic positions of species and measures how well species fall into discrete trophic levels. Then,

more coherence implies a more hierarchical food-web structure , which is directly correlated with linear

stability (Johnson et al. 2014). The advantage of coherence as an index of stability is that it does not make

any assumptions about interaction strengths. A property related to coherence is the mean trophic level,

which historically has been used as an ecosystem health indicator (Pauly et al. 1998), predicting that food

webs with higher trophic levels are less stable (Borrelli and Ginzburg 2014).

Food webs have structurally complex and highly non-random patterns that contain internal functional units

or sub-modules (Grilli et al. 2016). These are groups of prey and predators that interact more strongly with

each other than with species belonging to other modules. These modules (also called compartments) act

as a buffer to the propagation of perturbations throughout the network, increasing its persistence (Stouffer

and Bascompte 2011). It is interesting to mention that small-world patterns and modularity act in opposite

directions. Whereas the small-world structure favours the spread of perturbations through its rapid dissipa-

tion (Gray et al. 2016), the presence of a high degree of modularity prevents the dispersal of perturbations

(Krause et al. 2003, Stouffer and Bascompte 2011). The detection of these modules is an intermediate

approach between the global and local analyses.
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Species may participate in different ways with respect to modularity, depending on how many trophic links

they have within their own module and/or between modules (Guimerà and Nunes Amaral 2005, Kortsch et

al. 2015). This participation with respect to modularity is called a species’ topological role. Theoretical and

empirical results suggest these roles are related to species traits, such as wide niche breadth, environmental

tolerance, apex position in local communities and high motility (Rezende et al. 2009, Guimerà et al. 2010,

Borthagaray et al. 2014, Kortsch et al. 2015). This is a local property at an individual species level.

If we consider a subset of linked species inside the food web this forms a sub-network, when the abundance of

one of these sub-networks deviates significantly from a null model network, this is called a motif (Milo et al.

2002). Besides this definition, in the ecological literature motif has been used as a synonim of sub-network.

We analyse here the three-species sub-networks that have been most studied theoretically and empirically

in food webs (Prill et al. 2005, Stouffer et al. 2007, Baiser et al. 2016). Specifically, we focused on four of

the thirteen possible three-species sub-networks: apparent competition, exploitative competition, tri-trophic

chain, and omnivory (Figure 1).

Figure 1: The four three-species sub-networks analysed: apparent competition, exploitative competition, tri-
trophic chain, and omnivory. These four sub-networks have been explored both theoretically and empirically
in ecological networks and are the most common sub-networks found in food webs

The frequency of motifs at different spatial scales (i.e over-represented, under-represented, or random) may

reveal aspects about the process behind the assembly of interactions (Baiser et al. 2016). If the same processes

structure the food web across scales, motif representation should be the same. Ecological interactions occur

at the local scale so differences may show the importance of local interactions in the assembly of the food web.
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During the assembly process those motif structures that are less dynamically stable tend to disappear from

the food web (Borrelli 2015), this has been called non-adaptative systemic selection (Borrelli et al. 2015).

The process is non-adaptative because the selection process is not adapting the system to local conditions

(Borrelli et al. 2015).

In this study, we analyze food web assembly from a metaweb to local networks with different spatial scales.

To our knowledge, combining modularity, trophic coherence and motifs at different spatial scales has not

been applied in food web studies up to now. First we compared the networks—including the metaweb—

against a random network model (i.e. absence of ecological mechanisms), and a metaweb assembly model

(i.e. representing an assembly process). We hypothesize that network properties will change from the metaweb

to a local scale at which interactions are realized. We particularly expect global properties related to resilience

and stability to be close to the random null model at the metaweb scale and significantly different at the

local scale; a greater frequency of stable motifs in the local food webs; as well as a change in the frequency

of topological roles since habitat filtering or dispersal limitation act at the local food web scale. These last

two changes also should be reflected as differences from the metaweb assembly model.

Methods

The three datasets used in this study encompass a wide range of spatial scales and were collected inde-

pendently. The Southern Ocean database compiled by Raymond et al. (2011) was used to construct the

Antarctic metaweb selecting only species located at latitudes higher than 60°S. Raymond et al. (2011)

compiled information from direct sampling methods of dietary assessment, including gut, scat, and bolus

content analysis, stomach flushing, and observed feeding. We considered that the metaweb is the regional

pool of species defined by the biogeographic Antarctic region. Next we analysed two local food webs: the

Weddell Sea food web dataset includes species situated between 74°S and 78°S with a West-East extension

of approximately 450 km, and comprises all information about trophic interactions available for the zone

since 1983 (Jacob et al. 2011). The Potter Cove dataset comes from a 4 km long and 2.5 km wide Antarctic

fjord located at 62°14’S, 58°40’W, South Shetland Islands (Marina et al. 2018a). These food web datasets

comprise benthic and pelagic habitats of the Antarctic ecosystem, few aggregated low-trophic level groups

(e.g. detritus, diatoms, phytoplankton, zooplankton) and a high resolution of the macroalgae community

(i.e. 24 biological species of red, brown and green macroalgae). The macroalgae community is responsible

for the majority of the primary production and supports a large fraction of secondary production in Antarc-

tic fjords (Quartino and Boraso de Zaixso 2008, Valdivia et al. (2015)). Higher trophic levels comprise:
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invertebrate (e.g. ascidians, sponges, isopods, amphipods, bivalves, gastropods, cephalopods, echinoderms)

and vertebrate predator groups (e.g. demersal and pelagic fishes, penguins, seals and whales). For more

information about these datasets we refer to the original publications. To make datasets compatible, we first

checked taxonomic names for synonyms, and second, we added species (either prey or predator) with their

interactions to the metaweb when the local food webs contain a greater taxonomic resolution. When the

metaweb contained more detailed records, only for predators we added them to the local food webs checking

for its geographic range. We removed cannibalistic (self-links) and double arrows (i.d. A eats B and B eats

A).

Analysis

We analysed the structure of the networks using properties that focus on different levels: emergent global

properties that take into account the whole network, sub-structural properties that consider several nodes,

and properties related to one node. To describe food webs as networks each species is represented as a node

or vertex and the trophic interactions are represented as edges or links between de nodes. These links are

directed, from the prey to the predator, as the flow of energy and matter. Two nodes are neighbours if they

are connected by an edge and the degree ki of node i is the number of neighbours it has. The food web

can be represented by an adjacency matrix A = (aij) where aij = 1 if species j predates species i, else is 0.

Then kin
i =

∑
j aji is the number of preys of species i or its in-degree, and kout

i =
∑

j aij is the number of

predators of i or its out-degree. The total number of edges is E =
∑

ij aij .

Null models

We considered two null models, the Erdös-Rényi random graph (Erdős and Rényi 1959), and the metaweb

assembly model. An Erdös-Rényi network is constructed fixing the number of edges and nodes and assigning

at random the m edges to the n nodes with equal probability (Erdős and Rényi 1959, Baiser et al. 2016).

We restricted the random model eliminating double arrows and cannibalistic links. To calculate trophic level

and the coherence parameter (see below) we further restricted to random webs with at least one basal node,

to make these calculations possible. Since the random model represents the absence of any network assembly

mechanism, the comparison against it does not guarantee information on this aspect.

In order to consider network assembly mechanisms we designed a dynamic metaweb assembly model. In this

model species migrate from the metaweb to a local web with a uniform probability c, and become extinct from

the local web with probability e; a reminiscence of the theory of island biogeography (MacArthur and Wilson
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1967, Gravel et al. 2011), but with the addition of network structure. Species migrate with their potential

network links from the metaweb, then in the local web species can only survive if at least one of its preys is

present, or if it is a basal species. When a species goes extinct locally it may produce secondary extinctions;

we check that the local predators maintain at least one prey if not they become extinct independent of the

probability e. We simulated this model in time and it eventually reaches an equilibrium that depends on the

migration and extinction probabilities but also on the structure of the metaweb. The ratio of immigration

vs. extinction α = c/e is hypothesized to be inversely related to the distance to the mainland (MacArthur

and Wilson 1967), and as extinction e should be inversely proportional to population size (Hanski 1999), the

ratio α is also hypothesized to be related to the local area.

For the random model we simulated networks with the same number of nodes n and edges m as the empirical

networks; for the metaweb model we fitted the parameters g and e to obtain networks with n and m close

to the empirical networks. This implies that α should reflect the differences in areas of the two local food

webs. For details of the fitting and simulations see Appendix.

Small-world topology

The first global emergent property we used is the small-world pattern, which examines the average of the

shortest distance between nodes and the clustering coefficient of the network (Watts and Strogatz 1998). We

first calculated the characteristic path length that is the shortest path between any two nodes. Then L is

the mean value of the shortest path length across all pairs of nodes. The clustering coefficient of node i was

defined as

ci = 2Ei

ki(ki − 1)

where Ei is the number of edges between the neighbours of i. The clustering coefficient of the network is

the average of ci over all nodes. The original definition of small-world networks is conceptual (Watts and

Strogatz 1998), a network G is small-world when it has a similar mean shortest path length but greater

clustering than an Erdös-Rényi random network with the same number of nodes n and edges m. For the

quantitative version of the small-world pattern we followed Humphries and Gurney (2008); we need to define:

γg = Cg

Cnull

and
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λg = Lg

Lnull

where Cg and Lg are the clustering coefficient and the mean shortest path length of the network of interest

G; Cg and Cnull are the same quantities for the corresponding null model. Thus, the quantitative small-

world-ness is defined as:

S = γg

λg

and to determine if S is statistically significant Monte Carlo methods are used. We built 1000 null model

networks with the same number of nodes n and edges m than the empirical network; then we calculated S

for each random network and the lower and higher 99% quantiles of the S distribution are called ql, qh:

CI = qh − ql

2

the upper 99% confidence limit is then CL0.01 = 1 + CI. Thus, if a network has S > CL0.01 it is considered

a small-world network (Humphries and Gurney 2008). We also calculated the small-world-ness and the CI

using the metaweb assembly model as a null model.

Coherence

The second global property is called trophic coherence (Johnson et al. 2014), and is related to stability in

the sense that small perturbations could get amplified or vanished, which is called local linear stability (May

1972, Rohr et al. 2014). We first needed to estimate the trophic level of a node i, defined as the average

trophic level of its preys plus 1. That is:

tpi = 1 + 1
kin

i

∑
j

aijtpj

where kin
i =

∑
j aji is the number of preys of species i, basal species that do not have preys (then kin

i = 0)

are assigned a tp = 1. Then the trophic difference associated to each edge is defined as xij = tpi − tpj .

The distribution of trophic differences, p(x), has a mean E−1∑
ij aijxij = 1 by definition. Then the trophic

coherence is measured by:
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q =
√

1
E

∑
ij

aijx2
ij − 1

that is the standard deviation of the distribution of all trophic distances. A food web is more coherent

when q is closer to zero, thus the maximal coherence is achieved when q = 0, and corresponds to a layered

network in which every node has an integer trophic level (Johnson et al. 2014, Johnson and Jones 2017). To

compare coherence and trophic level we generated 1000 null model networks with at least one basal species

and the same number of species and links—or approximately the same—than the network of interest. Then

we calculated the 99% confidence interval using the 0.5% and 99.5% quantiles of the distribution of q; we

also calculated the confidence interval for the mean trophic level tp. We calculated the z-scores as:

zi = qobs − qnull

σqnull

where qobs is the observed coherence, qnull is the mean coherence from the null model networks and σqnull

is the standard deviation. The same formula is used for tp. The z -score thus measures the significance of

deviations of the real network from the null hypothesis. If the distribution of the quantity (q, tp) under the

null model is normal, a z-score greater than 2 is evidence than the observed quantity is significantly greater

than its random counterpart, and a z-score less than 2 means that the quantity is significantly lower. If the

distribution under the null model is skewed this is not necessarily true and thus we must rely on confidence

intervals.

Modularity

An intermediate level property (i.e. between the whole network and the individual species) is modularity. It

measures how strongly sub-groups of species interact between them compared with the strength of interaction

with other sub-groups (Newman and Girvan 2004). These sub-groups are called compartments, and in order

to find the best partition we used a stochastic algorithm based on simulated annealing (Reichardt and

Bornholdt 2006). Simulated annealing allows to maximize modularity without getting trapped in local

maxima configurations (Guimerà and Nunes Amaral 2005). The index of modularity was defined as:

M =
∑

s

(
Is

E
−
(

ds

2E

)2
)

where s is the number of modules or compartments, Is is the number of links between species in the module
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s, ds is the sum of degrees for all species in module s and E is the total number of links for the network. To

assess the significance of our networks we calculate the 99% confidence intervals and z-scores based on 1000

null model networks as previously described.

Motifs

We considered four of the thirteen possible three-species sub-networks: apparent competition, exploitative

competition, tri-trophic chain, and omnivory (Figure 1). These are the only motifs present in all networks

analysed here. We compared the frequency of these motifs to 1000 null model networks using the 99%

confidence interval and the z-score as previously described. To determine if the proportions of motifs change

across networks we use the Pearson’s Chi-squared test with simulated p-value based on 10000 Monte Carlo

replicates.

Topological roles

As a local property that reflect the ecological role of each species we determined topological roles using the

method of functional cartography (Guimerà and Nunes Amaral 2005), which is based on module membership

(See modularity). The roles are characterized by two parameters: the standardized within-module degree

dz and the among-module connectivity participation coefficient PC. The within-module degree is a z-score

that measures how well a species is connected to other species within its own module:

dzi = kis − k̄s

σks

where kis is the number of links of species i within its own module s, k̄s and σks are the average and standard

deviation of kis over all species in s. The participation coefficient PC estimates the distribution of the links

of species i among modules; thus it can be defined as:

PCi = 1 −
∑

s

kis

ki

where ki is the degree of species i (i.e. the number of links), kis is the number of links of species i to

species in module s. Due to the stochastic nature of the module detection algorithm we made repeated

runs of the algorithm until there were no statistical differences between the distributions of PCi and dzi in

successive repetitions; to test such statistical difference we used the k-sample Anderson-Darling test (Scholz

and Stephens 1987). Then we calculated the mean and 95% confidence interval of dz and PC.
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To determine each species’ role the dz − PC parameter space was divided into four areas, modified from

Guimerà and Nunes Amaral (2005), using the same scheme as Kortsch et al. (2015). Two thresholds were

used to define the species’ roles: PC = 0.625 and dz = 2.5. If a species had at least 60% of links within

its own module then PC < 0.625, and if it also had dz ≥ 2.5, thus it was classified as a module hub. This

parameter space defines species with relatively high number of links, the majority within its own module.

If a species had PC < 0.625 and dz < 2.5, then it was called a peripheral or specialist; this refers to a

species with relatively few links, mostly within its module. Species that had PC ≥ 0.625 and dz < 2.5 were

considered module connectors, since they have relatively few links, mostly between modules. Finally, if a

species had PC ≥ 0.625 and dz ≥ 2.5, then it was classified as a super-generalist or hub-connector, because

it has high between- and within-module connectivity. To test if the proportion of species’ roles changed

between networks we performed a Pearson’s Chi-squared test with simulated p-value based on 10000 Monte

Carlo replicates. Also, we tested if these proportions changed for one realization of the metaweb assembly

model fitted for both local networks (i.e. Weddell Sea and Potter Cove food webs).

With the aim of giving an integrated visualization of the sub-structural and local properties of the food webs,

we combined in a single plot information about compartments and the topological roles with the trophic

level for each species.

All analyses and simulations were made in R version 3.4.3 (R Core Team 2017), using the igraph package

version 1.1.2 (Csardi and Nepusz 2006) for motifs and topological roles analyses, and NetIndices (Kones et

al. 2009) for trophic level calculations. Source code and data is available at https://github.com/lsaravia/

MetawebsAssembly.

Results

Global network properties

The number of trophic species (size), links and connectance (Table 1), were in concordance with values found

for marine food webs (Marina et al. 2018b). Based on the random null model, all networks presented the

small-world topology as their small-world-ness index was larger than the 99% confidence interval (Table 1 &

S1). However, we did not find differences between the local food webs and the assembly model (Table 1 &

S2). Regarding trophic coherence, all networks presented negative random z-scores and significantly smaller

q values (Table 1 & S1). thus they are more locally stable as they are more coherent. Using the metaweb

assembly model, the Weddell Sea food web showed negative z-scores lower than 2, and Potter Cove food web

exhibited no significant differences (Table 1 & S2). Mean trophic level results were similar among networks
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and significantly lower than the random null model (Table 1 & S1), though were not significantly different

when compared to the metaweb model trophic levels . Modularity values for the empirical food webs were

greater than the random model, but not significantly higher in the Potter Cove web. No differences were

found when compared to the metaweb assembly model (Table 1). Overall, networks differed from the random

null model though presented similarities with the metaweb assembly model.

Table 1: Network global properties across scales. The Metaweb represents the marine predator-prey rela-
tionships of Antarctica, the Weddell Sea and Potter Cove are the local food webs. Z-scores were calculated
against 1000 null model networks (random or metaweb assembly models). Quantities marked with ’*’ are
significant at 1% level. A negative z-score means that the quantity is smaller than the expectation from null
model simulations; a positive z-score means that is greater.

Network Potter Cove Weddell Sea Metaweb

Size 91 437 859

Links 309 1908 9003

Area (Km2) 6.8 3.5e6 34.8e6

Connectance 0.037 0.010 0.012

PathLength 1.81 2.20 2.57

Clustering 0.10 0.048 0.22

Small-World-ness random *2.75 *4.69 *10.87

Small-World-ness Assembly 0.42 0.21

Coherence 0.53 0.45 0.70

Coherence random z-score *-0.54 *-2.08 *-3.54

Coherence assembly z-score -0.20 *-3.41

Mean Trophic level 2.13 1.98 1.91

Trophic level random z-score *-0.27 *-0.86 *-1.60

Trophic level assembly

z-score

1.29 1.09

Modularity 0.37 0.48 0.45

Modularity random z-score 0.89 *18.97 *85.75

Modularity assembly z-score -0.38 0.41

Sub-structural properties (motifs)

The representation of three-species sub-networks with respect to the random model showed similar patterns

in all networks (Figure 2A). While exploitative competition, apparent competition, and omnivory were over-

represented, tri-trophic chains were under-represented; all these patterns were significant (Table S3). We

found that motifs proportions for the three examined spatial scales were different (Chi-squared = 12612, p-

value < 9.9e-05). this means that local and regional networks are not a random sample of the metaweb. With

respect to the metaweb assembly model only some of them were significant (Table S4): tri-trophic chains

and omnivory were under-represented for Weddell Sea, and apparent competition was over-represented for
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Potter Cove (Figure 2B). Contrary to our expectations Potter Cove was more similar to the metaweb than

Weddell Sea food web.

Figure 2: Network motifs z-scores across scales. Motifs are three-node sub-networks counted on each of
the networks.: the Metaweb represents the marine predator-prey relationships of Antarctica (34.8 million
Km2); the Weddell Sea (3.5 million Km2) and Potter Cove (6.8 Km2) are local food webs. A. Z-scores
estimated with the random null model. B. Z-scores estimated with the metaweb assembly model. Z-scores
were normalized by the square root of the sum of the squared z-scores for that food web.

Node-level properties (Topological roles)

The proportion of species displaying the four topological roles was different among food webs (Chi-squared

= 79.31, p-value = 9.9e-05). A higher presence of module connectors (few links, mostly between modules)

was observed in Weddell Sea, while a lack of module hubs (high number of links inside its module) was found

in Potter Cove (Figure 3 A), which can be related to its low modularity value (Table 1). The proportions

obtained with the metaweb assembly model were not different from the food webs (Chi-squared = 5.95,

p-value = 0.41)(Figura 3 B).

The plot of topological roles combined with trophic levels and modularity revealed important details of the

food webs (Figure 4): the metaweb has densely connected compartments but some of them have few low-

connected species (module connectors or module specialists). Additionally, we observed in the Weddell Sea
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Figure 3: Proportion of topological roles across scales., the Metaweb represents the marine predator-prey
relationships of Antarctica (34.8 million Km2); the Weddell Sea (3.5 million Km2) and Potter Cove (6.8
Km2) are local food webs. The topological roles are: Hub connectors, high number of between-module
links; Module connectors, low number of links mostly between modules; Module hubs, high number of links
within its module; Module specialists, low number of links within its module. A. Observed proportions for
each food web; significant differences were found between them (Chi-squared = 79.31, p-value = 9.9e-05).
B. Proportions for local networks obtained from the metaweb assembly model; no differences were found
(Chi-squared = 5.95, p-value = 0.41)
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food web hub connectors with a basal trophic level (Table S5). These are aggregated nodes that represent

generic preys, e.g. fish or zooplankton, they only have incoming links or predators and they cannot have

outgoing links or preys because they comprise several species. Different fish species are present in the

Weddell Sea food web with detailed information about preys and predators, but for some predators there is

insufficient knowledge of its preys and aggregated nodes must be added. Thus the existence of these basal

hub connectors is a spurious result of aggregating prey species. The other non-aggregated hub connectors

are highly mobile species with an intermediate trophic level like krill (Table S5). The variation of maximum

trophic levels is evidenced in Figure 4, where both Potter Cove and Metaweb networks had similar values

and Weddell Sea food web exhibited a lower maximum trophic level.

Discussion

We expected the metaweb structure to reflect the evolutionary constraints of the species interactions, and

the local networks to be influenced and determined by the assembly processes and the local environment.

Our results showed that the structure of the metaweb does not change significantly in many properties as

the spatial scale changes. We did not found a clear pattern in the properties expected to be maximized by

dynamical assembly and local stability, but we found clear differences in the properties influenced by habitat

filtering and dispersal limitation. As a consequence, food webs would be mainly shaped by evolutionary

forces and local environment drivers and less constrained by dynamical assembly processes.

Global level network properties showed a similar pattern across scales; most of them were significantly

different from the random null model but not from the assembly model. Modularity for Potter Cove food

web was the only property that is similar to the random model. Studies suggest that modularity enhances

local stability (Stouffer and Bascompte 2011), even though stability strongly depends on the interaction

strength configuration (Grilli et al. 2016) and on the existence of external perturbations (Gilarranz et al.

2017). We did not find modularity is greater than the metaweb assembly model, the existence of a modular

structure could be related to different habitats —in marine environments could be benthic and pelagic (Zhao

et al. 2017). Thus we observed than the modular structure is present in the metaweb and not produced

by a maximization of local stability. Dynamical stability is expected to be maximized at the local level but

we only found that Weddell Sea food web exhibited a greater trophic coherence than the assembly model.

Thus, although this evidence is not conclusive with regard to the importance of dynamical processes in the

assembly of food webs, the structure of the local food webs examined here seem to be a consequence of the

metaweb structure.
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Figure 4: Plot of topological roles combined with trophic levels and modularity for each food web. The
topological are: Hub connectors have a high number of between module links, Module connectors have a
low number of links mostly between modules, Module hubs have a high number of links inside its module.
Module specialists have a low number of links inside its module. Size of the nodes is proportional to the log
of the species degree.
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All networks have a significant value of small-world-ness compared with the random model but the local food

webs are not different from the assembly model. In general, food webs do not show the small-world topology

(Dunne et al. 2002, Marina et al. 2018b), which suggests that the small-world property is inherited from

the metaweb and is less influenced by the greater percentage of realized interactions. If small-world-ness was

determinant for an increased resilience and robustness to secondary extinctions (Bornatowski et al. 2017),

local food webs should reflect significantly higher values than those obtained from the metaweb assembly

models.

Motifs also have the same representation patterns against the random model. Local food webs should have

motif patterns that increase its persistence. The expected pattern, based in dynamical models, is an over-

representation of omnivory and tri-trophic chains and an under-representation of apparent and exploitative

competition (Stouffer and Bascompte 2010). Other studies showed that tri-trophic chains, exploitative and

apparent competition should be displayed more frequently (Borrelli 2015), but this was based on the stability

of isolated three-species sub-networks and the assumption that during the assembly process these 3 species

sub-networks were selected because of their intrinsic stability (Borrelli et al. 2015). The fact that tri-trophic

(or n-trophic) interactions cannot account fully for the properties of the food webs (Cohen et al. 2009) make

the results based on isolated modules less convincing. Our results showed an over-representation of omnivory,

exploitative competition and apparent competition, this configuration is not the most stable one based on

either criteria. A first hypothetical explanation is that the structure observed in the metaweb is maintained

in local food webs. Despite the fact that almost all motifs were not different from the assembly model,

neither tri-trophic chains and onmivory (lower in Weddell Sea) nor apparent competition (higher in Potter

Cove) followed the pattern expected from theoretical studies. Thus, the assembly process is not random,

there are differences in the frequencies of motifs as the scale change, but the selection of motifs due to its

dynamical stability is not the main driver. This implies that other dynamical processes that influence the

presence or absence of species like habitat filtering or dispersal limitation are acting and probably modifying

motif frequencies in empirical food webs. This kind of structures that are a sub-product of process that

happen at a different level have been called spandrels of assembly (Solé and Valverde 2006).

As expected all the networks have a short mean trophic level (Williams et al. 2002, Borrelli and Ginzburg

2014) compared with the random model. Different hypothesis were posed to explain this pattern: the low

efficiency of energy transfer between trophic levels, predator size, predator behaviour, and consumer diversity

(Young et al. 2013). These have contradictory support, reviewed by Ward and McCann (2017). Recently, it

has been proposed that maximum trophic level could be related to productivity and ecosystem size depending

on the context but related to energy fluxes that promote omnivory (Ward and McCann 2017). A different
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mechanism based on dynamic stability of the whole web was proposed: food webs with shorter trophic levels

(between 2 and 4) that have more omnivore chains are more likely to be stable, which increase the probability

of being observed in nature [Borrelli2014]. We found that mean trophic level of the local food webs was not

different from the assembly model, and omnivory was under-represented. This combination suggests that

the trophic level could also be a spandrel of assembly, inherited from the metaweb structure.

Topological roles are useful to detect the existence of functional roles of species, like super-generalists (or

hub connectors). These roles may change as the scale changes. A simple explanation is that modules also

change. It was demonstrated in Arctic and Caribbean marine food webs that modules are usually associated

with habitats (Rezende et al. 2009, Kortsch et al. 2015). For example, the Antarctic cod (Notothenia

coriiceps) is a super-generalist for Potter Cove, and a module hub—a species with most of their links within

its module—for the metaweb. This means that the same species can have different influences on the food

web depending on the type or extension of the habitat considered. Although the metaweb assembly model

showed no change in the frequency of topological roles, we found a change in topological roles with the scale.

That means that in smaller areas there will be a smaller amount of different habitats, thus habitat filtering

should be an important factor and will change the frequency of species that represent a particular topological

role.

The spatial scales involved in our study do not represent a continuity; the metaweb and regional web have

a 10 to 1 ratio but the local web is 106 smaller, besides that most of the global network properties and the

motif structure showed no changes relative to the null model. Thus, we found evidence that local processes

that limit species from the metaweb to local scales are influencing the assembly process but the structure of

the food web originated through an emergent process from evolutionary or co-evolutionary forces seems to

be more important. This could guide us to find a unified theory of ecological interactions that could describe

the diversity of patterns observed in the natural world.
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