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Abstract

Background- Resistant starch is a prebiotic metabolized by the gut bacteria. It has been shown to attenuate 

chronic kidney disease (CKD) progression in rats. Previous studies employed taxonomic analysis using 16S 

rRNA sequencing and untargeted metabolomics profiling. Here we expand these studies by metaproteomics, 

gaining new insight into the host-microbiome interaction.

Methods- Differences between cecum contents in CKD rats fed a diet containing resistant starch with those 

fed a diet containing digestible starch were examined by comparative metaproteomics analysis. Taxonomic 

information was obtained using unique protein sequences.  Our methodology results in quantitative data 

covering both host and bacterial proteins.

Results - 5,834 proteins were quantified, with 947 proteins originating from the host organism. Taxonomic 

information derived from metaproteomics data surpassed previous 16S RNA analysis, and reached species 

resolutions for moderately abundant taxonomic groups. In particular, the Ruminococcaceae family becomes 

well resolved – with butyrate producers and amylolytic species such as R. bromii clearly visible and 

significantly higher while fibrolytic species such as R. flavefaciens are significantly lower with resistant starch 

feeding. The observed changes in protein patterns are consistent with fiber-associated improvement in CKD 

phenotype. Several known host CKD-associated proteins and biomarkers of impaired kidney function were 

significantly reduced with resistant starch supplementation. Data are available via ProteomeXchange with 

identifier PXD008845.

Conclusions- Metaproteomics analysis of cecum contents of CKD rats with and without resistant starch 

supplementation reveals changes within gut microbiota at unprecedented resolution, providing both functional 

and taxonomic information. Proteins and organisms differentially abundant with RS supplementation point 

toward a shift from mucin degraders to butyrate producers. 
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Introduction

Recent studies point to gut microbiome dysbiosis as one of the key contributors to the progression of 

chronic kidney disease (CKD) and its complications (1-3). During the course of CKD, gut dysbiosis increases 

and compromises the intestinal epithelial barrier, leading to leakage of microbial-derived toxins into the 

bloodstream and resulting in increased inflammation that may further exacerbate CKD (2). One suggested 

contributor to the dysbiosis is increased urea in intestinal fluids. Consequently, the urease-containing species 

proliferate in the gut, leading to damage of the epithelial barrier. Indeed, the CKD-associated microbiota have 

been characterized by an increase in bacterial species encoding for urease and uricase, and indole- and p-

cresol producing enzymes, and depletion of microbes expressing short-chain fatty acid-forming enzymes (4). 

Currently, CKD patients are often prescribed a diet that contains low quantities of fiber in order to limit 

the intake of potassium and avoid cardiac arrhythmias. However, in various models it has been shown that 

certain fibers can promote gut health and function, by increasing a gut microbiota population that dampens gut 

permeability and limits damage to the mucus layer caused by utilization of host glycans. Since CKD is a pro-

inflammatory condition, and kidney damage may be exacerbated under conditions of gut microbiota dysbiosis, 

it is worth considering if increasing dietary fiber could help limit CKD complications and improve kidney 

function. One potential candidate to supplement a CKD diet is high-amylose maize-resistant starch type 2 

(HAMRS2), a prebiotic which is metabolized by the gut microbes and has been shown to improve outcomes in 

a rat model of CKD (5, 6). A previous study using taxonomic analysis characterized microbiome-related 

changes caused by resistant starch (RS) supplementation in CKD rats  (5), .  Microbiome and metabolomics 

data were correlated to identify potential metabolic pathways impacted by gut bacteria and linked to 

improvements in kidney function. In summary the previous study (5) provided strong evidence that resistant 

starch-induced microbiome shifts results in reduced inflammation and protection of the gut epithelial barrier. 

 Earlier studies in healthy humans, animals, and in vitro models showed increased levels of 

Bifidobacterium, Ruminococcus, Lactobacillus, Bacteroides, Eubacterium, Allobaculum, and Prevotella upon 

dietary supplementation of RS (7-11). Some of these organisms, e.g. Ruminococcus bromii, have been shown 

to contain genes for starch utilization and are proven direct degraders of RS (12-14). The organisms that 

increase in abundance upon RS supplementation are feeding on mono- and oligo- saccharides derived from 

RS-degradation by the direct degraders (12). In vitro stable-isotope probing followed by 16S rRNA sequencing 

of metabolically labeled RNA further validated that many of these bacteria utilize RS (15). Similar trends – 

showing increases in RS degraders and utilizers upon supplementation with RS in the rat model of CKD were 

observed by Kieffer et al. (5). 

To gain further insight into the mechanism of RS action, we employed a metaproteomics analyses of 

the samples derived from the CKD rat model described previously (5, 16). These analyses are capable of 

characterizing a complex protein mixture from an environmental sample. We employed three different 
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quantitative proteomics techniques – absolute intensity-based quantification, spectral counting and TMT 

labeling, to characterize differences in metaproteome composition between RS-fed rats with CKD (CKD-RS), 

and the CKD rats fed with a host-digestible starch (CKD-DS).

Methods

Study design, animals and diets

We used the same animals as in (5). As indicated in that report, rats were randomized to receive semi-

purified pelleted diets supplemented (59% by weight) with either the rapidly digestible starch (DS) amylopectin 

(low fiber) or HAMRS2 (Hi-Maize 260, Ingredion, Westchester, IL) (RS) for 3 wk (n = 9 rats/group). See 

Supplemental Figure 1 and Supplemental Text for more information. 

Gel-LC MS, TMT-labeling, Basic HPLC, Tribrid-Fusion-Orbitrap Mass Spectrometry. 

Mass-spectrometry was performed by the UAMS Proteomics Core. Standard proteomics core protocols 

were adapted for this study (See Supplemental Text for detailed procedures and settings).

De novo peptide sequencing

De novo sequencing was performed by PEAKS Studio v 8.0 (17), see Supplemental Text for detailed 

settings and parameters.

Preliminary taxonomy analysis.

De novo peptide sequences were submitted to the online metaproteomics tool UniPept (18, 19) and to 

MetaCoMET (Metagenomics Core Microbiome Exploration Tool (20), to provide initial assessment of 

taxonomic diversity and sample quality (Supplemental Text, Supplemental Figs. 2,3). 

Data Sharing

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 

PRIDE (21) partner repository with the dataset identifier PXD008845 and 10.6019/PXD008845

Statistical Methods

For peptide identification and protein inference, a multi-step database search strategy was used in PEAKS 

Studio to arrive at the final list of identified proteins (see Supplemental Text for detailed description of the 

protein inference using the multi-step database strategy). For protein quantification, Scaffold v. 4 with 

quantitation module (Proteome Software) was used. Data and the custom fasta database were exported from 

PEAKS into Scaffold as mzIdentML and mascot generic format files. Scaffold-derived normalized spectrum 

abundance factors (NSAF) values and Total Unique spectral counts were used for the statistical analysis in 

R/bioconductor (22). Taxonomic information from the NCBI-nr database (downloaded Oct. 16, 2016) was used 
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to derive taxonomic units. Sum of spectral counts matching a given taxonomic unit, weighted by a total spectral 

count per a given replicate, was used as a measure of abundance for that taxonomic unit. Moderated t-test 

(limma package, Bioconductor) was used to establish differential abundance of taxonomic units. Bonferroni-

Hochberg correction for multiple testing was enforced both for protein and taxonomic unit quantification.  See 

Supplemental Text for additional details

Database search and Taxonomic analysis with MaxQuant and Andromeda and iBAQ quantification

In addition to spectral-count-based protein quantification in PEAKS, we performed parallel quantitative analysis 

with MaxQuant using both NSAF and iBAQ (Absolute Label-Free Protein Quantification) methods (see 

Supplemental Methods for detailed description). As a result, 2,842 proteins were quantified. Taxonomic 

analysis with spectral counts was performed in the same way as with PEAKS-derived proteins. Similarly, 

taxonomic units were quantified using intensity values by summing intensity values from iBAQ.

Protein and taxonomic unit quantification using TMT labeling

PEAK Studio v. 8.0 with a quantitative module was used to analyze the TMT-labeled multiplexed experiments. 

549 proteins and 149 taxonomic units were quantified using the TMT method. 45 taxonomic units were 

established as significant (p<0.05).  See Supplemental Text for further details. 

Heatmaps Clustering, and PCA analysis

Heatmaps and hierarchical clustering of spectral count and TMT datasets were performed using the 

Bioconductor package ComplexHeatmap (23). PCA analysis was performed using base R.

Results and Discussion

Metaproteomics protein signature of cecal contents from rats fed Resistant Starch or Digestible Starch diets 

Combining complementary quantification methods (TMT, PEAKS, and MaxQuant) 5,834 unique proteins 

were quantified in total (Supplemental Table I, tab (a)). The TMT method showed significant bias toward 

proteins and yielded significantly lower numbers of quantified proteins (452 vs. 3,007 quantified by PEAKS – 

Supplemental Text). The protein abundance signature clearly defines the phenotype induced by a resistant 

starch diet (Figure 1, left panel, Supplemental Figure 4). Notably, more host proteins are reduced in 

concentration upon resistant starch supplementation (black lanes indicate host proteins, while grey indicate 

bacterial proteins on the annotation bar next to the heatmap). This result is consistent with previous reports 

that indicate an increase in bacterial biomass upon resistant starch supplementation (3).
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Hierarchical clustering procedures applied to abundance values derived by metaproteomics separated 

the two phenotypes into two distinct clusters (Figure 1, left heatmap). This separation also held when all 

proteins were considered, not just differentially abundant ones (Supplemental Figure 4) We note that that if 

rats 9 (CKD group) and 21 (CKD-RS group), were included in the heatmap, it would break the clear separation 

of the two phenotypes and form a separate cluster (Supplemental Figure 5). Upon further scrutiny, these two 

samples showed significant degradation of bacterial proteins, and as a consequence, low-quality fragmentation 

mass spectra and high host-to-bacterial protein ratio (Supplemental Figure 6). These samples were therefore 

excluded and not used for the final analysis.

There were 179 host proteins that were differentially abundant between the cecal contents of CKD-DS 

and CKD-RS  rats: 125 were proteins reduced in CKD-RS and 54 increased in CKD-RS (Table I, 
Supplemental Table I – complete protein list). Among the 125 host proteins lower in CKD RS-fed, 

approximately half were enzymes. The remaining proteins were related to humoral immune response, several 

proteins previously associated with epithelial–mesenchymal transition (e.g. thioredoxin, S100-A6) and several 

proteins, previously reported, directly or indirectly, to be associated with CKD (Table I, and see 

Supplementary text for more detail).  

Table I. Representative differentially-abundant host proteins in cecal contents from CKD rats fed 
digestible starch (DS) or resistant starch (RS).
a logarithm of ratio between abundance values between RS-fed and DS-fed groups. Four values are reported, 

corresponding to four different methods of analysis in the following order: TMT-labeling, PEAKS spectral 

counting (NSAF), MaxQuant spectral counting (NSAF), and MaxQuant iBAQ, nd – not determined bminimal p-

value across all four methods – moderated t-test, corrected for multiple testing. crange across proteins in the 

same family. 

Rat Proteins Log2(CKD RS-fed: CKD)a p valueb cited to be CKD-

related

reduced

thioredoxin -3.2, -1.7, -1.1, -1.5 2x10-3

A1-microglobulin -3.9, nd, nd, nd, 6x10-10 (24)

haptoglobin nd, nd, -2.3, -2.7 5 x 10-3 (24, 25)

calcineurin -3.0, -3.4, nd, nd 1.8 x 10-5 (26)

S100-A6 Nd, -2.6, -3.7, -7.1

calreticulin -1.6, -3.9, -3.6, -6.1 3x10-5 (27)

Angiotensin-

converting enzyme

nd, nd, -2.5, -4.3 1x10-3 Well-established 

therapeutic target 

in CKD(28)
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increased

Annexins A7, 

VII,A2

2 to 3 c 10-3 to 10-8 c (29)

voltage-dependent 

anion-selective 

channel protein 2

1.6, 4.5, 2.8, 5.2 2x10-6 (30, 31)

Claudin-3 nd, nd, 2.0, 3.2 9x10-3

Among the 54 host proteins that were increased in the CKD-RS group, about one third were enzymes. 

The largest group of proteins with similar functions was related to the immunoglobulin families. Another group 

included annexins (Table I, Supplementary Table I) that function as intracellular Ca2+ sensors and participate 

in cellular membrane repair (29), suggesting that in CKD-RS rats a process of intestinal cell repair, presumably 

damaged by bacteria and/or bacterial metabolites, is ongoing. Other small groups of proteins with similar 

function included a group of voltage-dependent ion channel proteins that regulate fluxes across the outer 

mitochondrial membrane and sodium pump subunit proteins. Mitochondrial impairment has been shown in 

CKD patients and animal models, particularly in the form of a decrease in mitochondrial DNA and down-

regulation of many mitochondrial genes and proteins (30, 31). Down-regulation of voltage channel proteins in 

CKD rats could be, in part, causing the increase of oxidative stress in CKD. Similar to previous studies (3, 16), 

we observed an increase in the tight junction protein claudin-3 (2.6 fold change in CKD-RS).

Interestingly, many of the individual proteins we found to be differentially abundant between CKD-DS 

and CKD-RS rats were previously identified in other reports on CKD and kidney associated diseases (16, 24, 

26, 27, 31, 32). Importantly, these proteins were identified either in plasma or in urine. Identification of these 

proteins in cecal contents  points to a potential utility of stool samples as a source of CKD protein biomarkers; 

however, the pathophysiological link between the association of the proteins in the GI tract with resistant starch 

and their association in urine and plasma during CKD is currently unclear. 

Molecular processes influenced by dietary resistant starch supplementation in the cecal contents of CKD rats

To define enrichment of functional patterns associated with the differentially abundant proteins found by 

metaproteomics, we performed Gene Ontology analysis using Blast2Go (33). The 179 differentially-abundant 

host proteins described above were combined with 1198 differentially abundant bacterial proteins, the latter of 

which included 359 reduced and 839 higher proteins with RS feeding. The list of proteins differentially 

abundant between CKD-DS and CKD-RS rats was tested for enrichment of GO terms (biological process, 

molecular function and cellular compartment) for bacterial and host proteins separately using Fisher exact test. 

All GO terms significant at the FDR level of 0.05 were considered significantly enriched. 

Biological processes under-represented in the CKD-RS list of rat proteins were related to known 

biological processes occurring in CKD, namely aldehyde metabolism (indicative of lipid peroxidation 
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processes), and humoral immune response. GO categories significantly over-represented in CKD-RS rat 

proteins were related to the sodium-potassium pump subunits and cross-membrane transport; in theory this 

may indicate that control of pH, osmotic pressure and cell volume are compromised in CKD rats and improve 

with the RS-rich diet. However, the mechanisms of sodium-potassium pump regulation are complicated: for 

example, it was suggested that cardiotonic steroids mediate signal transduction through the Na/K-ATPase, and 

its downregulation could be indirectly implicated in profibrotic pathways (34). Given that it is difficult to predict 

the consequences of insufficient sodium pump levels without further experiments, this observation warrants 

future study. For other GO analysis details see Supplemental Text. 
Many biological processes and molecular functions, associated with CKD, especially at the more 

advanced stages, were previously characterized by transcriptomics. These included down-regulation in the 

kidney of regulatory proteins involved in cytoskeleton organization, microtubule assembly and stability, 

epithelial–mesenchymal transition, extracellular matrix remodeling, cell motility and migration, cell adhesion, 

apoptosis, cell differentiation, proteolysis, aminoglycan metabolic process and protein N-linked glycosylation 

(35, 36).  One advantage metaproteomics offers is the simultaneous analysis of bacterial and host proteins, 

with metaproteomics offering higher resolution of bacterial portion of the proteome compared to 

metatranscriptomics. Indeed, in its current stage dual transcriptomics (i.e. simultaneous analysis of host and 

microbiome transcripts) is more challenging than metaproteomics. The pipeline for dual RNA-seq analysis has 

the same building blocks as conventional RNA-seq pipeline: reads must be cleaned, mapped, normalized and 

differentially expressed transcripts identified. However, as recommended in (37) host and pathogene reads 

should be mapped to the reference genomes and analyzed separately (37). The latter creates a difficulty of 

using additional READemption pipeline for mapping bacterial reads, in addition to conventional TopHat pipeline 

for mapping host reads. READemtion pipeline uses the short read mapper segemehl and its remapper lack 

(38, 39) unlike Tophat that uses bowtie (40). Also, when ones choses between transcriptomics and proteomics 

to characterize a disease – in our opinion proteomics is a better choice because 1) cellular phenotypes are 

defined by proteins more so than by transcripts, hence proteins are better biomarkers 2) druggable targets are 

usually proteins and not transcripts 3) correlation between protein abundance and transcript abundance is 

typically 40% to 60% depending on the cell type.

For bacterial proteins, GO categories over-represented in CKD-RS samples (biological processes, 

molecular functions and cellular compartments) were all related to active bacterial proliferation, emphasizing a 

shift in CKD-RS microbiota toward new actively dividing bacterial populations, which are able to thrive on RS 

(see Supplementary Text for more detail). Active bacterial proliferation can also partially explain the 

previously observed reduction in harmful tryptophan and tyrosine metabolites in CKD-RS rats ( indoxyl and p-

cresol, respectively). Instead of conversion to the toxins, tryptophan and tyrosine could be incorporated into 

newly synthesized proteins. 

The analysis of significantly under-represented GO categories in CKD-RS for bacterial proteins 

supports the idea that in CKD-DS samples there is an ongoing process of mucin degradation that is more 
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active than in CKD-RS samples. It could indicate preferential foraging on mucin proteins by gut microbiota in 

CKD-DS rats when compared to CKD-RS rats. In our list of bacterial species, under-represented in CKD-RS, 

several mucin degraders were evident (e.g. Mucispirillum schaedleri, R.gnavus, R.torques – Supplemental 
Table II), confirming the idea that bacteria reduced in CKD-RS are preferentially mucin degraders, or 

generalists. For example, R.torques which is increased in CKD-RS can utilize both mucin and amylose as a 

major source of carbohydrates. Thus, the taxonomic units inferred from metaproteomics data clearly define the 

resistant starch phenotype. Supplemental Table II summarizes the taxonomic information inferred from 

metaproteomics experiments. Hierarchical clustering of the taxonomic unit abundance data separates the two 

phenotypes (Figure 1, right), similar to the protein-level data. 

Cecal microbiome composition revealed by metaproteomics at high resolution.

Alpha-diversity. Using metaproteomics data for the inference of taxonomic units, we observed increases in 

alpha diversity for the samples derived from the CKD-RS rats, when the lowest level of taxonomy is 

considered. iBAQ and SAF method of quantification gives a 50% (p=0.013) and 30% increase (p=0.008), 

respectively (Supplementary Text, Supplementary Figure 7). This increase in alpha diversity is opposite to 

what has been reported in previous studies of resistant starch supplementation in healthy pigs where 16S RNA 

was used for the taxonomic inference (11); it is also opposite to what has been inferred from the same rats in 

Kieffer et al. using 16S RNA  (5). The reason for this discrepancy has to do with taxonomic resolution: the 

diversity drops when only family and genus taxonomic levels are considered (limit of resolution for 16S RNA 

method), but the diversity within specific families increases at the species level (see example for 

Ruminococcus genus below). Thus, our data using metaproteomics support an increase in microbial diversity 

in response to RS diet. 

Changes in gut microbial composition.  As with the 16S RNA studies, we observe an increase in the 

Bacteroidetes-to-Firmicutes ratio in CKD-RS group. However, because of the species-level resolution the 

absolute numbers differ. In the previous analysis using 16S RNA, an overall ~2.5 times increase in 

Ruminococcus genus was observed. Metaproteomics analysis provides species-level resolutions and as a 

result, some species of Ruminococcus dramatically increase and some dramatically decrease with the RS 

supplementation. For example, Ruminococcus bromii is the key degrader of resistant starch in the mammalian 

gut (12). According to the metaproteomics analysis (Supplemental Table I, tab (c), Supplemental Table II), 
Ruminococcus bromii L2-63 is increased ~12 times upon addition of resistant starch. At the same time, some 

species of this genus were decreased. For example, Ruminococcus albus decreased 20 fold and 

Ruminococcus flavefaciens decreased 10 fold. R. albus, R.gnavus and R.flavefaciens are fibrolytic bacteria 

that are able to process complex plant polysaccharides by their cellulolytic and hemicellulolytic enzymes. They 

use ammonia almost exclusively as their source of nitrogen. These bacteria are also known to thrive under 

high pH (above 6.0). Concordantly, in the preceding study pH was shown to drop from 8 to 6.75 in the CKD-RS 
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rats (5, 16).  In contrast, R. bromii and R.torques are amylolytic and use RS as the main source of nutrients. 

Amylolytic (resistant starch degraders) and fibrolytic (cellulose degraders) species split the Ruminoccocus 

genus into two groups. Strikingly, the taxonomic resolution of metaproteomics analysis allowed us to observe 

clearly that fibrolytic Ruminoccocus are reduced with dietary RS, while amylolytic species are increased with 

the addition of RS. Beyond the biological importance of this observation per se, it demonstrates the power of 

metaproteomics analysis and the lower resolution of the 16S RNA method. 

Potential mechanisms of RS action

The question that remains to be fully understood is the mechanism(s) through which the RS diet exerts 

such a dramatic shift in control of biological processes and functions that are different between CKD-DS and 

CKD-RS rats. In part, it might be explained by bacterial population that shifts from mucin foraging to RS as a 

source of nutrients, relieving the host system from the constant flow of toxins that traverse the gut barrier. 

Other effects may involve reduction of oxidative stress. In the past, it was shown that kidneys from CKD 

patients have an impaired mitochondrial respiratory system (31), decreased DNA mitochondrial copy number 

(30), loss of mitochondrial membrane potential and lower ATP production (41). The hypothesis that new 

bacterial populations influence mitochondrial biogenesis and activity (for example, through the influx of short 

chain fatty acids) is an attractive one. Recently it was shown that butyrate supplementation improved 

mitochondrial biogenesis in mice (42), presumably via inhibition of histone deacetylase (HDAC) that may 

down-regulate expression of PGC-1, associated with mitochondrial dysfunction (43-45). There is growing 

evidence that RS prevents colonic DNA damage via the production of SCFA, especially butyrate (46, 47). In 

fact, it has been known, for almost a decade, that butyrate has a central role in maintaining gut epithelial 

integrity via involvement in key biological processes, such as being a source of energy for colonocytes, 

promoting fatty acid oxidation, having anti-inflammatory activity, limiting oxidative stress and inducing cell cycle 

arrest (48, 49). In all these processes butyrate putatively functions by blocking substrate access to active sites 

in HDACs. Butyrate is a microbial fermentation product and butyrate producers are polyphyletic, belonging to 

different bacterial species, most known are members of Lachnospiraceae and Ruminococcaeae (50). Butyrate 

is synthesized by those microorganisms via pyruvate and acetyl-coenzyme A (CoA) by breakdown of complex 

polysaccharides (such as RS). We observed that RS supplementation, at least for the Ruminococcaeae family, 

results in a shift from fibrolytic family members to amylolytic family members that are well known butyrate-

producers (Ruminococcus bromii, Ruminococcus torques). Typically, in the absence of sufficient dietary fibers, 

commensal and pathogenic bacteria start to forage on mucin glycans to harness carbon and energy (51, 52). 

While we did not examine if microbes lowered with RS feeding are mucin degraders we did find indirect 

evidence in support of that from GO categories reduced with RS feeding (monosaccharide metabolic process 

and L-fucose catabolic process). We therefore hypothesize that there is a relative shortage of fiber in CKD-DS 

and the RS diet shifts gut microbial communities, from bacteria foraging on mucins and ammonia and 
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contributing to leaky gut phenotype to bacteria utilizing RS instead, and producing butyrate as a byproduct of 

fermentation. 

Recently it was found that out of 3,184 sequenced bacterial genomes, mostly from the Human 

Microbiome Project, 225 were likely to be butyrate producers (50). From the list of bacteria, up-regulated in 

CKD-RS, only Eubacterium rectale, Clostridium botulinum and Lachnospiraceae bacterium strains are present 

in this list of potential butyrate producers, presumably because rat and human gut microbiomes differ. It would 

be interesting to evaluate quantitatively the amount of mucin degraders and butyrate producers caused by the 

diet shift by genomics and transcriptomics, to reduce biases due to proteomics undersampling (e.g. bias 

against low abundance proteins). 

To summarize, dietary RS supplementation in rats ameliorates chronic kidney disease coincident with a 

massive shift in gut microbial communities (Figure 2). Identified organisms and proteins point toward a higher 

population of butyrate-producing bacteria, and reduced abundance of mucin-degrading bacteria. It is 

speculated that the bacterially-derived butyrate leads to improvement of oxidative stress and inflammation, as 

well as to improvement in other biological processes otherwise impaired in CKD. In addition, it is hypothesized 

that gut barrier function through maintenance of the mucin barrier may also play a role in RS-associated 

improvements in CKD phenotype.  Finally, resistant starch supplementation leads to the active bacterial 

proliferation and the reduction of harmful bacterial metabolites. The fact that simple change of available 

source of nutrients (from ammonia/mucins to RS) leads to system-level changes underscores the importance 

of diet during disease management and highlights the potential role of the gut microbiome in disease 

progression. 
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Figure legends

Figure 1. Phenotype induced by resistant starch in chronic kidney disease (CKD) rats is well-defined 
by metaproteomics data. Left heatmap, cecal content protein abundance values were averaged across three 

different labeling-free methods: PEAKS spectral counting, MaxQuant spectral counting and intensity based-

quantification. The averaged values were log-transformed and normalized and plotted using 

ComplexHeatmaps R/Bioconductor package. 506 proteins, deemed significant by MaxQuant and by PEAKS 

are shown (p<0.01). CKD and CKDRS phenotypes are indicated by blue and red colors on the top heatmap 

annotation bar. Distribution properties are shown in BOX plots for each of the animals at the bottom, indicating 

similar distributions between different animals. The raw annotation bar is adjacent to the right edge of the 

heatmap – “host” indicates rat proteins by black color, and microbial proteins by grey color. Right heatmap, 

taxonomic units abundance values derived from the protein data were log-transformed and normalized and 

plotted using ComplexHeatmaps. Significant taxonomic groups (p <0.05) are shown.

Figure 2. Working model of how RS diet changes gut microbiome composition, and in turn alleviates 
CKD. 
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Figure 1. Phenotype induced by resistant starch is well-defined by metaproteomics data.
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Figure 2. How RS diet changes gut microbiome composition, 
alleviating CKD.
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