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Abstract 

Aberrant DNA methylation disrupts normal gene expression in cancer and broadly 

contributes to oncogenesis. We previously developed MethylMix, a model-based 

algorithmic approach to identify epigenetically regulated driver genes. MethylMix 

identifies genes where methylation likely executes a functional role by using 

transcriptomic data to select only methylation events that can be linked to changes in 

gene expression. However, given that proteins more closely link genotype to phenotype 

recent high-throughput proteomic data provides an opportunity to more accurately 

identify functionally relevant abnormal methylation events. Here we present ProteoMix, 

which refines nominations for epigenetic driver genes by leveraging quantitative high-

throughput proteomic data to select only genes where DNA methylation is predictive of 

protein abundance. Applying our algorithm across three cancer cohorts we find that 

ProteoMix narrows candidate nominations, where the effect of DNA methylation is often 

buffered at the protein level. Next, we find that ProteoMix genes are enriched for 

biological processes involved in cancer including functions involved in epithelial and 

mesenchymal transition. ProteoMix results are also enriched for tumor markers which 

are predictive of clinical features like tumor stage and we find clustering on ProteoMix 

genes captures cancer subtypes. 
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Introduction 

Genomic characterization can elucidate underlying biology, disease etiology and reveal 

biomarkers of cancer development and progression; however, each molecular feature is 

susceptible to different sources of biological and technical measurement noise and 

provides only one view on the cell state. Therefore, comprehensive studies are needed 

to understand the molecular basis of disease. Toward this end a multi-institutional 

consortium, The Cancer Genome Atlas (TCGA), has extensively characterized 

numerous cancer sites producing genome wide data for mutations, copy number 

alterations (CNA), RNA expression, microRNA expression, and DNA methylation (1–5). 

As part of this project, the proteome was initially probed using protein array Reverse 

Phase Protein Assay (RPPA) technology. However, antibody based analysis are 

inherently limited because of the reduced coverage and inability to easily compare 

across proteins due to differential binding effects (6,7). Transcending these limitations, 

recent advancements in proteomics through high sensitivity mass-spectrometry (MS) 

are opening new opportunities in cancer research (8). To accelerate the uptake of 

proteomics the Clinical Proteomic Tumor Analysis Consortium (CPTAC) is performing 

proteomic analyses of TCGA tumor bio-specimens for a growing number of tissue types 

and establishing standardized workflows using high-throughput liquid chromatography 

tandem mass-spectrometry (LC-MS/MS) to capture the proteome as a whole (6,9,10).  

 

To best leverage this new technology comparative analysis between protein abundance 

and RNA expression can highlight factors influencing concordance and inform how to 

best interpret proteomic data (11). For example, multiple studies have proven that 
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concordance between mRNA and protein is highly variable, such that one cannot be 

used to reliably predict the other. Correlation between mRNA and protein has been 

repeatedly shown to vary by tissue type and cancer status among other molecular 

features like biological function or molecular stability (7). It was shown across multiple 

cancers that dynamic proteins involved in metabolism show strong agreement whereas 

housekeeping proteins and RNA processing proteins are weakly or negatively 

correlated (6,9,10). So, although many biological functions are regulated primarily 

through RNA expression – producing moderate correlation between proteomic and 

transcriptomic data, with mean spearman rho: 0.23 - 0.47 – post-transcriptional 

mechanisms also play a significant role that cannot be overlooked. 

 

The proteome represents the final link from genotype to molecular phenotype, so 

proteins are of special importance among molecular features and likely provide a more 

accurate depiction of cell state; this enhanced view on disease can be leveraged to 

assess functional effects of upstream aberrations, such as epigenetic modifications. 

Multi-level epigenetic features such as DNA methylation and histone modification work 

in concert to regulate gene expression. DNA-methylation, the covalent addition of 

methyl groups to CpG dinucleotides to form 5-methylcytosine (5mC), is catalyzed by 

DNA methyltransferases, and is influenced by both environmental and hereditary factors 

(12). Previous studies have shown that DNA methylation plays a key role in health and 

is involved in processes of embryonic development and cellular differentiation, where 

changes can occur through imprinting, inheritance, or de novo events (13,14). 

Furthermore, DNA methylation has been numerously cited as a potentially causative 
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event in cancer (15,16).  Among potential DNA methylation drivers, silencing of tumor 

suppressors through promoter CpG island hypermethylation is best understood and 

linked to corresponding gene silencing (13,17,18). Global hypo-methylation on the other 

hand can potentially result in genomic instability and reactivation of oncogenes 

(12,13,15).  

 

To elucidate the role of DNA methylation in disease, our goal is to investigate whether 

linking proteomic data with DNA methylation data identifies key genes, describes 

molecular features and subtypes in cancer. Previously we presented MethylMix an 

algorithm that formalizes the identification of DNA methylation driver genes using a 

model-based approach (19–23). Recognizing the complex role of the methylome in 

epigenetic regulation of cancer, MethylMix uses mRNA data to select only differentially 

methylated genes that show down-stream effect on gene expression. This selects for 

likely functional aberrations with the aim of discriminating between true driver genes, 

and passenger events which are characteristic of genome wide dysfunction in cancer. 

Herein we present ProteoMix which refines candidate nominations for epigenetic driver 

genes by excluding aberrations that are buffered at the protein level; this likely selects 

for events which are functional over those which may accumulate during cancer but do 

not drive pathogenesis. Using quantitative MS data from three cancer cohorts: breast 

invasive carcinoma, colorectal adenocarcinoma, and ovarian serous 

cystadenocarcinoma, we report ProteoMix’ gene identifications, which include potential 

markers and therapeutic targets. We describe ProteoMix’ ability to elucidate key 

molecular and higher level disease features and evaluate ProteoMix’ performance 
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against MethylMix. In summary, our study highlights the differences between integrated 

epigenomic-proteomics and epigenomic-transcriptomics analyses. 
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Results 

We applied ProteoMix and MethylMix (19–22) across three cancer types with both 

transcriptomic and proteomic data (Table 1): breast invasive carcinoma (BRCA), 

colorectal adenocarcinoma (COADREAD), and ovarian serous cystadenocarcinoma 

(OV). Our analysis compares genes identified by ProteoMix and MethylMix 

(Supplementary Table 1), specifically examining the biological and clinical relevance of 

each model’s output and utility for downstream analysis. 

 

Table 1. Overview of number of genes, CpG Clusters, and samples used for each 

TCGA cancer site analysis. 

N Genes N CpG Clusters 

N Samples: Gene 

Expression & 

Protein 

Abundance 

N Samples: Tumor 

Tissue Methylation 

N Samples: Normal 

Tissue Methylation 

BRCA 2514 3693 78 972 123 

COADREAD 2848 4288 85 614 78 

OV 1896 3693 168 582 8 

 

 

ProteoMix narrows candidate nominations for epigenetically 

driven genes  

For each cohort both models identify genes that are 1) differentially methylated when 

compared to normal adjacent tissue and 2) functionally predictive of downstream effects 

at the level of RNA expression in the case of MethylMix or protein abundance in the 

case of ProteoMix (Figure 1). Among all three cancer cohorts we observe significant 
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correlations between RNA expression and protein abundance (mean rho: 0.23-0.47), 

indicating that most genes are regulated at the transcript level (Supplementary Table 2). 

Therefore, it is unsurprising that ProteoMix shows high agreement with MethylMix, 

where more than 90% of ProteoMix genes are also identified by MethylMix. However, 

ProteoMix lists are more conservative identifying fewer candidate genes across all three 

cancers, where often the effect of methylation is present at the RNA level, but not 

detected at the protein level (Figure 1), likely because they are buffered at the protein 

due to post-transcriptional, translational, or degradation regulation. Therefore, 

ProteoMix better enriches for methylation-states that more likely execute functional 

roles in cancer development. 

 

Figure 1: Venn diagrams comparing the number of reported genes that are differentially 

methylated and functionally predictive for MethylMix and ProteoMix. 

 

ProteoMix identifies new genes with significant methylation effects 

only at the protein level  

For each cancer cohort ProteoMix also identifies a few unique driver genes, the majority 

of which have documented roles in carcinogenesis. Explanative mechanisms by which 

the effect of DNA methylation may be undetected at the RNA level but functional at the 

protein level are further addressed below in the discussion. 
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In breast cancer ProteoMix discovers three novel differentially methylated genes of 

diverse biological functions. ProteoMix detects a functional effect of hypo-methylation in 

the untranslated region (UTR) of EHF, which is a well-studied transcription factor 

involved in HER2 mediated epithelial differentiation (35); a likely oncogene, knockdown 

of EHF has been shown to inhibit tumor invasion and proliferation (36). Next, ProteoMix 

identifies hyper-methylation of FSTL1, an autoantigen that promotes immune response. 

This candidate tumor suppressor, FSTL1, has also been shown to mediate tumor 

immune evasion in nasopharyngeal cancer through hyper-methylation silencing (37). 

ProteoMix also reports hyper-methylation of DHX40 which has an unclear link to cancer; 

although it is of note that RNA splicing proteins – like DHX40 – are highly stable, 

perhaps explaining the particularly stronger effect of DNA methylation on protein 

abundance than mRNA (38) (Supplementary Table 1). 

  

In colorectal cancer ProteoMix recovers several genes associated with immune function 

and inflammation, which is known to play a key role in pathogenesis. ProteoMix 

uniquely identifies a functional effect of UTR hypo-methylation of the PTPRC gene. 

PTPRC belongs to a family of protein tyrosine phosphatase which contains oncogenes 

regulating cell growth and differentiation. PTPRC is also related to tumor necrosis and 

disrupts normal T- and B-cell signaling through SRC kinase pathways - which are 

separately implicated in colorectal cancer through amplification (9,39). Next, ProteoMix 

identifies upregulation of S100A9 through promoter hypo-methylation. Of note, elevated 

S100A9 mRNA and protein levels are commonly observed in many conditions 

associated with inflammation (40); additionally in hydropharangeal cancer where 
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knockdown inhibited cell growth and invasion, S100A9 is also prognostic of worse 

outcome and indications like metastasis (41). Of note ProteoMix filtered out functional 

effects of a UTR hypo-methylation in S100A9 previously detected by MethylMix. Next, 

ProteoMix identifies hyper-methylation across the promoter region of LTF, a likely tumor 

suppressor which is produced by neutrophils to regulate growth and differentiation. In 

the context of colorectal tissue LTF has been shown to restrict inflammation by 

regulating T cell interaction (42). Additionally, gene expression of LTF has previously 

been shown to correlate with tumor size and survival in breast cancer (43). Lastly, 

ProteoMix uniquely identifies hypo-methylation mediated upregulation of DAK, also 

known as TKFC, which is related to virus-associated chronic inflammation (44). 

 

ProteoMix picks up hypo-methylation states in five new genes in ovarian cancer related 

to processes of invasion and proliferation. ProteoMix uniquely identifies hypo-

methylation in the promoter region of EVL a key regulator of the actin cytoskeleton, 

associated with invasion and metastasis. Overexpression of EVL is also indicative of 

advanced stage in breast cancer (45) and has been implicated in malignancies due to 

inappropriate recombination (46). ProteoMix discovers elevated TSTA3 expression 

caused by gene body hypo-methylation. TSTA3 is linked to malignant transformations 

through abnormal glycosylation and controls cell proliferation and invasion by regulating 

CXCR4 chemokine mediated T cell signaling; additionally in breast cancer, high TSTA3 

expression correlated with poor survival (47). Next, ProteoMix detects promoter hypo-

methylation mediated upregulation of HMGB3, a well-documented oncogene implicated 

in several cancers including breast, lung, esophageal, bladder, and colorectal cancers 
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(48–51). HMGB3 promotes cell proliferation in colorectal cancer cells through regulation 

of MYC, where genes from same family have been linked to decreased MYC 

expression which is unique to proliferative subtypes of ovarian cancer (26). Lastly, 

ProteoMix also identifies hypo-methylation in two mitochondrial genes ATP5D and 

SPG7, speculatively linked to cancer through metabolic function (52). 

 

ProteoMix genes are enriched for biological processes involved in 

cancer 

We conducted enrichment analysis to identify biological processes that are 

overrepresented in ProteoMix and MethylMix genes (Supplementary Table 3). Given the 

large proportion of common genes, across all three cancers both models capture many 

of the same annotations. However, comparing enrichments found for each cancer site, 

we find that broadly ProteoMix results include more significant enrichments for functions 

associated with cell adhesion and migration of epithelial and endothelial cells; these 

processes increase cell motility and invasiveness and are indicative of epithelial to 

mesenchymal transition (EMT) which is key to cancer development. Additionally, we 

observed that enrichment for immune functions are highly variable between each 

model’s results. 

 

Comparing unique annotations among breast cancer genes, ProteoMix includes 

enrichments for responses to growth factor, angiogenic processes, and immune 

development, whereas MethylMix uniquely captures specific immune processes 

associated with inflammation and migration of T cells and leukocytes. However, the 
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MethylMix gene list is also enriched for homeostasis, metabolic, and several other 

functions with no clear relevance to cancer including taste perception and skin and limb 

morphogenesis. Strikingly in colorectal cancer, although the ProteoMix gene list is 

shorter it captures all MethylMix enrichments and adds numerous new annotations 

including EMT related functions like cell migration, cell adhesion, and mesenchyme 

development. ProteoMix also uniquely enriches for: 1) immune response, toll-like 

receptor recognition, and cellular functions of immunoglobulin, B cells, leukocytes, 

lymphocytes and mucosal-associated lymphoid tissue; 2) signaling functions mediated 

through NF-kappaB and integrin; 3) and other functions include intra-cellular transport 

and hormone secretion. For ovarian cancer, the ProteoMix genes are uniquely enriched 

for negative regulation of B cell differentiation, but misses many immune response 

functions involving cytokine production and mast cells only captured by MethylMix, 

which also uniquely captures endothelial cell proliferation.  

 

Looking for commonalities between cancers we find more shared enriched biological 

processes when comparing among ProteoMix results, suggesting that ProteoMix better 

captures the underlying similarities in disease etiology. Comparing breast and ovarian 

cancer we find both lists share enrichments for processes involved in apoptotic 

signaling. Each gene list however captures different aspects of immune response, with 

ProteoMix identifying common enrichments of B cell differentiation and MethylMix 

uniquely capturing leukocyte migration and inflammation response. MethylMix also 

uniquely identifies processes regulating cellular motility and migration, but also identifies 

commonalities in hormone metabolism and other metabolic processes. When 
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comparing across breast and colorectal cancers MethylMix identifies no shared 

biological processes, whereas ProteoMix finds common enrichments for cell migration, 

exocytosis, and hormone levels. Lastly looking at ovarian and colorectal cancers, both 

sets of ProteoMix genes are enriched for several immune response related processes 

including leukocyte, myeloid, and granulocyte differentiation. Both lists also share 

enrichments for regulation of cell death and other processes including protein transport 

and xenobiotic metabolism, which is possibly associated with platinum sensitivity (53). 

 

ProteoMix genes are enriched for tumor progression markers 

Taking an orthogonal approach, we identified putative biomarker of disease progression 

based on correlations between gene expression and clinical features (Table 2). 

Although ProteoMix gene lists contain much fewer identifications we find that across all 

three cancers that ProteoMix’ lists include a larger proportion of markers of tumor stage 

and size and show stronger odds of containing such genes (Table 2). The greatest 

difference in frequency of tumor stage marker is observed in breast cancer where 12% 

versus 7% of genes show correlation in ProteoMix and MethylMix gene lists 

respectively. The most significant associations however are observed in colorectal 

cancer where 15% of ProteoMix genes show correlation between gene expression and 

tumor stage, this includes LTF which is mentioned among unique ProtoMix genes 

(Table 2A, Supplementary Table 1). The same trend applies when correlating gene 

expression with tumor size where the largest difference in enrichment can be seen in 

colorectal cancer where 7% versus 3% of genes correlate with size when comparing 
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models. However, the enrichment is much stronger for breast cancer where 29% of 

genes correlate with tumor size compared to 21% of MethylMix genes (Table 2B). 

 

Table 2.  Report of overlap between MethylMix and ProteoMix genes with tumor 

progression markers produced using a fisher exact test. 

 Cancer model met.drivers overlap percentage p.value genes 

A. Tumor 

Stage  

BRCA MethylMix 148 10 7.5% 9.83E-04 ARHGDIB, BCL2, CYB5R2, FGF2, FMOD, 

PHYHD1, PLEKHA4, RRAS2, S100A2, SLPI 

ProteoMix 46 5 12.2% 2.38E-03 CYB5R2, FGF2, PHYHD1, S100A2, SLPI 

COADREAD MethylMix 125 15 12.9% 1.74E-06 AZGP1, F2, HNF4A, DNM3, DOCK2, FERMT3, 

HCLS1, KIAA1324, L1TD1, MGST1, MUC1, 

PIGR, PLA2G2A, RAC3, UAP1L1 

ProteoMix 28 4 14.8% 3.86E-04 HNF4A, HCLS1, LTF, PIGR 

OV MethylMix 70 2 3.3% 2.42E-02 AKAP12, TAGLN 

ProteoMix 52 2 4.4% 2.43E-02 AKAP12, TAGLN 

B. Tumor 

Size 

BRCA MethylMix 148 28 21.1% 2.13E-11 A2ML1, S100A16, ACSS3, ALDH2, 

APOBEC3C, APOD, ARHGDIB, BCL2, 

CRISPLD1, CTSK, EFEMP1, ETS1, FCGRT, 

FES, FGF2, FMOD, HSD17B8, OLFML1, 

OSBPL3, PDLIM4, PHYHD1, PIK3CD, PLAT, 

PLEKHA4, S100A2, S100A4, SCUBE2, SLFN11 

ProteoMix 46 12 29.3% 1.55E-08 A2ML1, S100A16, ACSS3, EFEMP1, FGF2, 

FSTL1, PHYHD1, PIK3CD, PLAT, S100A2, 

SCUBE2, SLFN11 

COADREAD MethylMix 125 3 2.6% 1.69E-01 CYP2W1, GPA33, PTK7 

ProteoMix 28 2 7.4% 4.25E-02 GPA33, PTK7 

OV MethylMix 70 4 6.6% 3.51E-01 HCLS1, TNFAIP8, GSTM1, WT1 

ProteoMix 52 4 8.9% 1.76E-01 HCLS1, TNFAIP8, GSTM1, WT1 

 

 

Clustering on ProteoMix genes captures cancer subtypes 
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Clustering on methylation has been shown to stratify patients into clinically relevant 

subgroups (2,20,21,23). We performed consensus clustering using the DM values for 

ProteoMix and MethylMix genes evaluating clusters sizes from two to six (Table 3); for 

clarity we discuss clusters at K=2, examining the gross differences between MethylMix 

and ProteoMix. We evaluated if these epigenetically defined subgroups correspond to 

previously published subtypes and clinical and genetic features and found that 

ProteoMix identifies subgroups of patients that enriched for specific cancer subtypes 

and other molecular features and performs similarly to MethylMix (Supplementary Table 

4). 

 

Table 3. Summary statistics from consensus clustering analysis across K=2-6 for each 

cancer; we report inter- and intra-cluster scores along with PAC score. 

 MethylMix ProteoMix 

Cancer K Intra Inter PAC Intra Inter PAC 

BRCA 2 97.9 29.2 0.040 99.0 27.4 0.026 

3 94.6 20.0 0.199 78.4 24.2 0.409 

4 87.0 15.7 0.206 80.0 17.6 0.381 

5 76.8 13.8 0.284 68.6 14.6 0.333 

6 76.2 11.9 0.275 66.5 12.9 0.309 

COADREAD 2 97.9 26.6 0.074 92.3 29.5 0.273 

3 68.9 26.0 0.570 78.4 23.8 0.502 

4 64.4 20.2 0.491 69.9 19.9 0.459 

5 68.9 15.2 0.401 71.6 15.5 0.405 

6 71.6 12.1 0.305 67.8 13.2 0.343 

OV 2 94.0 29.0 0.180 93.9 29.2 0.134 

3 81.0 23.8 0.477 80.7 23.7 0.488 

4 69.1 19.3 0.438 70.8 19.5 0.445 

5 74.1 14.6 0.349 73.6 14.7 0.337 
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6 67.9 12.8 0.311 73.7 12.1 0.291 

 

In breast cancer ProteoMix clusters significantly correlate with molecular subtypes and 

other molecular features such as Progesterone and Estrogen Receptor (PR, ER) status 

(Figure 2A). Similar to other studies our clusters differentiate between canonical breast 

cancer molecular subtypes: Cluster-1 contains about 90% of patients with Luminal A/B 

type tumors. Cluster-2 contains 97% of patients with Basal-like tumors and as expected 

it is enriched for samples negative for ER, PR, or HER2. HER2 and Normal subtypes 

are less clearly distinguished in ProteoMix clusters but can be found in greater 

frequency in cluster-2. Among colorectal samples we are able to confirm the CpG island 

methylator phenotype (CIMP) (Figure 2B). Cluster-1 contains 97% of patients labeled 

CIMP-High using methylation signatures and 82% of patients labeled Microsatellite 

Instable/CIMP using gene-expression signatures. The CIMP subtype has known 

association with MLH1 silencing through hyper-methylation, which is reflected in our 

ProteoMix subtypes where we find cluster-2 to include the majority of samples with non-

silenced MLH1. ProteoMix subtypes also significantly correlate with Microsatellite 

Instability where samples labeled as Microsatellite Instability-Low (MSI-L) or 

Microsatellite Stable (MSS) are found by majority in cluster-2. Examining subtypes in 

ovarian cancer our ProteoMix clusters agree well with molecular subtypes and are 

significantly correlated (Figure 2C). About half of cluster-1 is comprised of patients 

labeled as Proliferative, while cluster-2 contains 75% of Immunoreactive subtype and 

80% of Differentiated subtype patients, lastly Mesenchymal subtype patients can be 

found with relatively equal frequencies in each cluster (54–56). ProteoMix clusters also 
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significantly correlate with tumor features, where cluster-1 and cluster-2 roughly 

correspond patients with lower-grade and higher-grade tumors. 

 

Figure 2: Consensus clustering and methylation profiles for three cancer sites at K=2. 

(A) breast cancer (BRCA); colorectal cancer (COADREAD); ovarian cancer (OV). 

Middle panels: visualization of the consensus clustering with blue indicating high 

consensus and white indicating low consensus. Right panels: methylation profile with 

red indicating hyper-methylation, white indicating normal methylation, and blue 

indicating hypo-methylation. Left panels: visualization of additional molecular and 

clinical features. Non-reported values are marked in grey. Statistically significant 

overlaps, found using Chi-squared and Kruskal-Wallis tests, are marked with asterisks. 
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Discussion 

Epigenetic aberrations contribute to oncogenesis, where DNA hypermethylation 

inactivates tumor suppressor genes, while hypomethylation is known to promote 

genomic instability and activate oncogenes (12,20). Therefore, DNA methylation has 

potential to inform patient treatment and improve patient outcomes through new 

diagnostics and therapeutics. When identifying epigenetically driven cancer genes, it is 

of note that most biological functions – subject to genomic and epigenomic 

dysregulation – are ultimately executed at the protein level, so we can expect 

neutralization of non-functional upstream effects at - or before - the proteome. Herein 

we confirm the potential of using proteomic data to elucidate functional DNA methylation 

events by conducting the first genome wide analysis of epigenome-proteome 

relationships across three large human cancer cohorts. We present ProteoMix, a data-

driven model which formalizes the identification of abnormally methylated genes that 

are predictive of protein abundance ProteoMix, like MethylMix, uses a model-based 

approach, negating the use of arbitrary user-defined thresholds for abnormal DNA 

methylation, and identifies subpopulations of hypo or hypermethylated samples within a 

heterogeneous population. By integrating DNA methylation array and quantitative MS 

technologies, ProteoMix identifies candidate epigenetic driver genes with clinical value 

as potential therapeutic targets and protein biomarkers for assessing prognosis and 

treatment stratification. ProteoMix builds on our model MethylMix and addresses the 

potential limited predictive value of mRNA as proxy for phenotype due to the role of 

post-transcriptional mechanisms.  
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ProteoMix identifies oncogenes and tumor suppressors and – with the exception of a 

few genes – returns a subset of MethylMix identifications, where often the effect of DNA 

Methylation does not propagate to the proteome (Figure 1, Supplementary Table 1). In 

other cancer studies similar buffering has been observed in both cis and trans CNA 

effects, suggesting that many detectable aberrations in cancer do not manifest in 

expression changes at the protein level (6,10). Otherwise put, many abnormally 

methylated genes are likely only passengers and do not functionally contribute to 

cancer development. Identification of a reduced set of genes in our study has pragmatic 

benefits for cancer research, where narrowing nominations to fewer high-quality 

candidates increases the likelihood of finding true targets; strongest candidates include 

genes identified by both models that show negative correlation between DNA 

methylation and both gene expression and protein abundance, and therefore have clear 

biological interpretations amenable to validation in the laboratory. Similar methods to 

identify true targets have been described, where genes that show correlation between 

mRNA and protein are more likely to have tumor promoting effects (10). Conversely, 

novel ProteoMix identifications should be taken with due consideration given the lack of 

clear mechanisms explaining how changes in DNA methylation may alter protein levels, 

but be undetectable at the transcript level - plausible explanations that remain to be 

tested include erroneous or noisy gene expression data, low mRNA stability or 

alternative splicing confounding expression at the RNA level. Nevertheless, most new 

identifications are well supported to have tumor promoting effects and therefore warrant 

further investigation to uncover how DNA-methylation may influence regulation of genes 

like EHF, FSTL1, PTPRC, S100A9, LTF, EVL, and TSTA3. Importantly, in all these 
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cases the type of DNA methylation is consistent with gene function, where known 

tumor-suppressors are hyper-methylated and oncogenes are hypo-methylated at 

regions where DNA methylation negatively regulates transcription. 

 

Taken together ProteoMix genes highlight important features in cancer related to tumor 

features and subtypes, additionally ProteoMix captures oncogenic biological processes. 

Using enrichment analysis ProteoMix identifies key aspects of cancer development 

such as processes related to angiogenesis, EMT, immune function, and proliferative 

signaling (Supplementary Table 3). ProteoMix also elucidates more shared annotations 

between cancer types, and thus a greater ability to identify genes of core cancer 

pathways that are shared across cancer sites. Next, using a completely orthogonal 

approach we also find that ProteoMix is more descriptive of tumor progression; although 

our new model produces a reduced number of identifications, ProteoMix genes are 

more likely to correlate in expression with disease features such as tumor stage and 

size (Table 2). Lastly, we find ProteoMix performs reasonably well for patient clustering 

recapitulating established molecular subtypes. Given the limitations of our study, we 

expect our clustering to have reduced discriminative power, since we limit our 

observations to genes for which we have both matched gene expression and protein 

abundance measurements in our analysis and significantly diminish the feature space 

we used for learning. Nevertheless, we find that ProteoMix performs similarly to 

MethylMix in identifying cancer subtypes such as Luminal and Basal types of breast 

cancer, the CIMP type in colorectal cancer and all subtypes in ovarian cancer, with the 

exception of the Mesenchymal subtype which is the least clearly defined subtype (54) 
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(Figure 2, Supplementary Table 4). These findings suggest the reduced number 

ProteoMix genes capture the major sources of variation in each cancer cohort and 

facilitate translatability into feasible panels for testing. 

  

Overall ProteoMix shows practical utility for improving nominations of cancer driver 

genes and elucidating new mechanisms of cancer development missed by our previous 

model. More broadly our study supports using proteomic data to better understand how 

epigenetic deregulation promotes cancer. Similar approaches have been applied and 

found to potentially improve aspects of patient care. For example, a retrospective 

analysis of outcomes in an oncology trial for glioblastoma – which tested efficacy of 

different temozolomide regiments – found that updating the clustering model to 

incorporate MGMT protein expression and c-MET protein abundance provided better 

separation of overall survival prognostic groups than incorporating MGMT promoter 

methylation alone (57). These findings and ours support the claim that protein data 

combined with DNA methylation is a better way to stratify patients and understand 

cancer features then using DNA methylation alone.   

 

Although milestone initiatives like TCGA and CPTAC provide valuable date for the 

acceleration of discovery and research in cancer, we acknowledge the limitations of this 

study and further work required. A barrier to translation, the number of specimens used 

here is insufficient to draw conclusive clinical correlations and require replication of 

these results by independent studies. Importantly molecular measurements used here 

are also subject to sources of technical and biological bias. For example, it is known 
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that bulk measurements obscure the complex nature of tumor microenvironment which 

includes many cell types including vascular, lymphatic, and immune cells. This 

confounding effect is compounded considering that each molecular feature was 

measured using different tumor fragments, which may have very different cellular 

compositions due to intra-tumor heterogeneity. Additionally, we recognize further 

characterization of genome wide proteomic studies is required to fully understand 

possible biases, such as worse detection of highly hydrophobic and hydrophilic 

peptides, or low-abundance peptides co-eluting with very high-abundance peptide (9). 

Moreover, early proteomic techniques such as those utilized in CPTAC’s Common Data 

Analysis Pipeline have not yet reached the genome level resolution of other omic 

measurements; these methods require refinement to address low coverage due to 

inherent limitations of proteolytic measurements such immeasurable peptides that are 

excessively large or small tryptic fragments and the inability to distinguish some amino 

acids (9). This reduced coverage to a few thousand genes in our study excludes many 

genes with possible roles in cancer. 

 

The complex nature of disease development and interplay between interacting 

biological aberrations – genetic, epigenetic, somatic or germline - often makes it difficult 

to elucidate causal mechanisms of cancer development’. Furthermore, there is still 

much work in multi-omics to elucidate causal flows of information influencing cellular 

physiology and pathology and to discriminate how separate phenomena are linked to 

create cancer (3,5,56,58). However, integrated multi-omic approaches like ProteoMix 

can provide additional insights into pathways and processes involved in oncogenesis 
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and how they manifest as clinical phenotypes. As CPTAC moves into its second phase 

and characterizes more samples across more cancer types, models such as ProteoMix 

may leverage this valuable data to improve understanding of the molecular basis of 

cancer. 

 

Methods 

Data Processing 

Molecular data were produced from tissue bio-specimens from three cancer cohorts: 

breast invasive carcinoma (BRCA), colorectal adenocarcinoma (COADREAD), and 

ovarian serous cystadenocarcinoma (OV) (Table 1). All data used in this study comes 

from samples obtained from the TCGA Biospecimen Core Resource (6,9,10,24–26). 

 

DNA Methylation 

CpG site methylation levels/percentages were measured using Illumina Infinium Human 

Methylation 27k and 450k BeadChip Platforms (24–26). We limit our observations to 

overlapping probes or CpG sites for cancer tissues measured using both platforms, 

otherwise we use all available probes. The methylation level is recorded as a beta value 

representing a ratio of the signal/intensity from the methylated probe over the sum of 

both the methylated probe and the unmethylated probes. Values close to 0 indicate low 

levels of DNA methylation and values close to 1 indicate high levels of DNA 

methylation. We removed CpG sites with more than 10% missing entries across all 

samples and we applied 15-K Nearest Neighbor (KNN) to impute the remaining missing 

values, this procedure was replicated for all molecular data types. We observed 
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significant technical sources of variation among tissue samples processed in batches 

using a one-way analysis, which we corrected using COMBAT (27) . To reduce 

dimensionality of the CpG data we applied hierarchical clustering with complete linkage 

and a minimum average Pearson correlation of 0.4 between values. Last, we matched 

clusters to their corresponding genes by mapping to the closest transcriptional start 

sites, where one gene may relate to many CpG clusters but each CpG cluster only 

maps to one gene. Therefore, we limit our analysis to DNA methylation states with cis 

regulation effects.  

 

RNA Expression 

We used transcriptomic data in MethylMix produced by RNA sequencing technology 

(24–26). We log-transformed the RNAseq counts and replaced infinities with a non-zero 

low value. Similar to our DNA methylation data processing, we estimated missing 

values using 15-KNN and used COMBAT to correct for batch effects (27). 

 

Protein Abundance 

Proteomic data used in ProteoMix was provided by CPTAC (6,9,10). Participating 

research institutions used the following Common Data Analysis Pipeline to produce 

protein level measurements: First tissue samples were enzymatically digested, cutting 

large proteins in a sequence specific manner into smaller peptides. Peptides were 

fractioned using liquid chromatography to improve downstream quality before 

measurements using Thermo Fisher high-resolution tandem mass spectrometry (LC-

MS/MS). Next, the resultant mass ladders were matched to theoretical mass ladders in 
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the FASTA database and subsequently assigned to peptide spectra using software 

tools and The Reference Sequence Database. The data was then filtered to exclude 

peptide fragments common to more than one protein and to only include protein-

identifying or unshared peptides i.e. fragments with unique sequences. Lastly peptides 

were mapped to a parsimonious set of genes.  

 

The BRCA and OV workflows used iTRAQ-labeling to increase throughput, where 3 

patient samples are isotopically labelled and analyzed against a common reference 

standard and describe relative ion intensities. Quantities are recorded after taking the 

log2 ratio of the abundances. Alternatively, measurement of COADREAD samples used 

label free mass spectrometry technology and are reported as absolute counts, which 

were transformed to relative quantities by taking the log2 of quantile normalized values 

using the limma R package (10). OV samples collected from Pacific Northwest National 

Laboratory and John Hopkins University were merged and corrected for batch effects 

using COMBAT (27). 

 

To remove samples compromised by protein degradation we filtered samples using the 

QC method described by Mertins et al. (6): we calculated the standard deviation of non-

normalized protein measurements across all genes for each sample and segmented 

samples into groups using a two component Gaussian mixture model. Samples belong 

to the poor-quality group i.e. higher mean standard deviation were excluded from study. 

Applying this method we discarded 28 BRCA and 5 OV samples. Finally, for each 
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cancer we removed samples with greater than 75% missing values, estimating the 

remaining missing values using 15-KNN algorithm (28).  

 

Algorithm 

 

Step 1: Fit mixture model to methylation data 

As described earlier methylation levels are recorded as beta values or values ranging 

from 0 to 1 representing the percentage of methylation and therefore gene values 

across all samples are beta distributed. MethylMix identifies subgroups of patients with 

a distinct methylation pattern or state by finding the beta mixture model with the number 

of components that best describe the data. To map samples to subgroups we iteratively 

add components requiring that each additional component improve the Bayesian 

Information Criterion (BIC) to avoid overfitting. To define the most descriptive subgroups 

we include methylation measurements across all samples, however our model 

integrates epigenetic data with proteomic and transcriptomic data using only the subset 

of these samples with available matched data (Table 1). 

 

Step 2: Compare methylation to normal tissue 

To identify differentially methylated CpG clusters we compare the mean methylation 

level - the mean value of the beta mixture component - to the mean methylation level of 

normal samples. To measure if an observed difference is significant we perform a 

Wilcoxon rank sum test with a Q-value cutoff of 0.05, using both p-value multiple testing 

correction with False Discover Rate (FDR). As an additional measure, we require a 
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minimum difference of 0.10 based on the platform sensitivity (29). If significant, the 

difference in methylation level between the mode and normal is recorded as the 

Differential Methylation value or DM value for each methylation state. 

 

Step 3: Select for functionally predictive genes 

Next, we filter our set of genes, requiring that genes be not only differentially methylated 

when compared to normal but also predictive of gene expression or protein abundance. 

Hyper-methylation should lower gene expression and corresponding protein abundance 

when compared to the normally methylated samples, therefore we only accept genes 

that have a negative correlation between methylation level and downstream gene 

products. Note this assumption is only explanatory of methylation at promoter regions 

and does not necessarily apply to methylation at the gene-body or  3’ and 5’ 

untranslated regions (UTRs). To assess the likelihood that methylation events are 

functional, MethylMix uses the relationship between methylation and gene expression, 

whereas ProteoMix examines the effect on protein abundance. In both cases, we 

perform a linear regression between methylation levels and RNA expression or protein 

abundance data respectively. We use the R-square statistic to estimate the magnitude 

of the correlation and used cutoffs at R-square greater than 0.05 and a p-value less 

than 0.001. 

 

Applying the procedures outlined above for MethylMix and ProteoMix each produces a 

list of candidate cancer drivers (referenced as MethylMix and ProteoMix genes) and a 

corresponding matrix of DM-values for identified CpG clusters across all samples. To 
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assess the validity of each list we used orthogonal clinical and biological data to assess 

utility for downstream analysis and relevance to disease state. 

 

Evaluation 

 

GO Term Enrichment 

To describe the underlying biological processes captured by each model, we tested for 

enrichment of Gene Ontology (GO) terms in MethylMix and ProteoMix genes. This 

analysis was implemented using the PANTHER Classification System’s statistical 

overrepresentation tool (30) with the following settings: Homo-sapiens for organism, the 

background set to include all genes with matching protein and RNA data, and either 

ProteoMix or MethylMix genes for input. Enrichment was calculated using fisher’s exact 

test. For each gene list we rank terms using significance of the test statistic with a 

minimum p-value of 0.10. 

 

Methylation Subtypes 

With the matrices of DM values for our CpG clusters we performed consensus 

clustering to identify robust groupings of patients based on epigenetic signatures (31). 

Our analysis for each cancer cohort used the following parameters: maximum number 

of clusters is 6, number of bootstrap subsamples is 500 with 0.8 the proportion of the 

subsample, and our method uses k-means cluster algorithm and Euclidean distance. 

 To identify the optimal number of clusters we inspected the proportion of ambiguous 

classification (PAC Score) (32,33), and the consensus heatmap and values, where the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2018. ; https://doi.org/10.1101/340760doi: bioRxiv preprint 

https://doi.org/10.1101/340760
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

score/index between two samples is the proportion of clustering runs in which the two 

items are clustered together. We define the intra cluster consensus as the mean of all 

pairwise consensus scores between samples clustered in the same group, and inter 

cluster consensus as the mean of all consensus indexes between a sample and all the 

other samples clustered in different groups. A robust clustering result ideally shows high 

intra cluster consensus and low inter cluster consensus. We tested for association 

between cluster assignments and several disease features, using a Chi-squared test for 

categorical variables such as molecular subtype labels or a Kruskal-Wallis test for 

ordinal values such as tumor grade. Our analysis includes genetic, molecular, and 

clinical annotations, which were collected from supplementary tables from the original 

TCGA publications (24–26) in addition to annotations downloaded using the 

TCGAbiolinks R package (34). 

 

Enrichment for putative tumor markers 

We compared MethylMix and ProteoMix genes by investigating their enrichment in 

genes related to disease progression. We used correlation of gene expression with 

cancer stage and tumor size to identify potential genes capturing disease progression. 

We took the spearman correlation between gene expression levels and these clinical 

variables using all available samples. We selected genes using a p-value cutoff of 0.05 

and biased for genes with greater likelihood of relevance by taking top 50th quantile in 

sample variance. Next, we filtered for only relationships that can be explained by 

methylation, such that genes identified as hyper-methylated in cancer tissue were 

required to show a negative correlation between gene expression and disease 
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progression (tumor-suppressor genes) and hypo-methylated genes positively correlated 

(oncogenes). To assess each models’ likelihood in picking up genes related to disease 

progression we examined the overlap between these genes and the ProteoMix and 

MethylMix genes, using Fisher’s exact test to evaluate significance. 
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Supplementary Table 1. Gene level results from MethylMix and ProteoMix for each 
cancer site and summary statistics from linear regression taken between DNA-
methylation beta values and gene-expression or protein abundance values, 
respectively. 
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mRNA-protein pair. 
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from MethylMix and ProteoMix gene lists. 
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