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Abstract 
 
Understanding how the visual system encodes natural scenes is a fundamental 
goal of sensory neuroscience. We show here that a three-layer network model 
predicts the retinal response to natural scenes with an accuracy nearing the 
fundamental limits of predictability. The model’s internal structure is interpretable, 
in that model units are highly correlated with interneurons recorded separately 
and not used to fit the model. We further show the ethological relevance to natural 
visual processing of a diverse set of phenomena of complex motion encoding, 
adaptation and predictive coding. Our analysis uncovers a fast timescale of visual 
processing that is inaccessible directly from experimental data, showing 
unexpectedly that ganglion cells signal in distinct modes by rapidly (< 0.1 s) 
switching their selectivity for direction of motion, orientation, location and the 
sign of intensity. A new approach that decomposes ganglion cell responses into 
the contribution of interneurons reveals how the latent effects of parallel retinal 
circuits generate the response to any possible stimulus. These results reveal 
extremely flexible and rapid dynamics of the retinal code for natural visual stimuli, 
explaining the need for a large set of interneuron pathways to generate the 
dynamic neural code for natural scenes. 
 
Nearly all of our understanding of retinal computations and circuit mechanisms comes 
from artificial stimuli such as flashing spots, drifting gratings and white noise 1-3, which 
have unknown relevance to natural visual processing. Although numerous retinal 
computations have been identified by such methods including selectivity for specific 
types of motion, adaptation to various statistics and prediction of visual features3, the 
number of interneurons (>40) is even greater, suggesting an undiscovered complexity in 
retinal processing. To characterize the neural code for natural scenes, given that the 
vertebrate retina has three layers of cell bodies, we tested whether three layer 
convolutional neural network (CNN) models (Figure 1) could predict the responses of 
populations of salamander retinal ganglion cells responding to a 50-minute sequence of 
either natural images or spatiotemporal white noise. Natural scene images changed 
every second, and were jittered with the statistics of fixational eye movements4,5, 
creating a spatiotemporal stimulus. The model had eight different model cell types in 
each of the first and second layers that tiled the visual field, with each cell type having a 
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distinct receptive field, and a final layer that represented the responses of individual 
ganglion cells. We found that CNN models could predict the responses of ganglion cells 
to either natural scenes or white noise nearly up to a fundamental limit of precision set 
by intrinsic neural variability, and were substantially more accurate than linear-nonlinear 
(LN) models6 or generalized linear models (GLMs) 1 (Figure 1B, C). Based on results 
varying the number of cell types in the first two layers, eight cell types were chosen as 
the minimum number that achieved the maximal model performance (Fig. 1D). 
 
CNNs internal units are highly correlated with interneuron responses 
 
To examine whether the internal computations of CNN models were similar to those 
expected in the retina, we computed receptive fields for first and second layer model cell 
types in CNNs trained on responses to natural scenes. We found that the receptive 
fields of CNN model cells had the well-known structure of retinal interneurons7,8, with a 
spatially localized center-surround structure (Fig. 2A-B), a mix of On and Off responses, 
and both monophasic and biphasic temporal filters. 
 
In inferotemporal cortex, units of CNNs have been shown to be correlated with a linear 
combination of the activity of individual neurons9 making it difficult to draw conclusions 
about individual neurons by an examination of CNN units. We compared the activity of 
CNN units to interneuron recordings performed on separate retinae that the model was 
never fit to (Fig. 3A). The stimulus presented to the retina and separately to the model 
was a spatiotemporal white noise checkerboard, a stimulus that has no spatiotemporal 
correlations except for the 50 µm size and 10 ms duration of square stimulus regions. 
We compared each interneuron recording with 8 units of the first layer and 8 units of the 
second layer at each location to find the most correlated unit in the model at the location 
of the cell. We found that each recorded interneuron was highly correlated with a 
particular unit type, and only at a single location (Figure 3B-E). Spatiotemporal receptive 
fields were highly similar between recorded interneurons, and their most correlated 
model cell type (Fig. 3B). The magnitude of this correlation approached the variability of 
the interneurons themselves, as assessed by using an LN model fit to the interneuron to 
predict another segment of the interneuron’s own response (Figure 3 C,D). This 
correlation was specific for individual unit types, as could be observed by ranking the 
model cell types from most to least correlated, and finding that the second and lower 
most correlated model cell types were substantially less correlated with the interneuron 
than the most correlated cell type (Fig. 3 D,E). This high correlation did not arise by 
chance as a “null” CNN model fit by shuffling spikes relative to the stimulus did not 
produce internal units correlated with interneuron responses (Fig. 3D, E). Therefore, 
fitting a CNN model to the natural scene responses of retinal ganglion cells alone 
models an entire population of interneurons, many of which have high correlation with 
measured interneuron responses created with a different stimulus and a different retina. 
 
A wide range of retinal phenomena are engaged by natural stimuli 
 
Numerous nonlinear computations have been identified by presenting artificial stimuli to 
the retina, including flashing spots, moving bars and white noise. However we neither 
understand to what degree natural vision engages these diverse retinal computations 
elicited by artificial stimuli, nor understand the relationship between these computations 
under natural scenes and underlying retinal circuitry. We tested models fit either only to 
natural scenes or white noise by exposing them to a battery of structured stimuli 
previously used in the literature to identify and describe retinal phenomena. We focused 
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on effects shorter than 400 ms, which was the longest timescale our model could 
reproduce as limited by the first layer spatiotemporal filter. Remarkably, the CNN model 
exhibited fast contrast 10-12 adaptation (Fig. 4A), latency encoding 3 (Fig. 
4B), synchronized responses to motion reversal 13(Fig. 4C), motion anticipation 14 (Fig. 
4D), the omitted stimulus response 15 (Fig. 4E), frequency doubling in response to 
reversing gratings 16  (Fig. 4F) and polarity reversal 17 (Fig. 4G). All of these response 
properties arose in a single CNN model simply as a by-product of optimizing the models 
to capture ganglion cell responses to natural scenes. CNN models trained on white 
noise did not exhibit all of these phenomena, in particular failing to capture fast contrast 
adaptation, latency encoding and the omitted stimulus response, indicating that natural 
scene statistics trigger nonlinear computations that white noise does not. Even though 
these natural scenes consisted only of a sequence of images jittered with the statistics of 
fixational eye movements (the stimulus contained no explicit object motion or periodic 
patterns), the CNNs still exhibited motion anticipation and reversal, and the omitted 
stimulus response. 
 
The only retinal phenomenon tested that was not captured by the model was the object 
motion sensitive (OMS) response5, a computation thought to discriminate object motion 
from retinal motion due to eye movements. We hypothesized that the absence of an 
OMS response in the model was due to the lack of differential motion in the training 
stimulus, and trained additional models on the retinal response to movies of swimming 
fish that include differential motion. We found that these models did indeed exhibit an 
OMS response (Fig. 4H). Thus the model reveals whether retinal computations triggered 
by one stimulus occur in another, in particular during natural scenes.  
 
Interneuron contributions to a dynamic visual code 
  
Receptive fields in sensory neuroscience are typically thought of as representing a static 
sensory feature, although it is known that this feature can change slowly due to 
adaptation to the statistics of the stimulus 18-20. A particularly advantageous property of 
CNN models is that rapid dynamics of visual sensitivity can be examined by computing 
the instantaneous receptive field (IRF), which can be easily calculated as the gradient of 
the model output with respect to the current stimulus (Fig. 5A). This can be done at each 
moment of time, allowing us to examine for the first time the full dynamics of the 
receptive field and assign those dynamics to the action of interneurons.  
 
IRFs changed with extremely rapid dynamics on the scale of tens of ms, as judged by 
comparing the correlation coefficient between IRFs at different time delays. The 
dynamics of the IRF were limited by stimulus correlations, in that for an uncorrelated 
stimulus (white noise), the IRF changed from its previous value with a time constant of ~ 
30 ms (Fig 5B). To examine these rapid changes in feature selectivity, we clustered the 
IRFs computed at each time point, revealing that during natural stimuli the retina 
signaled in different modes that changed rapidly depending on the stimulus frame (Fig. 
5, C - E). By computing the average stimulus for each IRF cluster, we unexpectedly 
found new phenomena triggered by different ethologically relevant stimuli. The presence 
of an edge changed the IRF to be maximally sensitive to motion of that edge, and the 
direction of motion and orientation preference changed with the intensity gradient of the 
edge (Fig 5 C, E). IRFs also showed much stronger direction and orientation selectivity 
than could be observed in the mean receptive field (MRF) (Fig 5E). The location of the 
IRF showed also substantial variation compared to the MRF (Fig. 5E). Furthermore, 
changes in local stimulus intensity reversed the polarity of the IRF (Fig. 5E), indicating a 
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local effect distinct from previously reported polarity reversal triggered by peripheral 
stimuli17.  
 
Because the IRF is a mathematical sum of the features conveyed by different 
interneuron pathways in the model, we investigated the source of these dynamic 
receptive fields by performing an exact decomposition of a ganglion cell’s response into 
the Interneuron Contributions (INCs) of each of the 8 model cell types in the first layer at 
each time point (Fig. 6), using the method of Integrated Gradients 21,22 
 (see methods). Intuitively, the INC is the product of the sensitivity of the model 
interneuron to the stimulus and the sensitivity of the model output to the model 
interneuron, and is an application of the multivariable chain rule. Thus to determine the 
effect of an interneuron on the circuit’s output, this analysis takes account of both a cell’s 
input (its receptive field) and its output (projective field) 23. To assess the model 
interneuron’s contribution over a range of stimuli rather than a single point in stimulus 
space, the INC is integrated over a straight path of increasing contrast from the zero 
stimulus, a grey screen, to the particular stimulus frame. This new type of analysis is 
different than simply examining the representation of a stimulus in a neural population, 
and reveals how an interneuron population uses that stimulus representation to change 
the model circuit’s output.  
 
We identified the patterns of INCs that generate the code for natural stimuli, white noise 
and artificially structured stimuli. We found surprisingly that the interneuron patterns 
generating responses to some artificial stimuli live within the space of those elicited by 
natural stimuli but not within the space of white noise (Fig. 6 B, C), showing that these 
artificially structured stimuli are indeed ethologically relevant to understanding the retinal 
code under natural scenes. This further explains why models fit to natural scenes but not 
white noise recapitulated the previously described phenomena triggered by these 
structured stimuli – white noise is insufficient to explore the stimulus space that triggers 
these phenomena, but natural scenes are. Thus, natural scenes drive the set of 
interneuron contributions into a set of states that encompasses previously explored 
artificial stimuli, showing the relevance of stimuli of unknown functional relevance such 
as the omitted stimulus response15. 
 
These results capture the dynamic retinal code of natural scenes, and connect that code 
to much of the retinal phenomenology previously described. This approach reveals the 
extensive rapid changes of the neural code on a previously inaccessible timescale, and 
enables a direct determination of the contribution of cell types to any arbitrary stimulus.  
Because model cell types have high correlation with retinal interneurons, this approach 
will serve as the foundation to define how interneuron patterns generate the dynamic 
neural code for natural scenes. 
 
Methods 
 
Visual Stimuli. A video monitor projected the visual stimuli at 30 Hz controlled by 
Matlab (Mathworks), using Psychophysics Toolbox 24. Stimuli had a constant mean 
intensity of !"!"!! . Images were presented in a 50 x 50 grid with a square size of 25 µm 
at a frame rate of 100 Hz. Static natural jittered scenes consisted of images drawn from 
a natural image database 25 and drifted in two dimensions with the approximate statistics 
of fixational eye movements5. The image also changed to a different location every one 
second, representing a saccade-like transition. Natural movies consisted of fish 
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swimming in an aquarium, and contained both drift and saccade-like transitions that 
matched static jittered natural scenes. For analysis of model responses to artificial 
stimuli (Fig. 3), unless otherwise stated stimuli were chosen to match published values 
for each phenomenon. 
 
Electrophysiology. Retinal ganglion cells of larval tiger salamanders of either sex were 
recorded using an array of 60 electrodes (Multichannel Systems) as previously 
described 26. Intracellular recordings were performed using sharp as previously 
described. 
 
Model training. We trained convolutional neural network models to predict retinal 
ganglion cell responses to either a white noise or natural scenes stimulus, 
simultaneously for all cells in the recorded population of a given retina 27. Model 
parameters were optimized to minimize a loss function corresponding to the negative 
log-likelihood under Poisson spike generation,  

 
where  and  are the actual and predicted firing rates of the retinal ganglion cells at 
time t, respectively with a batch size of T , chosen to be 50 s. To help with model fitting, 
we smoothed retinal ganglion responses during training with a 10 ms standard deviation 
Gaussian, the size of a single time bin in our model. 
 
The architecture of the convolutional neural network model consisted of three layers, 
with 8 cell types (or channels, in the language of neural networks) per layer. Each layer 
consisted of a linear spatiotemporal filter, followed by a rectification using a rectified 
linear unit (ReLU). For each unit, an additional parameter scaled the activation of the 
model unit prior to the rectified nonlinearity. This scaling parameter could vary 
independently with location. 
 
Optimization was performed using Adam 28, a variant of stochastic gradient descent. 
Models were trained using TensorFlow29 or PyTorch30 on NVIDIA Titan X GPUs. 
Training an individual model to convergence required ~8 hours on a single GPU. The 
networks were regularized with an L2 weight penalty at each layer and an L1 activity 
penalty at the final layer, which helped maintain a baseline firing rate near 0 Hz. 
 
During optimization, the spatial components of linear filters were implemented as a 
series of stacked linear convolutions, each consisting of a series of 3 x 3 filters. Thus 
seven sequential 3 x 3 filters were applied to generate a 15 x 15 filter. After optimization, 
these sequential filters were collapsed into a single linear filter. Therefore, this procedure 
did not change the final architecture of the model, but improved the model’s 
performance, presumably by reducing the number of parameters. 
 
We split our dataset into training, validation, and test sets, and chose the number of 
layers, number of filters per layer, the type of layer (convolutional or fully connected), 
size of filters, regularization hyperparameters, and learning rate based on performance 
on the validation set. We found that increasing the number of layers beyond three did 
not improve performance, and we settled on eight filter types in both the first and second 
layers, with filters that were much larger (Layer 1,15 x 15 and Layer 2, 11 x 11) 
compared to traditional deep learning networks used for image classification (usually 5 x 
5 or smaller).  Values quoted are mean  s.e.m. unless otherwise stated. 
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Linear-Nonlinear Models. Linear-nonlinear models were fit by the standard method of 
reverse correlation to a white noise stimulus 6. We found that these were highly 
susceptible to overfitting the training dataset, and imposed an additional regularization 
procedure of zeroing out the stimulus outside of a 500 µm window centered on the cell’s 
receptive field. 
 
Generalized Linear Models. Generalized linear models (GLMs) were fit by minimizing the 
same objective as used for the CNN, the Poisson log-likelihood of data under the model. 
We performed the same cutout regularization procedure of only keeping the stimulus 
within a 500 µm region around the receptive field (this was critical for performance). The 
GLMs differed from the linear-nonlinear models in that they have an additional spike 
history feedback term used to predict the cell’s response (Pillow et. al. 2008). Instead of 
the standard exponential nonlinearity, we found that using soft rectified functions 
log(1+exp(x)) gave better performance. 
 
Interneuron contributions 
To identify the contribution of each model neuron to the processing of specific visual 
stimuli, we used the recently developed method of Integrated Gradients 	
21,22 to decompose a ganglion cell’s firing rate into the Interneuron Contributions (INCs) 
of each of the 8 model cell types by performing path integral. Mathematically, the trained 
deep learning model represents a nonlinear function , where  is the 
output firing rate and  is the  movie input. Using the line integral 

 where the path takes a straight line , and assuming 
 we obtain an equality	

 . 
Our goal is to quantify the contributions of the first layer model units 

, where “[1]” refers to an index of the layer, “c” refers to 

channel, “ ” is the linear convolutional filter, and  is the bias parameter. 
Therefore we further apply the chain rule to define the INC of c-th channel ( ) as 

. 
Finally, the spatially averaged INCs  forms a vector with eight elements, which is 
taken as the contribution of that model cell type to the model output at that instant of 
time.  
 
 
Figure Legends 
 
Figure 1. Convolutional neural networks provide accurate models of the retinal 
response to natural scenes. (A) Convolutional neural network model trained to predict 
the firing rate of simultaneously recorded retinal ganglion cells from the spatiotemporal 
movie of natural scenes. The first layer is a spatiotemporal convolution, the second is a 
spatial convolution, and the third is a final dense layer, with rectifying nonlinearities in 
between each layer. Each location within the model also has a single parameter that 
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scales the amplitude of the response. (B) PSTHs comparing recorded data and Linear-
Nonlinear (LN) or CNN models for the test data set. (C) Comparison of LN, Generalized 
Linear Model (GLM) and CNN model predictions for a 25 second segment of a natural 
scene movie. Correlation coefficients are for the test data set, as compared to the retinal 
reliability of ganglion cell PSTHs correlated between different sets of trials (dotted line is 
mean, grey bar is 1 s.e.m.) (D) Correlation coefficient between model and test data set 
for different numbers of cell types in the first and second layer. Dashed line indicates 8 
cell types, the value chosen for further analysis in this study. 
  
Figure 2. Structure of receptive fields of model cell types. (A) Receptive fields of 
model units in Layer 1 computed by presenting a white noise stimulus to the model, and 
shown as the spatial and temporal average of the space-time separable approximation 
to the receptive field. (B) Same for Layer 2. 
 
Figure 3. Model internal units are correlated with interneuron responses. (A) 
Schematic of experiment. Models were fit to natural scenes or white noise stimuli. 
Bipolar or amacrine cells from a different retina were recorded intracellularly responding 
to a different white noise sequence. (B) Spatiotemporal receptive fields of example 
interneurons recorded from a separate retina, and the model unit that was most 
correlated with that interneuron. The model was never fit to the interneuron’s response. 
(C) Top. Correlation map of a model cell type with the response of an interneuron 
recorded from a different retina to a white noise stimulus. Each pixel is the correlation 
between the interneuron and a different spatial location within a single model cell type. 
Bottom. Responses compared to the most correlated model unit and the interneuron. (D) 
The average correlation between different interneuron types (7 bipolar, 26 amacrine) 
and model cell types ranked from most correlated model unit (left) to least (right). 
Dashed lines indicate the correlation between an interneuron’s response and an LN 
model fit to a separate segment of the recording from the same interneuron. Thus, the 
correlation between model units and interneurons approaches the variability of the 
interneurons themselves. Dotted lines indicates correlation between interneuron 
responses and a null model, fit after taking the spikes of a ganglion cell in 5 second 
blocks and shifting them randomly relative to the stimulus (E). Average correlation 
between interneuron recordings and the most correlated CNN unit from a different retina, 
an LN model fit to the same interneuron, and the null model. 
 
Figure 4. CNN models reveal that many nonlinear retinal computations are 
engaged in natural scenes. After fitting a model to natural scenes, a number of 
artificially structured stimuli were presented to the model. (A) Contrast adaptation. Left. 
LN model of a ganglion cell responding to a uniform field stimulus with low or high 
contrast, showing adaptive changes in temporal filtering and gain. Middle, Median 
temporal frequency taken from the Fourier transform of the temporal filter, averaged over 
a population of ganglion cells as a function of contrast. Results shown for models fit to 
natural scenes and white noise. Right, Averaged gain measured as the slope of the 
nonlinearity as a function of contrast, showing that CNN models decrease their decrease 
their gain with contrast when fit to natural scenes, but not when fit to white noise. (B) 
Latency encoding. Left: Flash response with intensities ranging from weak to strong. 
Right: Latency of the peak response vs. stimulus intensity for models trained on natural 
scenes or white noise. (C) Motion reversal. Stimulus consists of a moving bar that 
abruptly reverses direction at different positions. Left. Published results of a population 
of ganglion cells showing a synchronous response (arrow) to the reversal. Also shown is 
the population response of CNN model cells. (D) Motion anticipation. Population 
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ganglion cell responses to a flashed bar (red) vs motion to the right (blue) or left (green), 
from published results18 (left) or the CNN model (right). (E) Omitted stimulus response 
(OSR). Left. Published results19 showing the response to a missing stimulus following a 
train of flashes. Right. CNN model response to a sequence of three flashes. The OSR 
(arrow) appears for models trained on natural scenes but not white noise. (F) Frequency 
doubling in response to reversing gratings of different width, computed as the ratio of the 
response at twice the stimulus frequency (F2) and the response at the stimulus 
frequency (F1). (G) Polarity reversal. Example reversal of polarity during a natural image 
sequence. Each panel shows the current image (top) and corresponding instantaneous 
receptive field (bottom) for an example cell at a fixed delay (~100 ms) relative to the 
stimulus at different times during the sequence, showing fast kernel reversal from an 
OFF- feature (blue) to ON- (red) and back. Rapid receptive field changes are further 
analyzed in Fig. 5. (H). Object Motion Sensitivity. CNN models were fit to either jittered 
static images or natural movies consisting of swimming fish in the presence of image 
jitter and saccade-like transitions. Stimuli were then shown to the model consisting of a 
jittering central grating surrounded by a jittering background grating. Gratings moved 
either synchronously (Global motion) representing eye movements, or asynchronously 
(Differential Motion) representing object motion. Shown is the ratio of firing rates in 
Global Motion to Differential Motion. A ratio much less than one indicates Object Motion 
Sensitivity. Results for (A-F) are from a population of 26 ganglion cells. Figures 
reproduced with permission from authors. 
 
Figure 5.  Dynamic mode switching of retinal receptive fields. (A) Diagram of the 
instantaneous receptive field (IRF) as the sensitivity of the ganglion cell to the stimulus 
at each moment. (B) Average correlation coefficient between IRFs at different times 
separated by a time interval Δt  for white noise and natural scenes. Also shown for 
comparison are average correlations between stimulus frames. (C) Four IRF clusters for 
a single cell. Top Row: Average spatiotemporal stimulus that drove an IRF cluster, 
shown as a sequence of stimulus frames from 200 ms to 100 ms preceding a spike. 
Bottom Row: The mean spatiotemporal IRF in each cluster. Left, Two different IRF 
clusters showing motion sensitivity (Top: motion up, Bottom: motion down), which were 
driven by an edge. Right. IRF clusters driven by intensity changes showing a biphasic 
OFF receptive field when the background intensity changed, and a biphasic On 
receptive field when the stimulus center brightened. (D) t-sne analysis of IRFs, colored 
by cluster identity from k-means clustering of IRFs performed separately. (E) Top left. 
For 26 neurons with 12 IRFs clusters each, radial axis shows Direction Selectivity Index 
for IRFs and mean receptive field (MRF), plotted against the preferred angle of motion. 
Top right. Same for Orientation Selectivity Index. Bottom left. Normalized value of the 
first peak (either positive or negative) of the temporal filter, plotted against the time of the 
peak for IRFs and MRF. Bottom right. The position of the center of mass of IRFs relative 
to the center of mass of the MRF (black point at zero). 50 µm corresponds to ~ one 
visual degree.  
 
Figure 6. Interneuron contributions to natural and artificial scenes. (A) Diagram of 
concept of Interneuron Contributions (INCs), which represent how much each model unit 
(cell) contributes to the model’s output for each particular stimulus (see methods). We 
focused on the contribution of Layer 1 model units, and averaged over all units of a 
given type (B) INCs for the 8 cell types for the model’s first layer for a natural stimulus 
sequence. Each colored row shows the contribution of a cell type in layer 1 of the model. 
(C) t-SNE plot including natural scenes, white noise, and several artificially structured 
stimuli that can be summarized by a single 400 ms stimulus sequence. Each point in the 
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plot represents the vector of interneurons in layer 1 contributing to the response at a 
single time point.  
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