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Abstract 
 
The normal function of the retina is to convey information about natural visual 
images. It is this visual environment that has driven evolution, and that is 
clinically relevant. Yet nearly all of our understanding of the neural computations, 
biological function, and circuit mechanisms of the retina comes in the context of 
artificially structured stimuli such as flashing spots, moving bars and white noise. 
It is fundamentally unclear how these artificial stimuli are related to circuit 
processes engaged under natural stimuli. A key barrier is the lack of methods for 
analyzing retinal responses to natural images. We addressed both these issues by 
applying convolutional neural network models (CNNs) to capture retinal 
responses to natural scenes. We find that CNN models predict natural scene 
responses with high accuracy, achieving performance close to the fundamental 
limits of predictability set by intrinsic cellular variability. Furthermore, individual 
internal units of the model are highly correlated with actual retinal interneuron 
responses that were recorded separately and never presented to the model during 
training. Finally, we find that models fit only to natural scenes, but not white 
noise, reproduce a range of phenomena previously described using distinct 
artificial stimuli, including frequency doubling, latency encoding, motion 
anticipation, fast contrast adaptation, synchronized responses to motion reversal 
and object motion sensitivity. Further examination of the model revealed 
extremely rapid context dependence of retinal feature sensitivity under natural 
scenes using an analysis not feasible from direct examination of retinal 
responses. Overall, these results show that nonlinear retinal processes engaged 
by artificial stimuli are also engaged in and relevant to natural visual processing, 
and that CNN models form a powerful and unifying tool to study how sensory 
circuitry produces computations in a natural context. 
 
 
While evolution sculpted the retina to process natural visual stimuli, our inability to model 
such processing has led to a focus on understanding retinal responses to white noise or 
simple artificial stimuli. This raises a fundamentally unanswered question: are the 
earliest visual computations elicited by these artificial stimuli at all relevant to 
understanding computations elicited by natural stimuli? 
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In recent years deep learning has led to dramatic advances in our ability to discriminate 
and classify natural images using feedforward convolutional networks.1 However, when 
deep or recurrent neural networks are used to model neurobiological systems, the 
comparison between model activity and brain activity is often only verified at a coarse 
resolution, at the level of entire population dynamics2,3, or linear combinations of neurons 
4-6, and in contexts that are not very different from the contexts that the networks were 
originally trained in. Thus, the advent of deep learning as a modeling approach in 
neuroscience raises two more fundamental unanswered questions. First, can artificial 
deep neural network computations capture neurobiological circuit computations, at the 
level of individual neurons? And second, can such network models generalize to 
contexts that are vastly different from those in which they were trained, providing support 
that they actually capture ground truth information about neurobiological circuit 
computation?  
 
In this work we address the above questions, in the context of the first steps of vision, by 
developing highly accurate convolutional neural network models of the retinal response 
to natural scenes.  The internal functional architecture of our models match that of the 
retina at the level of individual neurons, and moreover our models generalize from 
natural scenes, but not white noise, to a wide range of artificially structured stimuli with 
vastly different statistics. Thus this work provides quantitative validation for the deep 
learning approach to neuroscience in an experimentally accessible sensory circuit, 
places decades of work7-15 on retinal responses to artificially structured stimuli on much 
firmer foundations of ethological relevance, and highlights the fundamental importance 
of studying sensory circuit responses to natural stimuli. 
 
CNNs learn accurate models of the retinal response to natural scenes 
 
Given the vertebrate retina has three layers of cell bodies, we tested whether three layer 
CNN models (Figure 1) could predict the responses of populations of salamander retinal 
ganglion cells responding to a 50 minute sequence of either natural images or 
spatiotemporal white noise. Natural scene images changed every second, and were 
jittered with the statistics of fixational eye movements16,17, creating a spatiotemporal 
stimulus. The model had up to eight different model cell types in each of the first and 
second layers, with each cell type having a distinct receptive field, and a final fully 
connected layer that represented the responses of individual ganglion cells. We found 
that CNN models could predict the responses of ganglion cells to either natural scenes 
or white noise nearly up to a fundamental limit of precision set by intrinsic neural  
variability, and were substantially more accurate than linear-nonlinear (LN) models 18 or 
generalized linear models (GLMs) 19 (Figure 1B, C). 
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Figure 1. Convolutional neural networks provide accurate models of the retinal response 
to natural scenes. (A) Convolutional neural network model trained to predict the firing rate of 
simultaneously recorded retinal ganglion cells from the spatiotemporal movie of natural scenes. 
The first layer is a spatiotemporal convolution, the second is a spatial convolution, and the third is 
a final dense layer, with rectifying nonlinearities in between each layer. Each location within the 
model also has a single parameter that scales the amplitude of the response. (B) PSTHs 
comparing recorded data and Linear-Nonlinear (LN) or CNN models for the test data set. (C) 
Comparison of LN, Generalized Linear Model (GLM) and CNN model predictions for a 25 second 
segment of a natural scene movie. Correlation coefficients are for the test data set, as compared 
to the retinal reliability of ganglion cell PSTHs correlated between different sets of trials (dotted 
line is mean, grey bar is 1 s.e.m.) 
 
CNN internal units have receptive field structure matching retinal interneurons 
 
To examine whether the internal computations of CNN models were similar to those 
expected in the retina, we computed receptive fields for first and second layer units 
(model cells) in CNNs trained on responses to natural scenes. Receptive fields were 
computed by the standard method of reverse correlating the activity of model units with a 
white noise input. We found that the receptive fields of CNN units had the well-known 
structure of retinal interneurons20,21, with a spatially localized center-surround structure 
(Fig. 2A-B, Extended Data, Fig. 1). 
 
Comparing the responses to full-field flashes of CNNs trained on natural scenes and a 
previously recorded dataset of amacrine and bipolar cells, we observed that both first 
and second CNN layer responses exhibited sustained and transient flash responses 
22,23, depending on the unit type, that qualitatively matched the flash responses of real 
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bipolar and amacrine cells (Figure 2C). Bipolar cells do not have strongly rectified 
responses, which matched the first layer units of the model by construction, as at this 
level signals have only passed through a linear filter. The second layer of the model 
contained both nearly-linear and more rectified responses as found in the amacrine cell 
population 24 (Figure 2C-D). Thus, CNNs reproduce the progression of diversity in the 
retina, with the first layer having stereotyped, bipolar-like units and the second layer 
having a diverse set of both linear and nonlinear units. 
 

 
Figure 2. Model internal units are correlated with interneuron responses. (A) Receptive 
fields of model units in Layer 1 shown as separable spatial and temporal components. (B) Same 
for Layer 2. (C) Flash responses of (Left) an example OFF sustained, narrow field amacrine cell 
and an OFF bipolar cell, (Middle) example first layer units, and (Right) example second layer 
units. (D) Nonlinearities of an LN model computed for Layer 2 units, corresponding to units shown 
in (B). (E). Spatiotemporal receptive fields of example interneurons recorded from a separate 
retina, and the model unit that was most correlated with that interneuron. The model was never fit 
to the interneuron’s response. (F) Top. Correlation map of a model cell type with the response of 
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an interneuron recorded from a different retina to a white noise stimulus. Each pixel is the 
correlation between the interneuron and a different spatial location within a single model cell type. 
Bottom. Responses compared to the most correlated model unit and the interneuron. (G) For 
Layers 1 and 2 the average correlation between different interneuron types (7 bipolar, 26 
amacrine) and model cell types ranked from most correlated model unit (left) to least (right). 
Dotted lines indicate the maximum correlation in our dataset observed between neurons, 
computed by fitting an LN model to Cell 1, and then spatially shifting that model to the location of 
Cell 2 so that the LN model was presented the stimulus experienced by Cell 2. Thus, the 
correlation between model units and interneurons approaches the variability between 
interneurons themselves.  (H) Average correlations between an interneuron’s response and an 
LN model fit to the same interneuron, or the most correlated unit from a CNN model fit to a 
different retina. (I). Correlation between interneuron recordings and the most correlated CNN unit 
from a different retina or an LN model fit to the same interneuron a function of the amount of data. 
 
 
Because retinal cell types are not perfectly homogeneous 25,26, the model contained for 
each location a parameter that scaled the receptive field amplitude. These parameters 
created a modest improvement in performance (0.69 ±  0.02 vs  0.66 ±  0.02 correlation 
coefficient without scaling parameters), and created receptive fields in layer 2 that had 
small differences within a cell type (Extended Data, Fig. 2) as seen in retinal neurons. 
Although layer 2 did contain receptive fields that varied to a greater extent, these arose 
from retinal locations that did not contribute to the recorded neurons, and were therefore 
unconstrained in the model (Extended Data, Fig. 3). 
 
CNNs internal units are highly correlated with interneuron responses 
 
In inferotemporal cortex, units of CNNs have been shown to be correlated with a linear 
combination of the activity of individual neurons 4 making it difficult to draw conclusions 
about individual neurons by an examination of CNN units. We compared the activity of 
CNN units to interneuron recordings performed on separate retinae that the model was 
never fit to. The stimulus presented to the retina and separately to the model was a 
spatiotemporal white noise checkerboard, a stimulus that has no spatiotemporal 
correlations except for the 50 µm size and 10 ms duration of square stimulus regions. 
We compared each interneuron recording with 8 units of the first layer and 8 units of the 
second layer at each location to find the most correlated unit in the model at the location 
of the cell. We found that each recorded interneuron was highly correlated with a 
particular unit type, and only at a single location (Figure 2E-H). Spatiotemporal receptive 
fields were highly similar between recorded interneurons, and their most correlated 
model cell type (Fig. 2E). The magnitude of this correlation approached that found 
between recorded interneurons in our dataset, correcting for different the spatial 
locations of recorded interneurons (Figure 2F,G). This correlation was specific for 
individual unit types, as could be observed by ranking the unit types from most to least 
correlated, and finding that the second and lower most correlated unit types were 
substantially less correlated with the interneuron than the most correlated unit (Fig. 2G).  
 
Moreover, we find that these model units fit to a different retina predict the response of 
an interneuron as well as LN models directly fit to the interneuron membrane potential 
(Figure 2H), and can do so with much less data (Figure 2I). Using a CNN model trained 
on the retinal ganglion cell responses to natural scenes from a different retina, it took 
less than 10 seconds of data to find the model unit most correlated with the recorded 
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interneuron, producing a model on par with an LN model directly fit to 80 seconds of 
interneuron membrane potential (Figure 2H). Thus, fitting a CNN model to the natural 
scene responses of retinal ganglion cells alone generates a model of an entire 
population of interneurons, many of which have high correlation with measured 
interneuron responses created with a different stimulus and a different retina. 
 
CNNs replicate wide range of retinal phenomena 
 
Numerous nonlinear computations have been identified by presenting artificial stimuli to 
the retina, including flashing spots, moving bars and white noise. However we neither 
understand to what degree natural vision engages these diverse retinal computations 
elicited by artificial stimuli, nor understand the relationship between these computations 
under natural scenes and underlying retinal circuitry. We tested models fit either only to 
natural scenes or white noise by exposing them to a battery of structured stimuli 
previously used in the literature to identify and describe retinal phenomena. We focused 
on effects shorter than 400 ms, which was the longest timescale our model could 
reproduce as limited by the first layer spatiotemporal filter. Remarkably, the CNN model 
exhibited fast contrast 7-9 adaptation (Fig. 3A), latency encoding 10 (Fig. 
3B), synchronized responses to motion reversal 11(Fig. 3C), motion anticipation 12 (Fig. 
3D), the omitted stimulus response 13 (Fig. 3E), frequency doubling in response to 
reversing gratings 14 (Fig. 3F) and polarity reversal 15(Fig. 3G). All of these response 
properties arose in a single CNN model simply as a by-product of optimizing the models 
to capture ganglion cell responses to natural scenes. CNN models trained on white 
noise did not exhibit all of these phenomena, indicating that natural scene statistics 
trigger nonlinear computations that white noise does not. Even though these natural 
scenes consisted only of a sequence of images jittered with the statistics of fixational 
eye movements (the stimulus contained no explicit object motion or periodic patterns), 
the CNNs still exhibited motion anticipation and reversal, and the omitted stimulus 
response. 
 
The only retinal phenomenon we tested that was not captured by the model was the 
object motion sensitive (OMS) response17. We hypothesized that the absence of an 
OMS response in the model was due to the lack of differential motion in the training 
stimulus, and trained additional models on the retinal response to movies of swimming 
fish that include differential motion. We found that these models did indeed exhibit an 
OMS response (Fig. 3H). This observation supports the conclusion that the presence of 
a computation in the model indicates that the computation is engaged under the stimulus 
used to fit the model. We thus conclude that the nonlinear circuit properties that produce 
these phenomena are indeed engaged during natural scenes, and that all of these 
identified computations, previously identified only with artificial stimuli, are nonetheless 
highly relevant to natural vision. 
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Figure 3. CNN models reveal that many nonlinear retinal computations are engaged in 
natural scenes. (A) Contrast adaptation. Left: LN model during high (35 %) and low (5 %) 
contrast, showing changing temporal filters and gain as shown by the slope of the nonlinearity. 
Middle: Temporal filters of a CNN model ganglion cell at high and low contrast, as well as 
nonlinearities at several contrasts from low (green) to high (blue). Right, Top: Median temporal 
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frequency taken from the Fourier transform of the temporal filter, averaged over a population of 
ganglion cells as a function of contrast. Results shown for models fit to natural scenes and white 
noise. Right, Bottom: Averaged gain measured as the slope of the nonlinearity as a function of 
contrast, showing that CNN models decrease their decrease their gain with contrast when fit to 
natural scenes, but not when fit to white noise. (B) Latency encoding. Published results showing 
latency encoding as a function of the strength of a flashed stimulus that varies in position 10. 
Middle: Flash response with intensities ranging from weak (yellow) to strong (purple). Right: 
Latency of the peak response vs. stimulus intensity for models trained on natural scenes or white 
noise. (C) Motion reversal. Stimulus consists of a moving bar that abruptly reverses direction at 
different positions. Left. Published results of a population of ganglion cells showing a 
synchronous response (arrow) to the reversal. Also shown is the population response of CNN 
model cells, trained for natural scenes (middle) or white noise (right). (D) Motion anticipation. 
Population ganglion cell responses to a flashed bar (red) vs motion to the right (blue) or left 
(green), from published results12 (left) or the CNN model (right). (E) Omitted stimulus response 
(OSR). Left. Published results13 showing the response to a missing stimulus following a train of 
flashes and a histogram of the slope of the OSR delay vs. the stimulus period. A slope of one 
indicates the OSR tracks the stimulus period exactly. Right. CNN model response to a sequence 
of three flashes. The OSR (arrow) appears for models trained on natural scenes but not white 
noise. Also shown is a histogram of the slope of the OSR delay vs. the stimulus period as it was 
varied from 8 – 20 Hz (F) Frequency doubling in response to reversing gratings of different width, 
computed as the ratio of the response at twice the stimulus frequency (F2) and the response at 
the stimulus frequency (F1) . (G) Polarity reversal. Example reversal of polarity during a natural 
image sequence. Each panel shows the current image (top) and corresponding instantaneous 
receptive field (bottom) for an example cell at a fixed delay (~100 ms) relative to the stimulus at 
different times during the sequence, showing fast kernel reversal from an OFF- feature (blue) to 
ON- (red) and back. Rapid receptive field changes are further analyzed in Fig. 4. (H). Object 
Motion Sensitivity. CNN models were fit to either jittered static images or natural movies 
consisting of swimming fish in the presence of image jitter and saccade-like transitions. Stimuli 
were then shown to the model consisting of a jittering central grating surrounded by a jittering 
background grating. Gratings moved either synchronously (Global motion) representing eye 
movements, or asynchronously (Differential Motion) representing object motion. Shown is the 
ratio of firing rates in Global Motion to Differential Motion. A ratio much less than one indicates 
Object Motion Sensitivity. Results for (A-F) are from a population of 26 ganglion cells. Figures 
reproduced with permission from authors. 
 
CNNs reveal extreme context dependence of the retinal code 
  
Receptive fields in sensory neuroscience are typically thought of as representing a static 
sensory feature, although it is known that this feature can change due to adaptation to 
the statistics of the stimulus 27-29. An attractive feature of CNN models is that the 
instantaneous receptive field can be easily computed as the gradient of the model output 
with respect to the current stimulus. Computing the gradient of the model revealed that 
in addition to the previously described property of polarity reversal (Fig. 3G) the 
instantaneous receptive field showed an extreme context sensitivity (Fig. 4), thereby 
revealing the full complexity of how visual feature sensitivities change during natural 
images. This shows that multiple parallel pathways, each encoding different features, 
are dynamically selected to generate the ganglion cell response to natural scenes even 
on a timescale as short as 10 ms. 
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Figure 4. Extreme context dependence of retinal receptive fields. (A) Left. The average 
receptive field computed as the average gradient of the model output with respect to the stimulus. 
Right. The instantaneous spatiotemporal receptive field (IRF) computed as the instantaneous 
gradient. At top are shown different images at a fixed latency relative to the time that each IRF 
was computed. (B) Expanded view of different IRFs for a single cell at different times during the 
stimulus. (C). For a single model ganglion cell, the distribution of correlation coefficients of each 
IRF with the average receptive field, indicating the range of variation of the IRF. (D) Same as (C) 
averaged over a population of 37 ganglion cells.  
 
Overall, our results indicate that CNN models accurately capture the responses of the 
retina to natural scenes and generalize to reproduce much of the phenomenology 
previously described using an internal representation that is highly correlated with actual 
interneuron responses. Although we cannot state at this point whether there is a one-to-
one correspondence of model units to interneurons, the current results are sufficient to 
indicate the feasibility of a program of successive refinement of the model. Such a 
program would use recorded interneuron responses, directly measured effects of current 
injection into those interneurons on retinal ganglion cell responses 24,30 and 
connectomics data31 to constrain and reoptimize these models, with the promise of a 
complete computational and circuit level description of the retina under natural scenes. 
 
Methods 
 
Visual Stimuli. A video monitor projected the visual stimuli at 30 Hz controlled by 
Matlab (Mathworks), using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Stimuli 
had a constant mean intensity of 10𝑚𝑊 𝑚%. Images were presented in a 50 x 50 grid 
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with a square size of 25 µm at a frame rate of 100 Hz. Static natural jittered scenes 
consisted of images drawn from a natural image database 32 and drifted in two 
dimensions with the approximate statistics of fixational eye movements 17. The image 
also changed to a different location every one second, representing a saccade-like 
transition. Natural movies consisted of fish swimming in an aquarium, and contained 
both drift and saccade-like transitions that matched static jittered natural scenes. For 
analysis of model responses to artificial stimuli (Fig. 3), unless otherwise stated stimuli 
were chosen to match published values for each phenomenon. 
 
Electrophysiology. Retinal ganglion cells of larval tiger salamanders of either sex were 
recorded using an array of 60 electrodes (Multichannel Systems) as previously 
described 33. Intracellular recordings were performed using sharp as previously 
described 24. 
 
Model training. We trained convolutional neural network models to predict retinal 
ganglion cell responses to either a white noise or natural scenes stimulus, 
simultaneously for all cells in the recorded population of a given retina 34. Model 
parameters were optimized to minimize a loss function corresponding to the negative 
log-likelihood under Poisson spike generation,  

 
where  and  are the actual and predicted firing rates of the retinal ganglion cells at 
time t, respectively with a batch size of T , chosen to be 50 s. To help with model fitting, 
we smoothed retinal ganglion responses during training with a 10 ms standard deviation 
Gaussian, the size of a single time bin in our model. 
 
The architecture of the convolutional neural network model consisted of three layers, 
with 8 cell types (or channels, in the language of neural networks) per layer. Each layer 
consisted of a linear spatiotemporal filter, followed by a rectification using a rectified 
linear unit (ReLU). For each unit, an additional parameter scaled the activation of the 
model unit prior to the rectified nonlinearity. This scaling parameter could vary 
independently with location. 
 
Optimization was performed using Adam 35, a variant of stochastic gradient descent. 
Models were trained using TensorFlow36 on NVIDIA Titan X GPUs. Training an 
individual model to convergence required ~8 hours on a single GPU. The networks were 
regularized with an L2 weight penalty at each layer and an L1 activity penalty at the final 
layer, which helped maintain a baseline firing rate near 0 Hz. 
 
We split our dataset into training, validation, and test sets, and chose the number of 
layers, number of filters per layer, the type of layer (convolutional or fully connected), 
size of filters, regularization hyperparameters, and learning rate based on performance 
on the validation set. We found that increasing the number of layers beyond three did 
not improve performance, and we settled on eight filter types in both the first and second 
layers, with filters that were much larger (Layer 1,15 x 15 and Layer 2, 11 x 11) 
compared to traditional deep learning networks used for image classification (usually 5 x 
5 or smaller).  Values quoted are mean ±  s.e.m. unless otherwise stated. 
 

L(yt, ŷt) =
1

T

TX

t=0

ŷt � yt log ŷt,

yt ŷt
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Linear-Nonlinear Models. Linear-nonlinear models were fit by the standard method of 
reverse correlation to a white noise stimulus 18. We found that these were highly 
susceptible to overfitting the training dataset, and imposed an additional regularization 
procedure of zeroing out the stimulus outside of a 500 μm window centered on the cell’s 
receptive field. 
 
Generalized Linear Models. Generalized linear models (GLMs) were fit by minimizing the 
same objective as used for the CNN, the Poisson log-likelihood of data under the model. 
We performed the same cutout regularization procedure of only keeping the stimulus 
within a 500 μm region around the receptive field (this was critical for performance). The 
GLMs differed from the linear-nonlinear models in that they have an additional spike 
history feedback term used to predict the cell’s response (Pillow et. al. 2008). Instead of 
the standard exponential nonlinearity, we found that using soft rectified functions 
log(1+exp(x)) gave better performance. 
 

 
Extended Data Figure 1. Example spatiotemporal receptive fields of Model Units. Shown 
are example receptive fields of model units that contributed most strongly in each layer to the 
responses of the recorded ganglion cell population. The strength of the contribution for each unit 
in each location was computed as the gradient of the model output with respect to each cell type 
in each location. 
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Extended Data Figure 2. Variation of model units within a single cell type. Shown are 
receptive fields in layer 2 in different locations for the same cell type in a single model, all of 
which were in the thirty units that contributed most strongly to the recorded ganglion cells. 
 

 
Extended Data Figure 3. Unconstrained model units that did not contribute strongly to 
model output. Example receptive fields in layer 2 that generated a contribution that was among 
the weakest to model output, as assessed by computing the gradient of the model’s output with 
respect to the unit. 
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