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Measurement invariance explains the universal law of generalization for
psychological perception

Steven A. Frank∗

The universal law of generalization describes how animals discriminate between alternative sensory
stimuli. On an appropriate perceptual scale, the probability of discrimination typically declines expo-
nentially with the difference on the perceptual scale. Exceptions often follow a Gaussian probability
pattern rather than an exponential pattern. Previous explanations have been based on underlying the-
oretical frameworks such as information theory, Kolmogorov complexity, or empirical multidimensional
scaling. This articles shows that the few inevitable invariances that must apply to any reasonable per-
ceptual scale provide a sufficient explanation for the universal exponential law of generalization. In
particular, reasonable measurement scales of perception must be invariant to shift by a constant value,
which by itself leads to the exponential form. Similarly, reasonable measurement scales of perception
must be invariant to multiplication, or stretch, by a constant value, which leads to the conservation of
the slope of discrimination with perceptual difference. In some cases, an additional assumption about
exchangeability or rotation of underlying perceptual dimensions leads to a Gaussian pattern of discrim-
ination, which can be understood as a special case of the more general exponential form. The three
measurement invariances of shift, stretch, and rotation provide a sufficient explanation for the univer-
sally observed patterns of perceptual generalization. All of the additional assumptions and language
associated with information, complexity, and empirical scaling are superfluous with regard to the broad
patterns of perception.
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Introduction

The probability that an organism perceives two stim-
uli as similar typically decays exponentially with sep-
aration between the stimuli. The exponential decay
in perceptual similarity is often referred to as the uni-
versal law of generalization (Shepard, 1987; Chater
& Vitányi, 2003).

Generalization arises because perceived similarity
may describe recognition of a general category. For
example, two circles may have different sizes, col-
ors, and shadings. Perceived similarity arises from
the generalized perception of circle as a category.

Universal law arises because many empirical obser-
vations fit the pattern for diverse sensory modalities
across different species. Typical exceptions take on a
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Gaussian probability pattern for perceived separation
(Ghirlanda & Enquist, 2003).
Both theory and empirical analysis depend on the

definition of the perceptual scale. How does one
translate the perceived differences between two cir-
cles with different properties into a quantitative mea-
surement scale?
There are many different suggestions in the lit-

erature for how to define a perceptual scale. Each
of those suggestions develop very specific notions
of measurement based, for example, on information
theory, Kolmogorov complexity theory, or multidi-
mensional scaling descriptions derived from observa-
tions (Shepard, 1987; Chater & Vitányi, 2003; Sims,
2018).
I focus on the minimal properties that any reason-

able perceptual measurement scale must have rather
than on detailed assumptions motivated by external
theories of information, complexity, or empirical scal-
ing. I express the minimal properties as simple invari-
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ances.
I show that a few inevitable invariances of any rea-

sonable perceptual scale determine the exponential
form for the universal law of generalization in percep-
tion. All of the other details of information, complex-
ity, and empirical scaling are superfluous with respect
to understandingwhy the universal law of generaliza-
tion has the exponential form.
I also show that, when the separation between

stimuli depends on various underlying perceptional
dimensions, it sometimes makes sense to assume that
the perceptual scale will also obey exchangeability or
rotational invariance. When that additional invari-
ance holds, the universal law takes on the Gaussian
form, which I will show to be a special case of the
general exponential form.

Basic problem and notation

The notation P(Rb |Sa) describes the probability of a
positive response, Rb , to the event b, given an initial
stimulus, Sa , by the event a. A positive response ex-
presses the perceived similarity of b to a, which may
also be thought of as expressing the generalization
that b and a belong to the same category.
The goal here is to understand how the perceived

similarity of b to a, observed as Rb |Sa , translates into
a continuous psychological measurement scale, Tb |a ,
so that

P(Rb |Sa) ≡ f (Tb |a)

for a suitably defined mapping Rb |Sa 7→ Tb |a and
probability distribution function, f . We seek the
characteristics of the mapping and the associated
function, f .

Invariant properties of measurement

There are many different suggestions in the literature
for how to define a perceptual scale, Tb |a (Shepard,
1987; Chater & Vitányi, 2003; Sims, 2018). I focus
on the minimal properties that any reasonable mea-
surement scale must have, rather than on detailed
assumptions motivated by external theories (Luce &
Narens, 2008; Narens & Luce, 2008; Houle et al.,
2011). I express the minimal properties as simple in-
variances. Before listing the invariances, consider the

simple example of temperature scales.
Suppose we wish to analyze the perception of tem-

perature for event b, given that event a is at the freez-
ing point for water. If we choose to measure the
temperature on the Celsius scale, then Ta |a = 0 and
Tb |a = C. It would make sense to assume that percep-
tual generalization would be identical if we assigned
numerical values on a Fahrenheit scale, T̃ , which we
obtain by T̃b |a = 32 + 1.8Tb |a . In other words, per-
ception should be independent of a shift and stretch
of the scale by constant values.
Formally, the scale should be shift invariant with

respect to any constant, α , such that

f (Tb |a) = kα f (Tb |a + α) (1)

for some constant of proportionality, kα . The scale
should also be stretch invariant to any constant, β ,
such that

f (λTb |a) = f (λββTb |a), (2)

for which I show below that λ = λββ is an invariant
constant that is conserved in any particular applica-
tion, set by the fact that 1/λ is the average value on
the perceptual scale for positive responses to varying
events b for a given stimulus a.
Thus, the scale Tb |a has the property that the as-

sociated probability pattern is invariant to the affine
transformation of shift and stretch,Tb |a 7→ α + βTb |a .
I will show that affine invariance by itself determines
the exponential form for the universal law of gener-
alization in perception.
In some cases, it makes sense to assume that the

perceptual scale should also obey rotational invari-
ance, such that the Pythagorean partition

Tb |a = y
2
1(θ ) + y

2
2(θ ) (3)

splits the measurement into components that add in-
variantly toTb |a for any value of the parameter θ . The
invariant quantity Tb |a defines a circle in the (y1,y2)

plane with a conserved radius Rb |a =
√
Tb |a that is

invariant to θ , the angle of rotation around the circle,
circumscribing a conserved area πR2

b |a = πTb |a .
Rotational invariance partitions a conserved quan-

tity into additive components, for which the order
may be exchanged without altering the invariant
quantity. When rotational invariance holds, the uni-
versal law takes on a Gaussian form, which we will
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see to be a special case of the general exponential
form.
The following sections develop the three invari-

ances of shift, stretch, and rotation. I show that essen-
tially all of the common properties of perceptual gen-
eralization follow from these invariances. The analy-
sis here briefly summarizes the detailed development
in Frank (2016). The novelty in this article concerns
the simple understanding of widely observed psycho-
logical patterns.

Shift invariance and the exponential
form

To simplify notation, denote the perceptual scale by
x ≡ Tb |a and the associated probability distribution
by f (x) ≡ f (Tb |a). If we assume that the functional
form for the probability distribution, f , is invariant to
a constant shift of the perceptual scale, x +α , then by
the conservation of total probability∫

k0 f (x) dx =
∫

kα f (x + α) dx = 1 (4)

holds for any magnitude of the shift, α , in which the
proportionality constant, kα , changes with the mag-
nitude of the shift, α , independently of the value of
x , in order to satisfy the conservation of total proba-
bility.
From this equality for total probability, which holds

for any shift α by adjustment of the constant, kα , the
condition for x ≡ Tb |a to be a shift-invariant scale is
equivalent to

f (x + α) = κα f (x), (5)

in which κα depends only on α and is independent
of x . Because the invariance holds for any shift, α , it
must hold for an infinitesimal shift, α = ϵ . We can
write the Taylor series expansion for an infinitesimal
shift as

f (x + ϵ) = f (x) + ϵ f ′(x) = κϵ f (x),

with κϵ = 1−λϵ , because ϵ is small and independent
of x , and κ0 = 1. Thus,

f ′(x) = −λ f (x)

is a differential equation with solution

f (x) = ke−λx ,

in which k is determined by the conservation of total
probability. When the perceptual scale ranges over
positive values, x > 0, then k = λ.
The assumption that a perceptual scale must be

shift invariant is, by itself, sufficient to explain the
exponential form of the universal law of generaliza-
tion.

Stretch invariance and rate of percep-
tual change

If we assume that the perceptual scale is defined for
positive values, x > 0, then the average value of λx is
always one, because∫ ∞

0
λx f (x)dx = λ

∫ ∞

0
λxe−λxdx = 1.

Thus, for average value, x̄ , the value of λ is 1/x̄ . We
can think of x̄ as the average discrimination of various
events, b, relative to an initial stimulus, a, in which
the set of events b corresponds to a uniform contin-
uum along the perceptual scale, x .
It makes sense to assume that the average discrim-

ination would not change if we arbitrarily multiplied
our numerical scale for perception, x , by a constant,
β . The conservation of average value and stretch in-
variance are equivalent, because

λ

∫ ∞

0
λββxe

−λβ βxdx = 1

whenwe allow λβ to adjust to satisfy the conservation
of average value so that λ = λββ or, equivalently, we
assume stretch invariance of the scale, x ≡ Tb |a .
The constant λ = 1/x̄ can be thought of as the slope

or rate of change in the logarithm of discrimination,
because

log f (x) = −λx .

Stretch invariance, or the conservation of average
value, are sufficient to set the rate of change in the
logarithm of discrimination. The average value of
− log f (x) is a common definition of information or
entropy, and is related to many interpretations in
terms of information theory (Cover & Thomas, 1991;
Sims, 2018).
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Rotational invariance and Gaussian
patterns

The scale, x , measures the perceptual difference be-
tween two entities or events. In some cases, the total
difference, x , depends on the perceived differences
along several distinct underlying dimensions. With
two underlying dimensions, we may write

x = z1(θ ) + z2(θ ).

For a particular value of x , the parameter θ describes
all of the combinations of the two underlying dimen-
sions that add invariantly to x . If we let x = r2 and
let the dependence of z on θ be implicit, we can write
the prior expression equivalently as

x = r2 =
√
z1

2
+
√
z2

2
,

which defines a circle with coordinates along the pos-
itive and negative values of

(√
z1,
√
z2

)
, with a con-

stant radius r that is rotationally invariant with re-
spect to the parametric angle, θ . Traditionally, one
uses yi =

√
zi , so that the radius, r , of a sphere has

the familiar definition of a Euclidean distance

r2 =
∑

y2
i .

For each radial value, r =
√
x , we can write {yi (θ )} as

the sets indexed by the parameter θ for which the in-
dividual dimensional measures combine to the same
invariant radius. If the angles of rotation with equiv-
alent radius occur with equal probability or without
prior bias, then radial values are rotationally invari-
ant with respect to probability or prior likelihood.
I now show that rotational invariance leads to the

Gaussian pattern as a special case of the general expo-
nential form. In the exponential form derived in ear-
lier sections, λx described the stretch-invariant per-
ceptual scale. To express that scale in terms of a ro-
tationally invariant radial measure, r , we note that
x = r2 and we let λ = πv2. Thus, we can write the
stretch-invariant incremental perceptual measure as

λdx = πv2dr2 = 2πv2rdr .

The general exponential form is

f (x) dx = λe−λxdx = 2πv2re−πv
2r 2

dr .

At a given radius, vr , if, by rotational invariance, all
combinations of values for the underlying measure-
ment dimensions occur without bias or prior informa-
tion, then the total probability in a radial increment,
vdr , is spread uniformly over the circumferential path
with length 2πvr .
A radial vector intersects a fraction of the total

probability density in the circumferential path in pro-
portion to 1/2πvr . Thus, the probability along an in-
crement vdr of the radial vector is

(1/2πvr )f (x)dx = ve−πv
2r 2

dr = ve−λr
2
dr ,

invariantly with respect to the angle of orientation
of the radial vector. This expression is the Gaussian
distribution, with r2 as the squared deviation from
the mean or central location, and with parameters
commonly written as λ = 1/2σ 2 and v = 1/

√
2πσ 2

for variance σ 2. The variance is simply the average
value of the squared radial deviations, r2 = x .
We can also write the Gaussian in terms of the stan-

dard perceptual scale, x , as

д(x)d
√
x = ve−λxd

√
x .

When we consider the standard perceptual scale, x ,
with respect to the incremental square-root scale,
d
√
x , we obtain a Gaussian. The incremental square-

root scale makes sense when we consider x as an
aggregate measure of the sum of underlying percep-
tual dimensions. Each dimension naturally takes on a
square-root scaling relative to the invariant total dis-
tance, because of the Euclidean measure of squared
distance as the sum of squares along each dimension.

Discussion

Any reasonable perceptual scale must satisfy the sim-
ple affine invariances of shift and stretch. I have
shown that those invariances are sufficient to explain
the exponential form of the universal law of general-
ization. I have also shown that an additional common
invariance of rotation explains why some observed
patterns of generalization follow a Gaussian rather
than exponential pattern. The Gaussian pattern is,
in fact, a special case of exponential scaling, when
the scale is a squared Euclidean distance metric over
several underlying dimensions.
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Previous explanations also generate the exponen-
tial pattern of the universal law (Shepard, 1987;
Chater & Vitányi, 2003; Sims, 2018). The reason
those explanations succeed is that they include as-
sumptions about shift invariance, which by itself gen-
erates an exponential pattern. All of the other as-
sumptions and language associated with those prior
explanations are superfluous with respect to the ex-
ponential form. Conclusions about rate of change in
discrimination typically associate with an assumption
about stretch invariance or, equivalently, conservation
of average value.
It is certainly true that additional assumptions will

lead to more precise predictions, which may then be
tested to rule out particular mechanisms. But those
additional assumptions and tests do not directly bear
on the general exponential form itself.
I do not know of explicit prior explanations that

unify the Gaussian pattern with the universal expo-
nential law. Such explanations, if they exist, will gen-
erally reduce to the assumption of rotational invari-
ance. Again, additional assumptions or arguments
about particular underlying mechanisms are super-
fluous with regard to the general pattern.
It is, of course, interesting to consider what un-

derlying perceptual mechanisms lead to the univer-
sal law. However, almost certainly, there is no single
mechanism that could explain such a widely observed
pattern. General patterns require general explana-
tions that apply broadly. The simple invariances of
meaningful measurement scales provide that general
explanation for the observed patterns of perceptual
scaling.
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