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Cognitive processes, such as the generation of language, can be mapped onto the brain using fMRI. These
maps can in turn be used for decoding the respective processes from the brain activation patterns. Given indi-
vidual variations in brain anatomy and organization, analyzes on the level of the single person are important to
improve our understanding of how cognitive processes correspond to patterns of brain activity. They also allow
to advance clinical applications of fMRI, because in the clinical setting making diagnoses for single cases is
imperative. In the present study, we used mental imagery tasks to investigate language production, motor func-
tions, visuo-spatial memory, face processing, and resting-state activity in a single person. Analysis methods
were based on similarity metrics, including correlations between training and test data, as well as correlations
with maps from the NeuroSynth meta-analysis. Four blinded teams made predictions regarding the neuropsy-
chological domain (e.g. language) and the specific content (e.g. animal names) of single 30-second blocks.
Results showed that the similarity metrics allowed to reach the highest degrees of accuracy when predicting
the superordinate domain of a block. Overall, 23 of the 25 test blocks could be correctly predicted by three of the
four teams. Excluding the unspecific rest condition, up to 10 out of 20 blocks could be successfully decoded
regarding their specific content. The study showed how the information contained in a single fMRI session and
in each of its single blocks can allow to draw inferences about the cognitive processes an individual engaged
in. Simple methods like correlations between blocks of fMRI data can serve as highly reliable approaches for
cognitive decoding. We discuss the implications of our results in the context of clinical fMRI applications, with
a focus on how decoding can support functional localization.

Introduction

Paul Broca, whose work lay the foundations for the localiza-
tion of cognitive functions in the brain, speculated that “the
large regions of the mind correspond to the large regions of
the brain” (“les grandes régions de l’esprit correspondent
aux grandes régions du cerveau” in the french original)
(Broca, 1861). Today, it is well established that broad neu-
ropsychological domains, such as language, memory or
motor functions can be reliably mapped onto specific re-
gions of the brain (Satterthwaite and Davatzikos, 2015).
Functional magnetic resonance imaging (fMRI) is one non-
invasive method allowing to localize brain functions with lim-
ited but nevertheless remarkable detail (Kanwisher, 2017).
While this type of large-scale localization of functions can
provide only a limited understanding of how mind and brain
work, it has proven to be of direct practical use (Bunzl et al.,
2010; Szaflarski et al., 2017). In the clinical context, fMRI
plays an important role for planning surgery in patients with
tumors or epilepsies, as it aids the understanding of which

parts of the brain need to be spared in order to preserve
sensory, motor or cognitive abilities (Stippich, 2015). To be
useful for clinical diagnostics and prognostics, fMRI data
must be interpretable on the level of the individual case
(Dubois and Adolphs, 2016). Because in group studies id-
iosyncratic activity patterns can be obscured by averaging,
the precise mapping of brain function in a single person
has become a vanguard of fMRI research (Laumann et al.,
2015; Huth et al., 2016; Gordon et al., 2017). These stud-
ies are important to deepen our understanding of how the
brain works, because the functional organization of brains
becomes more heterogenous on a finer anatomical scale
(Laumann et al., 2015; Poldrack, 2017). Also, when look-
ing at increasingly smaller ‘regions of the mind’, such as
the neural correlates of specific words instead of language
in general, averaging on the group level can obscure the
fine spatial information which allows to differentiate these
contents in the individual brain (Huth et al., 2016). Sin-
gle participant studies can also provide valuable impulses
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for the use of fMRI as a clinical tool. This includes the
possibility to assess how stable results are within a sin-
gle participant, and how much data should be collected to
provide a reliable description of the individual’s functional
brain organization (Laumann et al., 2015; Gordon et al.,
2017). While the group average is a composite of many
individuals, the activity map of the individual is likewise a
composite of an underlying timecourse, consisting of many
separate observations of brain activity while performing a
task. Variability over the course of an fMRI session can
be expected due to factors such as head movement, fa-
tigue, increasing familiarity with the task and changes in
cognitive strategies (McGonigle, 2012; Gorgolewski et al.,
2013). The neuroradiologist’s interpretation of a single pa-
tient’s fMRI might therefore be substantially improved, if
she knows how the patient’s cognitive states changed over
time and how this relates to changes in brain activity pat-
terns. This is particularly important if the fMRI task does
not allow to monitor overt behavior. For example, in a lan-
guage production task, patients might be asked to produce
words from categories such as “fruits” or “animals” in a pre-
defined period of time (Woermann et al., 2003). Because
overt articulation of words produces movement artifacts,
the patients are asked to use only internal speech. Without
behavioral output from the patient, interpretation of fMRI
results is limited by the uncertainty about whether the task
was performed in the expected manner. A possible solution
might be the decoding of fMRI data, in order to learn what
the patient was thinking at each point in time. Decoding
refers to an inference from brain activity patterns to the cog-
nitive processes that accompanied them (Poldrack, 2006;
Haynes and Rees, 2006). In clinical practice, decoding
has proven to be highly valuable for communicating with
unresponsive patients (Owen et al., 2006; Boly et al., 2007;
Sorger et al., 2012). However, decoding methods are usu-
ally not being used in presurgical planning, where fMRI is
used to learn how cognitive processes can be mapped onto
the brain (i.e. encoding instead of decoding; Naselaris et al.
(2011)). When interpreting an activity map, decoding might
nevertheless be useful to better understand how the pa-
tient performed the task: Comparing different observations
within-patient might allow to assess the stability of task per-
formance during the fMRI session, while comparisons with
healthy controls allow to assess if the task was performed
in a prototypical way (Dubois and Adolphs, 2016).
The present fMRI-study aimed at decoding the domains of
language, motor functions, visuo-spatial memory, face pro-
cessing and task-free resting in a single individual. Each of
these task domains is relevant for presurgical planning and
can be used clinically in the individual patient (language
Woermann et al. (2003); motor Håberg et al. (2004); visuo-
spatial Jokeit et al. (2001); faces Parvizi et al. (2012)). We
used four mental imagery tasks and one rest task, where
the verbal instruction to engage one of the above mentioned
functions was the only external input given to the partici-

pant, and the fMRI data was the only output the participant
produced. In order to evaluate how well decoding works at
the level of individual fMRI blocks, we first analyzed a set of
training data to learn how predictions of each neuropsycho-
logical domain could be optimized using simple similarity
metrics. Then, test blocks were decoded regarding their
superordinate domains as well as their specific contents.
The study was carried out as part of a graduate course
in psychology at Bielefeld University, with four groups of
students making predictions for the test data.

Methods
2.1 Participant
Data was collected from one healthy, 25 years old, male
psychology student. The participant gave written informed
consent, including written informed consent to have his
brain data published online. The study was approved by the
ethics committee of Bielefeld University (ethics statement
2016-171).

2.2 Mental imagery instructions
For the four neuropsychological domains of language, sen-
sory-motor skills, visuo-spatial memory and visual process-
ing of faces, imagery instructions were adapted from the
literature: For language, a semantic verbal fluency task
was used, in which the participant had to generate as many
words belonging to a certain superordinate class as pos-
sible (e.g. animals, fruits; Woermann et al. (2003)). To
engage motor imagery, the participant was instructed to
perform different sports (e.g. tennis, soccer; Owen et al.
(2006)). To test visuo-spatial memory, the participant was
instructed to imagine walking in his hometown to different
familiar locations (e.g. school, church; Jokeit et al. (2001)).
To engage face processing mechanisms, the participant
was asked to imagine famous or familiar faces (e.g. ac-
tors, friends; O’Craven and Kanwisher (2000)). During time
periods of resting, the participant was told to engage in a
state of relaxed wakefulness. For each task, we tried to
derive predictions about the brain areas which should be
active when engaging in the respective cognitive process,
based on the literature. The predictions for each task are
summarized in Table 1.

2.3 Study design
We acquired three runs of fMRI data, with 25 blocks per
run, and a block length of 30 seconds. Within each run,
there were five blocks per condition and the order of the five
conditions was counterbalanced, so that they followed each
other equally often. This was achieved using a simplified
version of a serially balanced sequence (Nair, 1967). Dur-
ing the experiment, the participant lay in the MRI scanner
with eyes closed. Instructions to start thinking about one
of the four categories and the rest condition were given by
short verbal cues which were agreed upon beforehand (e.g.
“language – fruits”). Audibility was ensured by using an
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Table 1. Overview of tasks used in the paradigm.

neuropsychological domain task content reference studies anatomical predictions

language semantic verbal fluency animals, tools, cities, coun-
tries, occupations, fruits, cloth-
ing, vegetables, furniture, col-
ors

Woermann et al. (2003) Broca’s area, Wernicke’s area,
left SMA, VWFA

Sensory-motor skills sports badminton, tennis, swimming,
soccer, high jump, climbing,
hurdle race, archery, rope
skipping, juggling

Owen et al. (2006) SMA

visuo-spatial memory hometown walk city square, market, tram
station, train station, school,
church, basement, prome-
nade, city of Kiel, university

Jokeit et al. (2001); Owen et al.
(2006)

parahippocampal gyrus, pre-
motor cortex, posterior pari-
etal cortex

visual processing of faces famous and familiar faces family, friends, movie actors,
TV actors, athletes, politicians,
lecturers, teachers

O’Craven and Kanwisher
(2000); Haxby et al. (2000)

OFA, FFA, STS

resting relaxed wakefulness - Fox (2010) precueus, medial prefrontal
cortex, gyrus angularis

SMA, supplementary motor area; VWFA, visual word form area; OFA, occipital face area; FFA, fusiform face area; STS, superior temporal sulcus

acquisition protocol with 500ms pauses between volumes,
during which the instructions were given. In addition to
the three main runs, we added a one-minute run where
the participant was asked to first rest for 30 seconds and
then think a ’secret’ thought for 30 seconds, the content of
which he would not tell anyone and which was supposed
to be different from the contents of the main experiment.
Thus, this ’secret’ run was added to explore the possibility
of out-of-sample predictions of completely new thoughts,
for which we would not have any training data.

2.4 Data acquisition
MRI data were collected using a 3T Siemens Verio scan-
ner. A high-resolution MPRAGE structural scan was ac-
quired with 192 sagittal slices (TR=1900 msec, TE=2.5
msec, 0.8mm slice thickness, 0.75x0.75 in-plane resolu-
tion), using a 32-channel head coil. Functional echo-planar
images (EPI) were acquired with 21 axial slices oriented
along the rostrum and splenium of the corpus callosum
(slice thickness of 5 mm, in-plane resolution 2.4x2.4 mm),
using a 12-channel head coil. To allow for audible instruc-
tions during scanning, a sparse temporal sampling strategy
was used (TR=3000ms with 2500ms acquisition time and
500ms pause between acquisitions). Excluding two dummy
scans, a total of 253 volumes were collected for each run.

2.5 Data preprocessing
Basic preprocessing was performed using SPM12. Func-
tional images were motion corrected using the realign
function. The structural image was co-registered to the
mean image of the functional timeseries and then used
to derive deformation maps using the segment function
(Ashburner and Friston, 2005). The deformation fields
were then applied to all images (structural and functional)
to transform them into MNI standard space and upsam-
ple them to 2mm isomorphic voxel size. The full normal-

ized fMRI timecourses are available on doi.org/10.6084/
m9.figshare.5951563.v1. All further preprocessing steps
were carried out using Nilearn 0.2.5 (Abraham et al., 2014)
in Python 2.7. To generate an activity map for each of the
75 blocks, each voxel’s timecourse was z-transformed to
have mean zero and standard deviation one. Timecourses
were detrended using a linear function and movement
parameters were added as confounds. Then TRs were
grouped into blocks using a simple boxcar design shifted
by 2 TR (the expected shift in the hemodynamic response
function) and averaged, to give one averaged image per
block. These images were used for all further analyses
and are available on NeuroVault (https://neurovault.org/
collections/3467 ).

2.6 Data analysis
The first two fMRI runs (50 blocks total, 10 blocks per con-
dition) were used as a training set and the third fMRI run
(25 blocks total, 5 blocks per condition) was used as the
held-out test set. To ensure proper blinding of test data,
the block order was randomly shuffled and the 25 blocks
were then assigned letters from A to Y. The true labels of
the blocks were only known by the first author (MW), who
did not participate in making predictions for the test data.
Emulating the “common task framework” (Liberman, 2006)
15 of the authors formed four groups, of which each had to
submit their predictions regarding the domain (e.g. “motor
imagery”) and specific content (e.g. “tennis”) for each block
in written form. The authors making the predictions were all
graduate students of psychology, enrolled in a project sem-
inar at Bielefeld University. Only after all predictions were
submitted were the true labels of the test blocks revealed.
It was also then when the participant himself revealed what
he had thought about during the ’secret’ block. The groups
were allowed to analyze the training and test data in any
way they deemed fit, but all used a combination of the fol-
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lowing methods: (i) Visual inspection with dynamic varying
of thresholds using a software such as Mricron or FSLView.
(ii) Voxel-wise correlation of brain maps from the training
and the test set, to find the blocks which are most similar
to each other. (iii) Voxel-wise correlations of brain maps
with maps from NeuroSynth (Yarkoni et al., 2011), to find
the keywords from the NeuroSynth database whose pos-
terior probability maps are most similar to the participant’s
activity patterns. The basic principles of these analyses
are presented in the following sections of the manuscript.
Full code is available online (https://github.com/mwegrzyn/
thoughtExperiment).

Similarity of blocks
Similarity of blocks. For similarity analyses, Pearson cor-
relations between the voxels of two brain images were
computed. This was done either by correlating the activity
maps of two individual blocks with each other, or by corre-
lating an individual block with an average of all independent
blocks belonging to the same condition. During training, a
nested cross-validation approach was established, where
the individual blocks from one run were correlated with the
averaged maps of the five conditions from the other run.
Each block was then assigned to the condition of the other
run’s average map it correlated strongest with. This was
done for all blocks to determine the proportion of correct
predictions. To learn from the training data which features
allowed for the highest accuracy in predicting the domain of
a block, the mask used to extract the data and the amount
of smoothing were varied: Different brain masks were de-
fined by thresholding the mean z-score maps for each of
the five conditions on different levels of z-values and using
only the remaining above-threshold voxel with highest val-
ues for computing correlations. The size of the smoothing
kernel was also varied in a step-wise manner. The best
combination of features (amount of voxels included and
size of smoothing kernel used) from the cross-validation
of the training data could then be used to decode the test
data.

Similarity with NeuroSynth maps
In addition to these within-participant correlations, each
block was also correlated with 602 posterior probability
maps derived from the NeuroSynth database (Yarkoni et al.,
2011). From the 3169 maps provided with NeuroSynth
0.3.5, we first selected the 2000 maps with the most non-
zero voxel. This allowed to exclude many maps for unspe-
cific keywords such as “design” or “neuronal”, with which
no specific activation patterns are associated. The selected
maps were then clustered using K-Means, as implemented
in Scikit-learn 0.17 (Pedregosa et al., 2011). K-Means
clustering was performed starting with two clusters and
then successively increasing the number of clusters to be
identified. For solutions of nine or more clusters, groups
of keywords representing language, auditory, spatial, mo-
tor, reward, emotion, default mode and visual processing

emerged, plus additional large clusters of further unspe-
cific keywords which were still present in the dataset (e.g.
“normalization”, “anatomy”). To exclude these unspecific
keywords, we eliminated the largest cluster of the nine
cluster solution and re-ran the K-Means clustering on the
remaining 602 maps. This clustering resulted in the same
eight interpretable clusters found previously (Fig 1). To
visualize the similarity between the clusters and the rela-
tionship of keywords within each cluster, we computed the
Euclidean distances between all maps and projected the
distances into two dimensions using multi-dimensional scal-
ing (MDS; cf. Kriegeskorte et al. (2008)) as implemented
in Scikit-learn. The resulting ’cognitive space’ showed a
strong agreement between the clustering and MDS, with
keywords from the same cluster being close together in
space (Fig 1). This ’cognitive space’ was then used for
decoding, by correlating our fMRI data with all NeuroSynth
maps. The resulting correlations were then visualized in
the 2D space, allowing to inspect not only which keywords
correlated the strongest, but also if there were consistent
correlations within each cluster. To be computationally fea-
sible, a gray matter mask with 4x4x4mm resolution was
used for computing correlations, reducing the number of
voxel to be correlated from ~230,000 to ~19,000.

Results
3.1 Results for the training data
Mean activity maps
A visualization of the average activity map for each con-
dition is shown in Fig 2 For the language task, a clear
left-lateralized network of regions, including inferior frontal
gyrus, superior temporal sulcus, left supplementary motor
area (SMA) and left fusiform gyrus, emerged. For the motor
imagination task, SMA and premotor areas, as well as supe-
rior parietal cortex were active. The visuo-spatial memory
task gave rise to activity in parahippocampal gyrus, premo-
tor cortex and posterior parietal cortex. The face imagery
condition showed activity around the mid-fusiform sulcus
in both hemispheres, but mainly activity in the posterior
cingulate and medial frontal areas. For the rest condition,
there was only weak activity in the precuneus, as compared
to the other four conditions.

Feature selection for correlation analyses
For computation of similarity metrics, correlations of individ-
ual blocks from one run with the mean activity maps from
the respective other run were used (i.e. blocks of run 1
correlated with the five mean activity maps from run 2, or
the other way around). The decision to which condition a
block belonged was then made by assigning the block to
the condition it had the highest correlation with. Using this
approach without voxel selection or smoothing, an accu-
racy of 72% was reached (p<10-14; for a binomial test with
chance at 20%). Using feature selection (varying the voxels
included and the smoothing kernel used), accuracies of up
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Figure 1. Cognitive Space derived from the NeuroSynth database. Colors were assigned based on K-means clustering and distances in space were derived using multi-
dimensional scaling (MDS). Note how both approaches give very similar results, in terms of similar colors being close together in space. There are some exceptions, i.e. BA
47 being in the default mode cluster but closer to the auditory-related keywords in MDS-space. There are clear gaps between many of the clusters, indicating that they might
be categorically distinct. Regarding the arrangement of clusters, the emotion and reward clusters are close together, as well as the motor and spatial, and the language and
auditory clusters. The keywords on the borders of the clusters often represent concepts shared by multiple domains, for example “characters” bridging the clusters of vision
and language, “visual motion” close to vision and spatial processing, or “avoidance” related to emotion and reward processing. To allow for good readability, keywords in
the figure had to be a certain distance from each other in the space to be plotted.
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Figure 2. Activity maps for the five conditions of the training data. For visualization purposes, t-maps for the comparison of each condition against the remaining four
were generated (smoothed with an 8mm kernel and thresholded at t=3.31, corresponding to p<0.001). Results were projected on an inflated surface of the participant’s
normalized structural scan, using PySurfer. Interactive unthresholded versions of these maps are available on NeuroVault (https://neurovault.org/collections/3467/).
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to 92% (p<10-27) could be reached, using only the top 1-3%
of voxel from each condition and moderate or no smoothing
(Fig 3).

Figure 3. Accuracies for the predictions of training data, as a function of voxel se-
lection and smoothing kernel. Highest accuracies (in dark red) were reached using
only the top 1-3% of voxel active for each condition (i.e. using the 99-97th per-
centile to threshold the data). The percentile cutoff was applied to each map of the
five conditions individually and the maps were then combined (conjunction of maps).
Therefore, given that overlap between maps was low, percentile 80 contained 71%
of whole-brain voxel and percentile 99 contained 5% of the whole-brain voxel.

The correlations of individual blocks from one run with
the mean activity blocks from the respective other run, us-
ing the best feature combination, are shown in Fig 4. Of
the 50 blocks, one motor block was mistaken for rest, an-
other motor block was mistaken for a visuo-spatial memory
block, and two visuo-spatial blocks were mistaken for mo-
tor blocks, corresponding to 46 out of 50, or 92%, correct
predictions.

Decoding using NeuroSynth data
To evaluate how completely independent data can be used
to decode the five conditions, each mean activity map (av-
eraged over both training runs) was correlated with the
NeuroSynth data and the strength of the correlation visu-
alized in MDS space (Fig 5). Four of the five conditions
showed strongest correlations with keywords from the re-
spective related cluster (language-”reading”, motor-”motor”,
visuo-spatial - “spatial”, rest - “theory [of] mind”). The cor-
relations of the face condition indicated that the cognitive
processes our participant engaged in during this task had
more to do with episodic and working memory than with
object and face processing (cf. Fig 5).

3.2 Results for the test set
Activity maps for individual blocks
Fig 6 shows the activity maps for all 25 individual blocks of
the held-out test data. Here, robust activity in the networks
already identified in the average training data (Fig 2) can

be seen on a block-by-block basis. With the exception of
block #60 for the motor imagery task, block #57 for the
rest condition and block #64 for faces, specific activity in at
least one of the most important regions for each domain
could be found (language: superior temporal areas; motor:
superior parietal areas; visuo-spatial: parahippocampal
gyrus; faces: mid-fusiform sulcus; rest: precuneus).

Correlation analysis with winner-take-all decision rule
A correlation approach using the same parameters as for
the training data (top 1% of voxel, no smoothing), allowed
to correctly label 24 of the 25 test blocks (96% correct;
p<10-15; cf. Fig 7). The only misclassification occurs for
block #60, where the “swimming” block from the movements
condition is misclassified as belonging to the rest condition.

In addition to the correlation with mean training data,
each of the 25 test blocks was also correlated with each of
the 50 individual training blocks (Fig 8). Here, an optimal
outcome would be if each test block has its ten highest
correlations with the corresponding ten training blocks of
the same condition. The results showed that for 20 of the
25 test blocks, at least eight of the highest correlations
were with the correct corresponding training blocks. Only
the “swimming” block had less than half of the ten highest
correlations with training blocks from its correct domain.

Decoding using NeuroSynth data
When using the NeuroSynth data to decode each test block,
60% of blocks were correctly decoded using the cluster of
the keyword with the highest correlation (p<0.0001). The
best predictions were possible for the motor, spatial and
rest domains, while language and faces showed more am-
biguous correlation patterns (Fig 9).

Predictions made by the four teams
Based on these sources of information (visual inspection;
correlation with mean training data; correlation with indi-
vidual training blocks; correlation with NeuroSynth maps)
the four teams submitted their predictions (Table 2). Three
of the four teams made 23 correct predictions (p<10-13),
all making the same mistake of classifying the swimming
block as rest. In addition, the teams made at least one
additional mistake, and therefore one mistake more than
the correlation analysis in Fig 7. One team which weighted
the results of visual inspection more strongly in their results
reached an accuracy of only 76% (p<10-8).

Regarding the prediction of content, the rest blocks had
to be excluded, as they had no content, leaving 20 blocks
from four conditions. Making the conservative assumptions
that one can predict all superordinate categories perfectly
and that there are only 5 possible contents within each
condition, guessing would be at 20% and at least 40%
correct would be needed to reach above-chance (p<0.05)
accuracies. Only two of the four teams scored better than
chance, with one team making 10 correct predictions out
of 20 (p=0.003) and the other team 9 out of 20 (p=0.01; cf.
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Figure 4. Correlation of single blocks (rows) of one run with the mean activity maps (columns) of the respective other run. Results are based on unsmoothed data using a
99th percentile cutoff to threshold the mean activity maps with which the individual blocks are correlated. For each block, the name of the condition (i.e. “language”), the
number of the block in the experiment (i.e. “002” for the second block of the experiment) and the content (i.e. “animals”) are indicated in the row labels.
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Figure 5. NeuroSynth decoding of average activity map for each training condition (averaged over both training runs). Stronger correlations with a keyword are indicated
by a bigger circle, bigger font size and less transparency of font. To improve readability, the correlations are min-max scaled, so that the largest correlation is always of
the same pre-defined size. Furthermore, the sizes of the scaled correlations have been multiplied with an exponential function, so that large correlations appear larger and
small correlations smaller than they actually are (sizes are more extreme that the underlying data). To further enhance readability, if two keywords were too close in space
so they would overlap, only the higher correlating keyword was printed.
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Figure 6. Example views of the individual activity maps of the test set. Only one view per block is shown. Maps depict the average z-values of each block, smoothed with
an 8mm kernel and individually thresholded at different levels to best visualize the typical activity patterns. Red-yellow colors indicate activations and blue-lightblue colors
indicate deactivations, in relation to the voxel’s grand mean over the whole timecourse. Unthresholded and interactively explorable maps of each block are available on
NeuroVault (https://neurovault.org/collections/3467/). For each block, the name of the condition (i.e. “language”), the number of the block in the experiment (i.e. “052” for
the second block of the test run, which comprises blocks 51-75) and the content (i.e. “countries”) is indicated above the brain map.
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Figure 7. Correlation of single blocks (rows) of the test run with the mean activity maps (columns) of the two training runs. Results are based on unsmoothed data using a
99th percentile cutoff to threshold the mean activity maps with which the individual blocks are correlated. For each block, the name of the condition (i.e. “language”), the
number of the block in the experiment (i.e. “052” for the second block of the test run, which comprises blocks 51-75) and the content (i.e. “countries”) is indicated in the row
labels.

Figure 8. Correlation of the 25 blocks of the test run (051-075, rows) with the single blocks of the two training runs (001-050, columns).
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Figure 9. NeuroSynth decoding of individual blocks of the test run. For each block, the name of the condition, the number of the block and its content are indicated above
the respective image of the space. An asterisk in the title indicates that the block was correctly decoded by assigning it to the cluster of the NeuroSynth keyword it correlated
strongest with. For visualization, stronger correlations with a keyword are indicated by a bigger circle, bigger font size and less transparency of font. To improve readability,
only the keywords with the highest correlations are labeled.

Table 2. Results of the predictions made for the held-out test data.

neuropsychological domain group

MH,MG,DN SH,FH,LB,AH,SH RV,AK,JS DP,MS,JA,SZ

language 5 (1)
fruits

5 (3)
animals, tools, fruits

5 (3)
animals, tools, fruits

5 (3)
animals, tools, fruits

sensory-motor skills 4 (1)
climbing

4 (3)
badminton, tennis, climbing

3 (2)
tennis, climbing

4 (3)
badminton, tennis, climbing

visuo-spatial memory 5 (0) 5 (1)
market

5 (0) 5 (1)
market

visual processing of faces 5 (1)
movie actors

4 (3)
movie actors, athletes, friends

3 (1)
athletes

5 (2)
athletes, friends

resting 4 (-) 5 (-) 3 (-) 4 (-)

total 23 (3) 23 (10) 19 (6) 23 (9)

Number of correct predictions for each domain, as made by the four teams for the 5 blocks of the test data per condition. Numbers in brackets indicate the number of correct
predictions regarding content. Content predictions were made for all neuropsychological domains except rest. Abbreviations indicate author names.
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Table 2). As all teams used a combination of all methods
to guess the content, the results do not allow to infer the
role each individual method played for reaching these ac-
curacies. However, using only the automated procedure of
selecting the content of the training block with the highest
correlation (cf. Fig 8), only chance performance (5 out of
20) could be reached.

Prediction of the secret block
In addition to the main task, the teams also tried to decode
the additional ’secret’ run. The activity maps for the resting
block and secret block of this run are shown in Fig 10, to-
gether with the maps from the NeuroSynth decoding. Both
the visual inspection and the NeuroSynth results show that
the resting block did not give rise to default mode network
activity, making it unlikely that decoding of the secret block
could work. However, given that frontal areas seemed to be
engaged during the secret block, the teams speculated that
language or executive functions might be recruited. There
was no clear lateralization to the left, making pure language
production less probable. Also, the secret run was the first
and only one for which the NeuroSynth analysis showed
strong correlations with the keyword “[Brodmann Area] 47”,
located in the lateral orbital part of the inferior frontal gyrus.
Brodmann Area 47 has been shown to be involved in the
perception and imagination of music (Koelsch et al., 2005;
Zatorre and Halpern, 2005). When originally planning the
study, one additional condition under consideration was
auditory imagination, operationalized as theme songs from
different movies. Probably aided by this prior knowledge,
one group was able to indeed correctly guess that the par-
ticipant had mentally imagined music (Table 3). As the
participant later revealed, he had imagined the main theme
from “Star Wars”.

Table 3. Predictions for the secret block

group prediction

MH,MG,DN holidays

SH,FH,LB,AH,SH counting numbers

RV,AK,JS verbal fluency, countries

DP,MS,JA,SZ theme from “Game of Thrones”

Predictions of the content of the ’secret block’ as submitted by the four teams. Ab-
breviations indicate author names. The correct answer for the secret block was the
main theme from “Star Wars”

Discussion
We showed that decoding “large regions of the mind” (Broca,
1861), namely language, motor functions, visuo-spatial
memory, face processing, and task-free resting is possible
using individual 30-second blocks of fMRI data. As in pre-
vious studies (Boly et al., 2007; Sorger et al., 2012), we
were able to reach almost perfect accuracies when deciding
between these superordinate neuropsychological domains

using training data from the same participant. This was
confirmed by visual inspection of the data (Fig 6), which
showed that activity patterns on single block level were
highly robust. We were also able to show how single blocks
of a person’s fMRI data can be decoded, regarding their
superordinate categories, using an independent database
which maps activations of hundreds of keywords onto the
brain (Yarkoni et al., 2011). This demonstrated the potential
to decode a completely new observation of brain activity
in a person, even when no training data were available
and no feature selection had been performed. Our results
also showed that it is possible to predict the contents within
some of the domains with moderate accuracy. Predictions
worked best for the language and motor domains, in line
with previous work: The contents of our language task can
be considered superordinate categories in their own right
(i.e. animals and tools as animate and inanimate objects),
and thus their differential activity patterns can be expected
to differ on a relatively large anatomical scale (Mummery
et al., 1998). The different sports used in the motor task
activated different parts of body, and could potentially be
identified based on the somatotopic organization of SMA
and superior parietal cortex (Fontaine et al., 2002; Aflalo
et al., 2015). Because predictions of content were not ex-
plicitly trained and were only at chance using the automatic
methods, the interpretation of this part of the results is
limited. On the level of the five superordinate domains,
the activity patterns were broadly in line with our a priori
predictions (cf. Table 1). However, the motor imagery
task recruited predominantly superior parietal areas, which
have previously been shown to be important for movement
planning (Aflalo et al., 2015), but are not always active in
imagery tasks (for example Owen et al. (2006)). This also
reflects the issue that while mental imagery tasks are easy
to setup and integrate into the clinical routine, they have
some natural limits regarding the localization of functions.
In the case of the motor imagery task, one usually can-
not map the primary motor cortex, where the execution
of actual movements would be represented. While SMA
and superior parietal areas are certainly also important for
carrying out movements (Fontaine et al., 2002; Aflalo et al.,
2015), it would thus be a mistake to use motor imagery as
the only functional localizer in this domain. Despite this
limitation of our paradigm, it is also conceivable that activ-
ity maps based on imagining complex movements could
be a useful complement to simple real movement tasks,
such as finger tapping. This is especially true since the
organization of primary motor areas can be well approxi-
mated from brain structure alone, while this is not the case
for movement planning (Aflalo et al., 2015). In contrast
to our prediction, the face imagery task predominantly re-
cruited parts of the default mode network instead of the
core face processing areas (Haxby et al., 2000). This might
reflect a strong involvement of autobiographical memory
recall when thinking of known faces (Gobbini and Haxby,
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Figure 10. Activity maps and NeuroSynth decoding for the secret run. Average activity maps are smoothed with an 8mm kernel and projected onto an inflated nor-
malized brain of the participant using PySurfer. Unthresholded images are available on NeuroVault (rest block: https://neurovault.org/images/60514/ ; secret block:
https://neurovault.org/images/60530/ ) Correlations with the NeuroSynth keywords are visualized using larger symbols and fontsizes for higher correlations.
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2007). Although unexpected, these patterns were very
stable across blocks and sufficiently different from the rest-
ing activity to allow for perfect accuracies when predicting
the face blocks. Finally, the superior temporal activity in
the verbal fluency task did most likely not correspond to
Wernicke’s area, but to a more inferior cluster in the su-
perior temporal sulcus, as shown in previous production
tasks (e.g. Branco et al. (2016)). It is also rather atypical
that the peak of activity in a language production task is in
temporal and not in inferior frontal areas (Woermann et al.,
2003). Apart from that, the language and visuo-spatial
conditions produced activity patterns that were very close
to what would be expected if the tasks would be actually
carried out, which makes these paradigms especially use-
ful for clinical applications (Woermann et al., 2003; Jokeit
et al., 2001). Another limitation of the present mental im-
agery task concerns the question how well activity patterns
are comparable between individuals. When using external
stimulation, every participant receives the same low-level in-
puts, but between-participant variance is still sizable (Haxby
et al., 2011). Therefore, when using self-generated and
hence potentially idiosyncratic mental imagery, even larger
variation between individuals should be expected. Given
that we collected data from only one person, the general-
ization of our results is particularly limited. However, we
were able to make reasonable predictions about our partic-
ipant’s cognitive processes using independent data from
NeuroSynth. The NeuroSynth data represents a different
metric (posterior probabilities; cf. Yarkoni et al. (2011)),
from different participants who performed different tasks
on different scanners and were analyzed using different
software and statistical methods. That our data still con-
verged rather well with these meta-analytical information
provides tentative support that on the scale of general neu-
ropsychological domains, consistency between individuals
is very high, even if using mental imagery. Furthermore,
because no kind of training was performed to optimize the
performance of the NeuroSynth approach, it might serve
as a demonstration of ‘ad hoc’ decoding. This immediacy
of application might make it especially appealing in the
clinical context, where there might be no time to collect and
analyze training data for each patient. A crucial question
regarding how the present results can inform clinical appli-
cations, is how well the present results can generalize from
healthy participants to patients: While the block-wise anal-
yses worked very well with a cognitively unimpaired and
highly motivated participant, cognitive deficits, medication
and a general tendency for increased movement artifacts
(Dijk et al., 2012) will all contribute to altered or weaker
signal in patient populations. Being able to collect healthy
normative samples (Dubois and Adolphs, 2016) is one of
the major advantages of fMRI over other methods used in
presurgical planning (i.e. intracrianal EEG, Wada-testing).
However, this is moot if the clinical data of actual patients
cannot be reasonably collected and analyzed in the first

place. Therefore, future studies are needed to show if the
signal yield necessary for block-wise analyses is attainable
when examining presurgical patients. While we outlined
some important limitations above, we believe that the cur-
rent study provides some valuable impulses for the clinical
application of task-fMRI, including its use in presurgical
planning:
Analysis of fMRI data can benefit from splitting a data-
set into smaller subsets. If the patient has consistently
preformed the task as required, splitting the fMRI run into
smaller parts (ideally blocks) can increase the neuroradiolo-
gist’s confidence in the resulting activity map. If the activity
patterns of the patient are highly inconsistent across the
run, the neuroradiologist might be able to retain some diag-
nostic information by re-analysing those subsets of the data
which are most indicative of task compliance. Splitting the
data can also reveal if a patient’s activity pattern is atypical
but stable, as was the case for our face condition. Here, we
saw that although the patterns were not as expected, they
were highly similar across blocks. Such analyses might
allow to better decide if an inconclusive looking activity pat-
tern is due to noise or is a veridical representation of an
unexpected cognitive strategy the patient engaged in.
Pattern analysis methods do not have to be ‘black-
box’. The pattern analyses in the present study were all
based on the notion of minimizing the sums of squared
differences between two observations. While these meth-
ods certainly do not take advantage of all the information
contained in the data, they are highly versatile and robust
(Hilborn and Mangel, 1997), and work well for fMRI data
(Haxby, 2001). With the rise of artificial intelligence meth-
ods in medical imaging (Esteva et al., 2017), there is grow-
ing concern that the decisions made by algorithms might
be excellent but the reasoning behind them will remain
impenetrable to a human (Castelvecchi, 2016). Therefore,
it could prove beneficial to accompany methods of high
sophistication with more transparent (‘glass box’) analyses
like the present ones.
Localization and decoding of functions is complemen-
tary. While presurgical diagnostics are usually only con-
cerned with brain mapping, the main benefit of decoding
might be to better understand what exactly is being mapped.
For example, in a language task, an activity pattern encom-
passing Broca’s area, SMA, Wernicke’s area and visual
word-form area (VWFA) would allow for a relatively safe
interpretation of lateralization, depending on whether this
network of activation is localized in the left or right hemi-
sphere. If, on the other hand, the activity pattern for the
language task resembled a default mode network, one
would conclude that the task was not performed at all and
not use the map to determine the degree of lateralization.
Between these two extreme cases, a whole continuum
of prototypical vs. improper task performance will occur
in clinical practice. For example, a language production
task will pose different demands on working memory or
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executive functions, depending on how difficult a patient
finds the task overall, or for a specific category. Know-
ing how much an activity map reflects these processes,
which might be represented in neighboring frontal areas,
but more bilaterally than language, could influence how
strong a conclusion about lateralization of language one
is willing to draw. Therefore, the localization of functions
(knowing where things are) could be aided by quantifying
what cognitive demands the task poses for each patient
(knowing what is being mapped). If it would be possible to
decode the content of each block (e.g. producing names
of animals vs. names of tools in a verbal fluency task),
this would allow for a very close monitoring of the patient’s
covert behavior. Therefore, such types of decoding could
be a valuable substitute for the lack of behavioral output
which currently limits the applicability of mental imagery
tasks.

Conclusion
The present study showed how brief periods of self- gener-
ated thought can be decoded regarding the superordinate
neuropsychological domains involved. The categories of
language production, motor imagination, visuo-spatial navi-
gation, face processing, and task-free resting were reliably
differentiated using basic similarity metrics. This was pos-
sible using both training data from the same participant
as well as independent meta-analytical data from other
studies, which allow for immediate decoding without prior
training. Capitalizing on the non-invasive nature of fMRI,
we showed how exploratory approaches towards collect-
ing and analyzing fMRI data can provide new impulses
regarding its application in the individual case.
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Data Availability
Functional MRI data are available on
https://doi.org/10.6084/m9.figshare.5951563.v1.
Code to reproduce the results and figures, as well as to
recreate this manuscript, can be found on
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