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Abstract: 12 

 13 

1.  Colour patterns are used by many species to make decisions that ultimately affect their Darwinian fitness. 14 

Colour patterns consist of a mosaic of patches that differ in geometry and visual properties.  Although 15 

traditionally pattern geometry and colour patch visual properties are analysed separately, these components are 16 

likely to work together as a functional unit. Despite this, the combined effect of patch visual properties, patch 17 

geometry, and the effects of the patch boundaries on animal visual systems, behaviour and fitness are relatively 18 

unexplored.  19 

 20 

2. Here we describe Boundary Strength Analysis (BSA), a novel way to combine the geometry of the edges 21 

(boundaries among the patch classes) with the receptor noise estimate (ΔS) of the intensity of the edges.  The 22 

method is based upon known properties of vertebrate and invertebrate retinas.  The mean and SD of ΔS (mΔS, 23 

sΔS) of a colour pattern can be obtained by weighting each edge class ΔS by its length, separately for chromatic 24 

and achromatic ΔS.  This assumes those colour patterns, or parts of the patterns used in signalling, with larger 25 

mΔS and sΔS are more stimulating and hence more salient to the viewers.  BSA can be used to examine both 26 

colour patterns and visual backgrounds. 27 

 28 

3. BSA was successful in assessing the estimated conspicuousness of colour pattern variants in two species, 29 

guppies (Poecilia reticulata) and Gouldian finches (Erythrura gouldiae), both polymorphic for patch colour, 30 

luminance and geometry.  3D representations of the ΔS of patch edges (Fort Diagrams) of both species show 31 

that there is little or negative geometric correspondence between the chromatic and achromatic edges.  All 32 

individuals have mΔS > 1.5 for both chromatic and achromatic measures, indicating the high within-pattern 33 

contrast expected for  display signals.  In contrast from what one would expect from sexual selection, all 34 

guppies have mΔS less than expected from random contacts between all pairs of patch colour/luminance classes.  35 

The correlation between chromatic and luminance ΔS is negative in both species but zero when correlating all 36 

possible kinds of edges between the colours of each species and morph indicating non-random colour geometry. 37 

 38 

4.  The pattern difference between chromatic and achromatic edges in both species reveals the possibility that 39 

chromatic and achromatic edges could function differently.  The smaller than random expected mΔS values in 40 

guppies suggests an anti-predator function because guppies are never found without predators.  Moreover, mΔS 41 

could vary with predation intensity within and among species.  BSA can be applied to any colour pattern used in 42 

intraspecific and interspecific behaviour.  Seven predictions and four questions about colour patterns are 43 

presented. 44 

 45 

5.  In species which are very convex, both chromatic and luminance mΔS change with viewing angle; geometry 46 

of signalling is as important as signal geometry.  47 

 48 

Key words:boundary strength analysis; colour pattern analysis, colour transitions, conspicuousness, fort 49 

diagrams, pattern edges, receptor noise, visual signals 50 
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 51 

 52 

1.  INTRODUCTION 53 

 54 

  Colour patterns are important in survival and reproduction in diverse species because they affect mating 55 

success, contests, avoiding predators, luring prey or attracting pollinators. In general, the fitness of the sender 56 

(individual with the colour pattern) is affected because the receiver (viewer of the colour pattern) can make a 57 

behavioural or physiological decision about the sender, based upon reception and perception of the sender's 58 

colour pattern (e.g. receivers will mate, fight, attack, be lured close and eaten, pollinate or disperse seeds).  59 

Colour patterns offer an effective way of investigating the complex relationship between genes, morphology, 60 

performance, fitness and evolution (Arnold 1983, 2003) because the functions of most colour patterns are 61 

relatively easy to identify (Endler 1978, 1980).  However, the links between visual properties, perception, 62 

receivers' decision-making processes and fitness are not well understood. 63 

 64 

 Decisions made by the receiver depend upon both the signal design of the colour pattern (the physical 65 

structure of the signal) and its signal content (information about the signaller, reviewed in Endler 1993a).  For 66 

both components, the first stage affecting fitness is the stimulation of the receiver's retina by the colour pattern; 67 

all subsequent processes leading to perception and decision making flow through this step (Lythgoe 1979).  68 

Although all components of a colour pattern may affect the viewer's decision making, their relative importance 69 

in retinal and brain stimulation is not known.  In particular, we do not know how colour, luminance, patch size 70 

and patch geometry work together to affect receiver behaviour, and so cannot yet make explicit predictions 71 

about colour pattern properties or the behavioural decisions based upon them.   72 

 73 

 Relating patterns to fitness has been successful for some species with cryptic colour pattern components 74 

(Troscianko et al 2016, 2017) but there is a tendency in the literature to study only pattern or one or two colour 75 

pattern components.  Previous attempts to quantify colour patterns have included mapping the pattern 76 

components (Van Belleghem et al 2018), mapping pattern component boundaries (Stevens and Cuthill 2006) 77 

and estimating the distributions of relative pattern component edge lengths (Endler 2012).  Other analyses have 78 

calculated colour patch discriminability (Siddiqi et al 2004).  However, all of these methods ignore whether or 79 

not the colour patches share common boundaries.  Color patch boundaries are important because adjacent colour 80 

patches will influence the visual perception of a given patch as well as the contrast across the boundary.   81 

 82 

 Here we present Boundary Strength Analysis (BSA), a way to combine the effects of both patch properties 83 

and the intensity of patch edges (transitions between patches) based upon how they are processed by the visual 84 

system in the retina.  BSA estimates the effects of both colour and patch edges by combining two existing 85 

methods for the first time, one for discriminability between adjacent patches (ΔS Vorobyev and Osorio 1998) 86 

and one for the geometric arrangement of patches (Endler 2012).  Unlike all previous methods, BSA includes 87 

the estimated visual intensity of the boundaries (estimated by ΔS) and their length, rather than just recording 88 

which boundaries are present, and calculates ΔS statistics only between patches which come in contact. This is 89 

consistent with the opponent visual processes that detect colour and colour patch edges, and the fact that these 90 
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processes sample small parts of the visual field (Dowling 2012, Kelber 2016). This allows us to begin to 91 

examine colour patterns less arbitrarily, by incorporating estimates of how strongly patch boundaries stimulate 92 

the retina as a proxy for conspicuousness. 93 

 94 

 BSA can be used for animal and plant colour patterns as well as visual backgrounds, and allows 95 

investigation of both within pattern and pattern-background contrast.  For brevity we will describe and give 96 

examples of BSA in terms of within-pattern contrast but the resulting statistics can be calculated for visual 97 

backgrounds as well as patterns and the two compared to estimate pattern-background contrast. 98 

 99 

 100 

1.2 VISUAL MODELLING OF COLOUR DISCRIMINATION  101 

 102 

 We use the receptor noise model or RN (Vorobyev and Osorio 1998; reviewed in Kelber et al 2003) to 103 

estimate detection thresholds for colour discrimination.  The input to the model consists of the relative light 104 

(photon) captures for each photoreceptor class in the viewer's retina for two colour patches.  The output of the 105 

RN model is ΔS, which is similar to a multivariate equivalent to t in statistics in that it compares the difference 106 

between the two sets of cone captures to the standard error of the difference.  Like other signal/noise measures 107 

ΔS = 1 is regarded as the difference required for two colours to be noticeable, or one just noticeable difference 108 

(JND).  RN predictions have been tested using behaviour of several species, and work reasonably well (e.g. 109 

Kelber et al 2003; Olsson et al 2015; Fleishman et al 2016).  However, RN modelling must be used with caution 110 

for four reasons: (1) RN was designed to predict discrimination when ΔS is near one (near the threshold), and 111 

may be inaccurate for colours that are very different (ΔS > 1).  This arises because the relationship between 112 

predicted difference and perceived difference is nonlinear.  For example, consider three colours A, B, and C. Let 113 

the difference between A and B be ΔS = 2, and between A and C ΔS = 8; the frequent implicit assumption is that 114 

ΔS = 6 between B and C. Although the JND scale suggests that A and B are almost as far apart as A and C, if 115 

the perception response to ΔS is logarithmic then B and C may not be perceived as very different from each 116 

other and both perceived as very different from A.  (2) Behaviour observations often show that some colours are 117 

discriminated as predicted by RN while others are not (unpublished observations; Cheney, pers. comm 2017; 118 

Olsson et al 2015; Fleishman et al 2016).  This may arise from pre-existing colour preferences.  Different RN 119 

models need to be used at higher and lower light intensities to make good predictions (Vorobyev and Osorio 120 

1998, Olsson et al 2015).  (3) Data on actual receptor noise values are scarce yet they underpin all ΔS 121 

calculations (Olsson et al 2017).  (4) The model is limited; it is designed to capture what happens during early 122 

processing in the retina and does not include downstream processing in the brain, including decision making as 123 

well as perception.  Estimates of detection and discrimination depend upon animals making decisions.  124 

Consequently, the RN could be correct in the retina, but later neural processes may mean that behaviour-tests 125 

may not match all RN predictions (for example Dyer et al 2008).  Despite these limitations, what happens at the 126 

early retinal level is important because all visual processing starts there (Lythgoe 1979).  The RN model must be 127 

treated simply as a starting point analogous to the Hardy-Weinberg equilibrium in population genetics.  In 128 

addition to providing a foundation, RN model estimates of ΔS can be used to explore the visual effect of the 129 

entire colour pattern, not just differences between colour pairs.  130 
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  131 

 132 

 133 

1.3  ASSESSMENT OF PATCH EDGES 134 

 135 

  Previous work with colour discrimination and ΔS has not accounted for whether compared patches were in 136 

contact or separated by other colours.  Here we explore ΔS explicitly for patches which come into contact 137 

because what happens at the patch edges may be important. The neurobiological justification for assessing the 138 

effects of edges (transitions between patches) is described in detail in Elder and Sachs (2004), Stevens and 139 

Cuthill (2006), Troscianko et al (2017) and Endler (2012). Briefly, the photoreceptors in both vertebrate and 140 

invertebrate visual systems are connected to neurons that calculate the differences between the photoreceptor 141 

outputs over a small visual field.  Groups of photoreceptors involved in opponency are called units and can not 142 

only detect colour but also serve as edge detectors.  Units consist of two adjacent groups (zones) of 143 

photoreceptors covering a small part of the visual field, and a ganglion cell calculates the difference in outputs 144 

between the two groups opponency (Dowling 2012; Dyer et al 2011; Kelber 2016; Sanes and Zipursky 2010). If 145 

the photoreceptors in the two zones are sensitive to different wavelengths, then the unit outputs are colour 146 

signals because colour is based upon intensity differences among different parts of the visible spectrum.  Edges 147 

between patches of different colours are detected if the edge cuts across the boundary between the unit zones. If 148 

the photoreceptors in the unit are sensitive to the same wavelengths then the outputs result from patch edges at 149 

the zone boundary regardless of chroma if they differ in luminance. Both edge types are detected depending 150 

upon the physical size of the retinal unit relative to the image and/or how rapidly the eye scans the colour 151 

pattern (Elder and Sachs 2004; Dowling 2012; Gegenfurtner and Sharpe 1999; Kelber 2016; Sanes and Zipursky 152 

2010).  The stronger the edges (steeper gradients and greater differences between the patches, yielding larger ΔS 153 

between the two patches) the stronger the signal they produce in the units.  The longer the edges the more units 154 

that they will stimulate.  Consequently, both the geometry and reflectance spectra of patches in colour patterns 155 

affect edge intensity and conspicuousness.   Both chromatic and achromatic opponent units operate over small 156 

parts of the visual field, suggesting that local colour pattern properties may be more important than global 157 

properties.   158 

 159 

 The effects of edges also depend upon the visual acuity (resolution angle) of the viewer as well as the 160 

distance between the viewer and the colour pattern.  Acuity effects may eliminate or modify visual contrast, 161 

particularly if the visual fields of the opponent units are larger than the patches.  Although opponent units are 162 

known to cover a small part of the visual field, their actual sizes are unknown in most species.  Moreover there 163 

may be higher-order units in the brain which will not be accounted for by the retinal estimations.  For these 164 

reasons, calculations of edge effects must be done with good data on acuity and viewing distance, and results 165 

treated as a first approximation, even if the unit field sizes are known. 166 

 167 

 168 

2 METHODS 169 

 170 
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 Let C be the number of colour and luminance classes in a given colour pattern.  The challenge of this, and 171 

any other colour pattern analysis, is identifying the C classes and making identification repeatable. This is a 172 

classic image analysis problem known as image segmentation, and is particularly problematic where there are 173 

colour or luminance gradients.  One could identify the classes by (human) eye, but for almost all diurnal non-174 

primate animals their vision is sufficiently different from humans that human-based classifications may range 175 

from unreliable to misleading, particularly if there are UV reflecting patches present.  Another method is to 176 

move a portable reflectance spectrometer sensor over the animal's body to determine how patch reflectance 177 

spectra vary.  If any of the spectra vary more than is visible to the human eye then samples must be taken from 178 

both the invisible and visible patches and labelled accordingly.  A third method which is less likely to miss 179 

patches invisible to humans is to scan the entire body evenly in a grid with a spectrometer and use various 180 

clustering methods to classify the colour/luminance patches by spectral clusters.  This can be refined by doing 181 

clustering of calibrated photographic pixels (Van Belleghem et al 2018), spectra or cone stimulations and 182 

clustering based upon ΔS (van den Berg et al, in preparation).  A final stage is ensuring that all patches in the 183 

segmented image are visible with the viewer’s visual acuity and viewing distance.  In what follows, we will 184 

assume that the patch classification into C classes has been completed along with a matching list of cone 185 

captures estimated from patch spectra (Endler & Mielke 2015) or from calibrated photographs (Troscianko and 186 

Stevens 2015). 187 

 188 

 All cone capture estimates should be made under the normal viewing conditions in the wild.  This includes 189 

the distances between signals and receivers as well as light intensity because visual acuity declines with 190 

declining light and the combination of the visual acuity of the viewer and the viewing distance affects the 191 

smallest patch which can be resolved.  If two patches are not resolved at the ordinary distance and light 192 

intensity, then the two patches should be combined into a single patch and the patch spectrum should be an 193 

average of the two spectra, weighted at each wavelength by the relative areas of the two indistinguishable 194 

patches.  The geometry of patches should be relevant to the viewer’s vision and visual conditions during 195 

viewing. 196 

 197 

 198 

2.1 RELATIVE FREQUENCY OF EACH PATCH EDGE CLASS 199 

 200 

 The first stage of analysis of a colour pattern is to estimate the lengths or relative frequencies of the C edges 201 

between adjacent colour/luminance patch classes.  A C x C matrix should be made to organise the list of all 202 

possible edge or colour/luminance transition classes (example in supplemental table S1).  For C classes there are 203 

at most E = C(C-1)/2 different edge or transition classes (Endler 2012).  Note that in any one colour pattern it is 204 

likely that not all patch classes will contact all other classes, especially for larger C.  Consequently, the number 205 

of observed kinds of different transitions (edges) among patches, n, will be less than the maximum possible 206 

number of edge classes, E.  A simple example is found in the North American coral snakes Micrurus fulvius and 207 

M. euryxanthus, where there are colloquial phrases to distinguish them from the Batesian mimetic king snakes 208 

(Lampropeltis) such as "red on yellow, beware the fellow, red on black, it's all right Jack".  There are three 209 

possible transitions in these snakes: red-yellow, yellow-black and red-black, but red-black is a missing transition 210 
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in these coral snakes while and red-yellow is missing from the mimics (this is not true for other coral snake 211 

species). Once the edge classes are determined, they need to be mapped onto the outline of the animal.  An 212 

example using a male guppy (Poecilia reticulata) is shown in Fig. 1A-C.  213 

 214 

 The relative frequency or length of each transition class can be obtained from one of two methods.  215 

Measure the length for each edge directly from the edge map (Fig. 1C) or extract edges from the zone map of 216 

the patch pattern.  A zone map is simply a digital mosaic diagram of the same size as the original image where 217 

each pixel contains a label for the colour/luminance class in which it is found (Fig. 1B); this is also known as a 218 

label matrix. The zone map also allows additional parameters to be extracted (Endler 2012).   Because pixels are 219 

in a square array, diagonal distances as well as horizontal or vertical distances will have to be used for slanted 220 

edges, but this should produce minor errors if the pixel spacing is small enough.  Accumulating the 221 

colour/luminance class transitions over all adjacent pixels in the zone map yields a transition or adjacency 222 

matrix, where rows and columns correspond to the colour classes (as in table S1).  The transition matrix 223 

diagonal entries are proportional to each colour's relative area.  The off-diagonals yield the relative frequency of 224 

each transition class or edge (Endler 2012).  This matrix is symmetric with separate estimates of a particular 225 

transition class in both the upper and lower off-diagonals (table S1).  For further analysis, add the equivalent 226 

upper and lower off-diagonals together in order to obtain frequencies of each patch edge type (table S2); these 227 

numbers are equivalent to lengths of edges extracted directly from the image (Fig. 1C), and, like lengths, can be 228 

divided by their grand total to yield relative edge lengths.  The result of either method is a C x C lower off-229 

diagonal transition or edge matrix, TE (table S2), where the lower off-diagonal numbers are the lengths or 230 

frequencies of the edge class defined by the intersection of the corresponding row and column.  For example, if 231 

a particular cell (row i and column j) has the value fij, then fij is the frequency of the transition between colours i 232 

and j in both directions.  Potential transitions between colours which are not observed because the appropriate 233 

patches do not come in contact will be represented by fij = 0.  A given fij in TE estimates how commonly two 234 

colour/luminance classes share a common edge or the size of each patch type boundary. 235 

 236 

 237 

 238 

2.2 MAGNITUDE HENCE SALIENCE OF PATCH BOUNDARIES 239 

 240 

 The second and novel stage of analysis is an estimate of how conspicuousness the edge is likely to be to a 241 

given viewer under given environmental conditions.  The receptor noise ΔS estimate for any pair of colours is an 242 

estimate of edge conspicuousness or strength because colour and/or luminance differences are easier to detect 243 

for larger ΔS. We can obtain photon captures for each patch using the irradiance spectrum illuminating the 244 

pattern in nature, the reflectance spectrum of the patch in the direction of the viewer, the transmission spectrum 245 

of the air or water between the pattern and viewer in nature, the transmission spectrum of the eye optics, and the 246 

absorption spectra of the visual pigments in each photoreceptor class (Lythgoe 1979; Endler & Mielke 2005; 247 

Kelber et al 2003).  We obtain the ΔS for all possible pairs of patches in the colour pattern (as did Siddiqi et al 248 

2004) based upon the photoreceptor captures, the relative abundance of each photoreceptor, and an assumption 249 

about the level of receptor noise (the Weber fraction, Kelber et al 2003).  Methods for obtaining ΔS are well 250 
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established, including in the R package pavo (Maia et al. 2013).  The ΔS for each kind of colour class 251 

comparison is then placed in the appropriate row and column in a second matrix with C rows and C columns 252 

(same format as table S2).  It is only necessary to fill in the lower off -diagonal because the upper off diagonal 253 

should be identical, and the diagonals will be zero (no difference in a comparison of the same colour).  This 254 

yields a C x C transition or ΔS matrix TS with data in the lower off-diagonal, where each entry sij is the ΔS for 255 

patch colour/luminance classes indicated by row i and column j.  Two different Ts should be calculated by: (1) 256 

using all the photoreceptors used in colour vision (e.g. cones in vertebrates) to obtain chromatic ΔS and (2) 257 

using the specific photoreceptor(s) used in luminance to get luminance or achromatic ΔS.  Consequently the 258 

result will be two ΔS transition matrices, TSC from the chromatic ΔS calculations and TSL from the luminance or 259 

achromatic ΔS calculations.  Ensure that the rows and columns of TSC and TSL correspond exactly in both length 260 

(C) and row order to the rows and columns of TE.  261 

 262 

 The matrix TE should contain the relative frequencies of each kind of transition and the matrices TSC and 263 

TSL should contain the RN estimate of how differently (ΔS) the two adjacent colours in the corresponding TE 264 

entry stimulate the retina with respect to chromaticity or luminance, respectively.  They should have the same 265 

form as table S2. The lower off-diagonal values of these three matrices should be converted to vectors (one-266 

dimensional lists) of length E = C(C-1)/2, and placed together in a E x 3 data matrix for convenience in further 267 

calculations (see table S3).  This data matrix has the edge length, the chromatic ΔS, and the luminance ΔS for the 268 

transition (edge) class k in row k; call these fk, sck and slk where k=1 .. n patch classes.  Table S3 shows an 269 

example where k=a,b...f and n=9. 270 

 271 

 The data matrix provides a correspondence between edge lengths and their estimated visual magnitudes or 272 

salience.  This, along with an annotated map of the patch boundaries (Fig. 1C), allows plotting the geometry of 273 

estimated patch boundary strengths for both chromatic and luminance ΔS.  In these diagrams the x and y axes 274 

are as in Fig. 1C and the z-axis is proportional to ΔS.  Fig. 1D,E show 3D plots of chromatic and luminance 275 

edge ΔS for the guppy shown in Fig. 1A.  We will call these diagrams “fort diagrams” because they resemble 276 

forts and “fort” means strong in French and Latin, so also refers to boundary strength.  Note the very different 277 

geometric patterns of chromaticity and luminance boundaries in Fig. 1 D and E; the guppy shows high edge 278 

contrasts in different places for chromaticity and luminance.  More specifically, luminance contrast is dominated 279 

by the black patch edges almost independent of the patch class they contact.  Note the very high luminance ΔS 280 

(height) where a black patch contacts the very highly reflective silver patch towards the front of the guppy in 281 

(compare Fig. 1 A and E). 282 

 283 

 284 

2.3  COMBINING PATCH PROPERTIES AND EDGES 285 

 286 

 If edges contribute significantly to the conspicuousness of the entire colour pattern, then we may be able to 287 

capture at least part of what makes a colour pattern conspicuous by obtaining an aggregate measure of the edge 288 

magnitudes. We suggest the mean, standard deviation and CV of the edges’ ΔS, weighted by their corresponding 289 

lengths or frequencies.  These are calculated from either the sck (chromatic ΔS) or slk (luminance ΔS) as sk from 290 
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TSC or TSL, and using the fk (from TE) as weights in the formulae: 291 

 292 

 293 

weighted mean:           (1) 294 

 295 

 296 

 297 

 weighted standard deviation:         (2) 298 

 299 
  300 

 301 

weighted coefficient of variation:           (3) 302 

 303 

 304 

where E is the number of all possible different kinds of edges and n is the number of observed transitions or 305 

those with non-zero fk, (Filliben et al 1996); n≤E.  The supplemental appendix provides a MATLAB function to 306 

calculate the weighted mean and standard deviation; the equivalent functions in R are wt.mean and wt.sd within 307 

the R package SDMTools (Van der Wal et al 2014).  Formulae 1 - 3 are the same formulae used to calculate the 308 

mean, SD and CV of chroma and luminance for overall within-contrast measurements, substituting chroma or 309 

luminance for sk and mean chroma or luminance for mΔS; but circular statistics have to be used for hue angles 310 

(Endler & Mielke 2005). 311 

 312 

 The weighted mean mΔS is an estimate of the average conspicuousness of the whole pattern but weighting 313 

longer edges more than shorter ones.  Similarly, the weighted standard deviation sΔS measures how variable the 314 

edge magnitudes are over the entire pattern weighted by their lengths.  The coefficient of variation CV is the 315 

standard deviation relative to the mean.  If it is known that the viewer attends only to part of the pattern then mΔS 316 

and sΔS should be calculated over the relevant part of the colour pattern.  The assumption here is that a longer 317 

edge will stimulate more opponency units in the retina, and when the pattern is moving, a longer edge will 318 

sweep out more of the retinal area than a smaller edge.  It is not known or obvious whether the mean, standard 319 

deviation, or even the CV would be a better predictor of salience.  For example, a larger mΔS might be more 320 

stimulating, but it is unknown whether this should be accompanied by a smaller sΔS for consistently high 321 

stimulation over the entire pattern, or a larger sΔS and hence less predictable edge magnitude to prevent sensory 322 

adaptation.  Using CV instead of the standard deviation might be important if a given degree of variation is not 323 

more important for small versus larger means.  These conjectures can only be answered by extensive 324 

behavioural studies with different mΔS and sΔS, measured under the appropriate conditions and appropriate parts 325 

of the body. 326 

 327 

 Boundary Strength Analysis (BSA) can be applied to an animal colour pattern in order to estimate within-328 

pattern visual contrast.  They can also be applied to visual backgrounds to estimate within-background contrast, 329 

and if so estimates of signal-background contrast can be made by comparing parameters of animal and 330 
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background.  For simplicity the results will concentrate on within-signal contrast. 331 

 332 

 333 

3.0 EXAMPLES AND THEIR IMPLICATIONS 334 

 335 

 To illustrate and explore the biological significance of BSA, we chose two species that are polymorphic in 336 

their patch colour, luminance and geometry, male guppies (Poecilia reticulata) and Gouldian finches (Erythrura 337 

gouldiae) because they have very different signal and signalling geometry.  This allows us to showcase the 338 

power of the method in colour pattern research and the important effects of local patterns and viewing angle 339 

between the sender and receiver. 340 

 341 

3.1. GUPPY EXAMPLES AND IMPLICATIONS. 342 

  Male guppies are extremely polymorphic in patch geometry and properties (Endler 1978, 1980).  Fig. 2 343 

shows Fort diagrams of six male guppies in the same format as Fig. 1C, D, ordered by decreasing chromatic mΔS 344 

and calculated in open/cloudy light conditions (Endler 1993b).  The numbers are mΔS and CV from equations (1) 345 

and (3).  These six randomly selected guppies yield five observations:  (1) Each guppy has edges with unique 346 

geometry.  This goes with the considerable polymorphism of male guppy colour patterns (photos in Endler 347 

1978).  (2) There is little geometric correspondence between the strength and positions of chromatic and 348 

achromatic (luminance) edges; the peaks in chromaticity do not correspond with peaks in luminance, and both 349 

depend upon which pair of patches form the edge.  The spatial correlation between chromatic and luminance ΔS 350 

is always negative within a guppy although not always significantly so (Fig. 3A,B).  (3) The negative correlation 351 

between the two ΔS is not present when we consider all possible patch combinations (Fig. 3C); patch contacts 352 

and hence boundary strengths are clearly non-random.  (4) Guppies differ in how variable their ΔS heights are, 353 

indicating variation in which patches form common edges.  354 

 355 

 Maximum chroma and luminance should be negatively correlated because the only way to increase chroma 356 

is to remove parts of a spectrum.  Removing part of the spectral radiance reduces luminance.  At the same time 357 

it increases the differences in stimulation among different photoreceptor classes, increasing chroma (Endler and 358 

Théry 1996; Endler and Mielke 2015).  However, mΔS and sΔS depend upon geometry as well as patch properties 359 

and consequently predictions based upon patch properties alone may be invalid.  For example, chromatic and 360 

luminance mΔS might even be positively correlated if sexual selection jointly increases both luminance and 361 

chromatic mΔS, which would make males more conspicuous. We tested for a possible chromatic-luminance 362 

relationship by analysing 200 male guppies.  The two mΔS are positively correlated (Fig. 3D).  This is not what 363 

one would expect from random patch geometry, where every patch class has an equal probability of contacting 364 

the others (see also Fig. 3A,C).  It suggests that particular colours are adjacent and adjacency has evolved to set 365 

particular levels of overall conspicuousness, as estimated by mΔS.  Random associations yield different mΔS.  The 366 

relationship for sΔS is also positive (Fig. 3E), but the 200 points are widely scattered and appear in 3 clumps.  367 

This suggests partially discontinuous variation among fish boundary ΔS, and could result from polymorphic 368 

colour pattern genes that control particular sets of spots (review in Endler 1978).  The correlation and clumping 369 

for CV (Fig. 3F) is lower than for mΔS and sΔS. Patterns of variation in boundary strength could predict fitness in 370 
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any species because they affect pattern conspicuousness and hence colour pattern function and fitness. 371 

 372 

 Fig. 4 shows chromatic and luminance mΔS and sΔS distributions for the 200 guppies analysed.  The means 373 

are moderately symmetrically and unimodally distributed but the standard deviations are multimodal, as in Figs. 374 

3E, F.  Note that mΔS > 1.5 indicates that, on average, the boundaries are detectable by females, but some may 375 

not be (mΔS = 1 is one JND, the threshold for distinguishing patches).  Patches with similar colours or 376 

luminances which would lead to smaller ΔS and mΔS tend not to be adjacent.  In general, we hypothesize that 377 

having adjacent patches with larger ΔS would be advantageous in conspicuous signalling, but disadvantageous 378 

for crypsis.  If most boundaries are not detectable and a few were, this might be a previously unrecognised form 379 

of disruptive colouration. 380 

 381 

 The thick black line in Fig. 4 is the estimate for randomly arranged patch classes, as opposed to their 382 

observed geometry.  This was calculated by letting every patch class contact every other patch class as in Fig. 383 

3C.  For mΔS it is larger than actually found in any fish, and for sΔS it is larger than all fish except for chromatic 384 

sΔS where it is larger than 98% of the fish. This suggests that the observed colour patterns are less conspicuous 385 

than they would be if the patches were arranged at random.  One would at first think that this is contrary to that 386 

expected because we assume that females should mate with males with larger mΔS because they are more 387 

conspicuous than those with smaller mΔS.  However, visually hunting predators are always present in natural 388 

guppy populations, resulting in variation in the trade-off between sexual selection and predation (Endler 1978, 389 

1980).  We speculate that guppies have been selected over millions of generations for optimal edge strengths 390 

balancing sexual selection and predation.  We predict that samples taken from high predation populations would 391 

have distributions of mΔS and sΔS that extensively overlap ΔS=1, indicating less conspicuous coloration 392 

representing the local balance between sexual selection and predation.  This may apply to any species where 393 

there is a shifting balance between sexual selection and predation.  394 

 395 

 396 

3.2.  GOULDIAN FINCH EXAMPLES AND IMPLICATIONS 397 

 Gouldian finches provide examples of additional insights that can be gained from Boundary Strength 398 

Analysis.  There are three polymorphs differing in head colour: black, yellow (golden) or red.  Both males and 399 

females are coloured with females having less chromatic colours and a mauve rather than a purple chest.  Unlike 400 

guppies, which have a relatively flat surface that is displayed towards females, Gouldian finches have a 3D 401 

colour pattern in which the relative proportion of patches and edges changes with viewing angle.  Consequently 402 

we present Fort diagrams from Gouldian finches seen at two viewing angles: a ¾ view and a side view (Fig. 5A, 403 

B).  The analysis of the ¾ view is shown in Figs. 5 and 6 and the side view in Fig. 7.  More details are shown in 404 

the online appendix. 405 

 406 

 Like guppies, there is a divergence between chromatic and luminance ΔS (Fig 5C-H) and the spatial 407 

correlation between them is negative (except in the golden female morph). With fewer points than in the guppy 408 

data, none of the correlations are significant.  Nevertheless, each correlation is smaller than the correlation 409 

between all possible pairs of colours for that morph and gender (see online appendix) suggesting that the 410 
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negative correlation has some function in both species.   411 

 412 

 Given that the chromatic and achromatic patterns are different and almost complementary we suggest that 413 

the chromatic and achromatic components of colour patterns could be used for different functions, such as 414 

sexual selection, species recognition, or defense.  Chromaticity and luminance are processed independently, and 415 

there is variation in their relative importance in stimulus choice and discrimination, among many species 416 

including crabs, psyllids, honeybees, bumblebees, flies, hawkmoths, birds and humans (Baldwin and Johnsen 417 

2012; Farnier et al 2014; Dyer et al 2008; Giurfa et al 1997; Kelber 2005, 2016; Kiel et al 2013; Osorio and 418 

Vorobyev 2005; White and Kemp 2016; White et al 2017; Zhou et al 2012).  This suggests that chromatic and 419 

achromatic channels could have different functions in any taxa.  There are also distance effects, probably due to 420 

the fact that in many animals, visual acuity is greater for achromatic than chromatic stimuli.  For example, bees 421 

use chromatic cues when they subtend larger angles on their retina and achromatic cues when the visual angles 422 

are smaller (Giurfa et al 1997).  This means that achromatic cues may be more useful at greater distances than 423 

chromatic cues, especially at lower light levels when acuity decreases, and colour vision stops working at still 424 

lower irradiances.   Moreover, chromatic and luminance components are roughly independent in natural scenes 425 

(Hansen and Gegenfurtner 2009) suggesting that crypsis may be possible independently of signalling.  The 426 

functional differences between chromatic and achromatic edges are worth further investigation. 427 

 428 

 Gouldian finches also illustrate that: (1) The viewing angle significantly affects the perceived relative area 429 

of each patch, significantly affecting mΔS and sΔS,; the ¾  view having higher mΔS and often higher sΔS than the 430 

side view (Table 1).  This highlights the importance of recording the viewing angle during visual signalling. (2) 431 

Sexual dimorphism within each morph is associated with reduced edge intensities, mΔS and sΔS, in females of all 432 

morphs for both chromatic and achromatic ΔS (Fig. 6, Table 1), with less reduction in achromatic ΔS (Table 1).  433 

This illustrates the utility of BSA in estimating sexual dimorphism.  (3) Within males or females, the three 434 

morphs differ in chromatic mΔS with the golden and red morphs similar but different from the black morph 435 

(Table 1).  They differ less in achromatic mΔS, and there is surprisingly little variation in sΔS among morphs; 436 

perhaps this is the sign of a species-specific signal.  (4) There is a clear difference in pattern between the head 437 

and the rest of the body, with the head values larger than the body.  The difference in location-specific edge 438 

intensities is stronger in the side view.  This reiterates the importance of calculations using the same view angle 439 

as used by the viewers, but it also shows a weakness of using mΔS and sΔS calculated over the entire body.  It may 440 

be reasonable in guppies or other species that present the entire side of a relatively flat surface to the viewer, but 441 

it will be inaccurate if the viewer attends more to some parts of the body than the others.  The stronger edges in 442 

the Gouldian finch heads may be associated with, and even selected by, conspecifics paying more attention to 443 

the heads than the rest of the body.  The rest of the body may be used in species recognition and, or, reduction of 444 

predator risk.  Consequently, mΔS and sΔS should be calculated on the parts of the colour pattern used in social 445 

interactions for signal design assessment whereas they should be calculated separately on the parts of the body 446 

seen by predators (using predator vision parameters).  These two functions may be spatially separated.  Clearly 447 

we need to know about the geometry of signalling as much as the geometry of the signals for accurate use of 448 

BSA. 449 

 450 
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 451 

4.0 GENERAL PREDICTIONS 452 

 453 

 Because BSA can be used to analyse any animal or plant colour pattern, it is useful to make some general 454 

predictions, based upon the assumption that edges are important in colour pattern detection and perception 455 

(Gegenfurtner and Sharpe 1999; Dowling 2012; Stevens and Cuthill 2016), and that stronger edges (larger ΔS 456 

and greater length) are more effective. 457 

 458 

1. If mΔS is important in intraspecific signalling then it should predict behaviours such as mate choice or any 459 

other visually-based choice behaviour.  The relative importance of chromatic and luminance mΔS is unknown, 460 

and this may vary among higher taxonomic groups.  Consequently, we predict that the relationship between mΔS, 461 

pattern conspicuousness, decision-making, and fitness will be context, habitat and species specific.  Restriction 462 

of mΔS to calculations just over the part of the colour pattern tracked by viewers should be limited to species 463 

with well-studied signalling geometry, or will have to wait for more advances in eye-tracking methodologies 464 

 465 

2. If sΔS is important in colour pattern conspicuousness then it should predict visually-based choices.  However, 466 

it is not clear whether larger or smaller sΔS increases the overall conspicuousness.  Small sΔS (or CV) could give 467 

a consistently higher stimulation to the retina.  However, larger sΔS might be more effective if spatially similar 468 

ΔS (low sΔS) leads to sensory adaptation and hence inefficient reception. 469 

 470 

3. For colour patterns, or components used in signalling, edges should have mΔS > 1 with respect to chromatic 471 

and luminance ΔS; edges with ΔS≤1 are unlikely to be detected.  Patterns with small mΔS have fewer detectable 472 

edges, leading to inefficient visual signalling.  For crypsis, having mostly undetectable edges (mΔS ≤ 1) is an 473 

advantage.  However, if the background has many ΔS>1 and the animal has many ΔS≤1the animal's shape will 474 

be conspicuous.  If both have many ΔS>1 then the pattern may be cryptic (Endler 1978) or disruptively coloured 475 

(Endler 2006). 476 

 477 

4.  For colour patterns or pattern parts used in signalling, the distribution of both mΔS and sΔS should be different 478 

from those of the visual background with respect to either chromatic or luminance ΔS or both.  The animal-479 

background colour pattern component distributions should be similar for cryptic species, or parts of the colour 480 

patters that are seen more often by predators than conspecifics.  481 

 482 

5.  The animal-background match or mismatch of both mΔS and sΔS should differ in different parts of the animal's 483 

body for species that are usually seen by predators from one viewing angle (e.g. above or behind) and by 484 

conspecifics from another viewing angle (e.g. frontal; e.g. Salticid spiders); parts viewed by predators should be 485 

more cryptic than parts viewed by conspecifics.  Colour pattern functions could not only differ in regions of the 486 

body viewed from different angles, but may also differ when viewed from different distances because this may 487 

cause some adjacent patches to blend (Endler 1978). 488 

 489 

6.  For prey species living in areas over a range of predation intensities, the fraction of edges with ΔS≤1 should 490 
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be relatively higher in areas with higher predation because ΔS≤1 leads to poorer perception of separate patches, 491 

but the opposite is needed for disruptive colouration.  The absolute fraction of edges with ΔS≤1 should depend 492 

upon the background patch pattern.  For example, in visual backgrounds with highly contrasting patches (most 493 

ΔS ≫1, large mΔS) the mΔS and the distributions of ΔS in the animal and backgrounds should be more similar in 494 

areas of higher predation intensity than areas of lower predation.  For prey species that use only parts of the 495 

pattern for signalling, the signalling components should be smaller, with shorter edges and lower ΔS in areas of 496 

greater predation risk. 497 

 498 

7.  For species attending more to chromaticity than luminance in intraspecific signalling the chromatic mΔS and 499 

most or all chromatic ΔS should be larger than 1 with the opposite for luminance.  This ensures that the pattern 500 

is maximally conspicuous to the receiver's visual system.  A similar pattern should appear for luminance mΔS 501 

and ΔS in species using luminance more than chromaticity.  502 

 503 

 504 

5.0 GENERAL QUESTIONS 505 

 506 

 There is so little known about the implications of estimates of patch boundary strengths that predictions are 507 

limited, but there are several questions which are worth further investigation until we can make explicit 508 

predictions. 509 

 510 

1.  Which is more important in intraspecific signalling, mΔS or sΔS?  If both are important, does their relative 511 

importance change with the complexity of the visual background or the mixture of different intraspecific and 512 

interspecific viewers? 513 

 514 

2.  mΔS and sΔS estimate the effects of patch boundaries on the overall colour pattern conspicuousness.  It is also 515 

possible that within-pattern variation in hue, chroma and luminance of patches also affect overall 516 

conspicuousness, regardless of whether or not they come into contact (Endler & Mielke 2005).  What is the 517 

relative importance of overall variation in hue, chroma, luminance, and edge properties?  Which measures 518 

successfully predict mate choice and survival under specific visual and ecological conditions?   519 

 520 

3.  Do different aspects of salience allow for "private channels", allowing mitigation of the tradeoff between 521 

being conspicuous to potential mates and inconspicuous to predators?  This might be most likely if, for example, 522 

predators used different visual processing, different components of the colour patterns, or different viewing 523 

distances than the prey use for intraspecific signalling. 524 

 525 

4.  How do patch and patch edge properties communicate signal content?  Do they constrain content enough to 526 

make predictions about the kind and amount of information to be transmitted to conspecifics? 527 

 528 

 In sum, within the limitations outlined in sections 1.2 and 1.3, Boundary Strength Analysis will enable 529 

these questions to be addressed in any species that use vision to make decisions based upon reception and 530 
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perception of a sender's colour pattern. 531 

 532 
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Table 1.  Gouldian finch mean (mΔS) and SD (sΔS) of patch edge chromatic (Cr) and 549 

luminance (Lm) ΔS, weighted by edge lengths 550 

 551 

Cr mΔS  Cr sΔS   Lm mΔS  Lm sΔS   Morph-gender-view 552 

  7.56   4.97     11.07   10.43   Black, Male, 3/4 view 553 

  5.71   4.25        7.84      9.29   Black, Male, Side view 554 

  4.49   2.64        8.55      6.53   Black, Female, 3/4 view 555 

  3.19   2.21        5.78      6.50   Black, Female, Side view 556 

12.30   5.46     11.84   11.08   Golden, Male, 3/4 view 557 

  8.58   5.55        9.75   10.91   Golden, Male, Side view 558 

  6.70   3.43        9.90   10.41   Golden, Female, 3/4 view 559 

  4.77   3.57        8.33      9.91   Golden, Female, Side view 560 

11.44   4.94     12.95      9.56   Red, Male, 3/4 view 561 

  7.96   4.95        9.68   10.10   Red, Male, Side view 562 

  5.75   2.98     11.80      9.30   Red, Female, 3/4 view 563 

  4.40   3.25        9.76      9.24   Red, Female, Side view 564 
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Figure Captions: 702 

 703 

FIGURE 1. Example analysis of a male guppy colour pattern.  (A), photograph of a guppy (scale not shown).  704 

(B), part of the resulting zone map indicated by the circle in panels (A) and (C) .  Each pixel has a code 705 

indicating which colour/luminance class overlaps that pixel (see Endler 2012 for details).  (C) edge map; this 706 

can either be derived directly from the photograph (A) or from the zone map (B).  (D), Diagram in which the x,y 707 

(horizontal) coordinates correspond to the edge map in (C) and the vertical axis corresponds to the chromatic ΔS 708 

between adjacent patches under specific ambient light conditions.  (E) as in (D) but for luminance ΔS.  Note the 709 

lack of topographic correspondence between the chromatic and luminance diagrams.  For brevity we will refer 710 

to (D) and (E) as "Fort Diagrams" because they resemble old fashioned fortresses). 711 

 712 

FIGURE 2.  Examples of Fort Diagrams for 6 different guppy colour patterns, arranged in order of decreasing 713 

chromatic mΔS.  Rows correspond to the same individual guppy and columns refer to the guppy's chromatic or 714 

luminance Fort diagram, respectively.  Numbers under the diagrams for each row are chromatic mΔS and CV 715 

(left column) and luminance mΔS and CV (right column) for the same guppy.  Note the lack of topographic 716 

correspondence between the chromatic and luminance diagrams, and the variation among individuals.  717 

 718 

FIGURE 3. Relationships between chromatic and luminance in guppies.  A, Significant negative correlation 719 

between chromatic and luminance ΔS within a guppy having an average correlation value.  B, Distribution of the 720 

correlations among 11 guppies; all are negative but two are not significantly negative.  C, Lack of correlation 721 

between all possible chromatic and luminance edges; note the larger rage and higher joint values compared to A.  722 

D, The relationship between chromatic and luminance mΔS of 200 guppies.  E, Relationship for sΔS.  F, 723 

relationship for CVΔS 724 

 725 

FIGURE 4.  The distributions of chromatic and luminance edge statistics mΔS and sΔS of the 200 guppies in Figs. 726 

3 and 4.  (A), chromatic mΔS, (B), chromatic sΔS, (C), luminance mΔS, (D) luminance sΔS..  All guppies have mΔS 727 

>1 indicating that adjacent patches are always discriminable to guppies under the environmental conditions.  728 

The thick vertical lines show the same statistics if the colour patches were distributed at random over each 729 

guppy's body; every patch class had an equal probability of contacting the others.  Almost all guppies show 730 

smaller values than expected from random patch locations. 731 

 732 

FIGURE 5.  Gouldian finches.  A, edge map traced from a 3/4 view photograph.  B, edge map traced from a 733 

side view photograph.  C-H, fort diagrams of the three male morphs (rows) showing the difference in pattern for 734 

chromatic and luminance ΔS (columns) in the 3/4 view. 735 

 736 

FIGURE 6.  Fort diagrams showing sexual dimorphism in the black and golden-headed morphs with respect to 737 

both chromatic and luminance ΔS in the 3/4 view.  The red-headed morph does not differ very much from the 738 

golden-headed morph (see online appendix for all fort diagrams). 739 

 740 

FIGURE 7.  Fort diagrams of side views of the black and golden-headed morphs.  See online appendix for all 741 
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fort diagrams. 742 

 743 
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Combining colour pattern geometry and colored patch visual properties in order to predict behaviour and fitness

John A. Endler, Gemma Cole and Xandy Kranz

Supplemental information
        

1.  Example of transition matrix terminology and calculations.  

1.1. The Edge Matrix, TE

Consider a color pattern in which  there are C = 4 colors, ci, where i =1,2,3,4.  The edge matrix TE can be generated
either from a zone map (Endler 2012) or directly from a map of the edges.

If TE was generated from a zone map, the raw TE data will appear as in Table S1.

Table S1, example of a raw edge length or frequency matrix TE and C = 4

c1 c2 c3 c4

c1 f11 f12 f13 f14

c2 f21 f22 f23 f24

c3 f31 f32 f33 f32

c4 f41 f42 f43 f44

In the raw TE, each fij is the number of adjacent pixel pairs with the same (i = j) or different (i … j) colors.  If i = j
then the transition was within a given color class.  If i … j then the transition was across the edge between two color
classes.  If each fij is divided by the sum of all of f, then fij is the relative frequency of transition i-j. The diagonals
(fii) estimate the total area of each color, and the off-diagonals (i … j) estimate the relative frequency or total length
of the edges between colors ci and cj.  The upper and lower off-diagonals are just records of transitions in different
directions, i 6 j and j 6 i. For subsequent analysis, the upper and lower off-diagonals should be combined as fk = fij
+ fji, where k = 1...E. and  E = C(C-1)/2.  In this example E = 6.  For subsequent analysis use the fk and ignore the
diagonals, yielding the final version of TE, as in Table S2.

Table S2, example of a the final version of the edge transition matrix TE

c1 c2 c3 c4

c1

c2 fa=f12+f21       

c3 fb=f13+f31 fc=f23+f32    

c4 fd=f14+f41 fe=f24+f42 ff=f34+f43

In table S2 fk where k=a,b,...f instead of 1,2..6 to avoid confusion with i and j.  

If TE was generated directly from a map of the edges, then the data will appear as in table S2 with only cells fk.

For either TE calculation, the fk can be converted to frequencies by dividing by their total, T=Σ fk.

For TE generated either from transitions or directly from an edge map, there are potentially E = C(C-1)/2 edge
frequencies or lengths fk.  However, the larger the C, the more likely it is that some colors may not contact others,
and, as a consequence, some of the fk will be zero.
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1.2.  The ΔS Matrices, TSC and TSL

These are accumulated directly from calculating the Receptor Noise JND or signal/noise ratio ΔS for all
possible combinations of the C colors.  The matrix will resemble Table S, with sij=ΔS for colors i and j instead of
fij, but the diagonals will be zero and the upper and lower off-diagonals will be identical for a given i and j.  In this
case just take the lower off-diagonals (call them sk), giving a matrix in the same form as Table S2.

1.3.  Analysing TE, TSC and TSL.

For all three transition matrices, TE, TSC and TSL, rearrange their fk and sk into column vectors.  This can be done
easily with the reshape function in MATLAB or the as.vector function in R.  For further analysis it is convenient
to place the three vectors into a E x 3 data matrix with one row per transition class, as in table S3.  See main text for
how the data matrix is used.

Table S3, transition matrices from Table S2 converted into vectors

TE TSC TSL

fa sa sa

fb sb sb

fc sc sc

fd sd sd

fe se se

ff sf sf

2.  MATLAB function to calculate weighted mean and weighted standard deviation

function [mn,sd]=WeightedMnSD(x,w)
% [mn,sd]=WeightedMnSD(x,w);
% Calculates the mean and SD for x data with weights w
% INPUT: x values
%        w weights for each value
% Both x and w must be the same length 
% Will automatically remove any rows with NaN in x
% Formulae from the DATAPLOT manual pages 2-66 to 2-67 at
%    http://www.itl.nist.gov/div898/software/dataplot/refman2/ch2/weightsd.pdf  
t=isnan(x);
if sum(t)>0  %remove NaN rows
 xx=x(t==0); ww=w(t==0); 
 x=xx; w=ww; w=w/sum(w);
end;
n=length(x); n2=length(w);
if n~=n2 
    mn=NaN; sd=NaN; 
    fprintf(1,'X and weights do not have same n\n');
    return; 
end;
sw=sum(w);     %sum of weights
swx=sum(x.*w); %sum of weights times x
mn=swx/sw;     %weighted mean
nnz=sum(w(w>0)>0); %number of nonzero weights
if nnz>1
  s=0;
  for i=1:n
    s=s+w(i)*(x(i)-mn)^2;
  end;
  sd=sqrt(nnz*s/((nnz-1)*sw));    %math.stackexchange.com
else
  sd=0;
end;
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3/4 view Side view

3.  Gouldian Finch example in more detail

The analysis was done for two views of each morph, digitized from 
photographs.  The two views may represent two different views as seen 
by conspecifics but in any case demonstrate the effects of different views 
of the same bird.  The illustrations below are maps of the patch
boundaries.

The following 4 pages show various combinations of morph (Black,
Golden and Red), sex, and view.

Note that, for clarity, the boundary height (intensity) between the bird and 
the background is shown as zero.  When seen against real background 
there would be fluctuations around the bird’s perimeter both above and 
blow the bird’s own patch boundary intensity.  
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Gouldian Finch statistics

Correlation between chr and lum edge deltaS, point per pixels
  Excluding edges between body and background and eye

  Male r        P      n   Female r      P         n       Morph & View
 -0.405  0.19 12  -0.163  0.61 12 Black, 3/4 view
 -0.397  0.14 15  -0.090  0.75 15 Black, Side view
 -0.363  0.18 15  -0.098  0.73 15 Golden, 3/4 view
 -0.181  0.47 18    0.169  0.50 18 Golden, Side view
 -0.278  0.32 15  -0.116  0.68 15 Red, 3/4 view
 -0.097  0.70 18            0.101 0.69 18 Red, Side view

All possible colour combinations
 -0.081  0.56 55   0.345  0.0098  55 Black, all possible
 -0.152  0.27 55   0.005  0.97  55 Golden, all possible
 -0.089  0.52 55   0.156  0.25  55 Red, all possible

Difference between correlations on observed and all possible colour combinations
 -0.323             -0.750  Black, 3/4 view, r actual-all possible
 -0.316             -0.743  Black, Side view, r actual-all possible
 -0.211             -0.368  Golden, 3/4 view, r actual-all possible
 -0.029             -0.186  Golden, Side view, r actual-all possible
 -0.189             -0.434  Red, 3/4 view, r actual-all possible
 -0.008             -0.253  Red, Side view, r actual-all possible

         

Mean (mΔS) and SD (sΔS) of patch edge chromatic (cr) and luminance (lm) ΔS, 
weighted by edge lengths

Cr mΔS Cr  sΔS  Lm mΔS SD_Lm  Morph-gender-view
  7.56  4.97    11.07  10.43  Black, Male, 3/4 view
  5.71  4.25       7.84     9.29  Black, Male, Side view
  4.49  2.64       8.55     6.53  Black, Female, 3/4 view
  3.19  2.21       5.78     6.50  Black, Female, Side view
12.30  5.46    11.84  11.08  Golden, Male, 3/4 view
  8.58  5.55       9.75  10.91  Golden, Male, Side view
  6.70  3.43       9.90  10.41  Golden, Female, 3/4 view
  4.77  3.57       8.33     9.91  Golden, Female, Side view
11.44  4.94    12.95     9.56  Red, Male, 3/4 view
  7.96  4.95       9.68  10.10  Red, Male, Side view
  5.75  2.98    11.80     9.30  Red, Female, 3/4 view
  4.40  3.25       9.76     9.24  Red, Female, Side view
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