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ABSTRACT  
 
Background: Exosomes are nano-sized extracellular vesicles released by many cells that 
contain molecules characteristic of their cell-of-origin, including microRNA. Exosomes 
released by glioblastoma cross the blood-brain-barrier into the peripheral circulation, and 
carry molecular cargo distinct to that of ‘free-circulating’ miRNA. 
 
Methods: Serum exosomal-microRNAs were isolated from glioblastoma (n=12) patients and 
analyzed using unbiased deep sequencing. Results were compared to sera from age- and 
gender-matched healthy controls, and to grades II-III (n=10) glioma patients. Significant 
differentially expressed microRNAs were identified, and the predictive power of individual 
and subsets of microRNAs were tested using univariate and multivariate analyses. Additional 
sera from glioblastoma patients (n=4) and independent sets of healthy (n=9) and non-glioma 
(n=10) controls were used to further test the specificity and predictive power of this unique 
exosomal-microRNA signature. 
 
Results: Twenty-six microRNAs were differentially expressed in serum exosomes from 
glioblastoma patients’ relative to healthy controls. Random forest modeling and data 
partitioning selected seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, 
miR-485-3p, miR-486-5p and miR-543) as the most stable for classifying glioblastoma. 
Strikingly, within this model, two iterations of these miRNA classifiers could distinguish 
glioblastoma patients from controls with perfect accuracy. The seven-miRNA panel was 
able to correctly classify all specimens in validation cohorts (n=23). Also identified were 
23 dysregulated miRNAs in IDHMUT gliomas; a partially overlapping yet distinct signature 
of lower grade glioma. 
 
Conclusions: 
Serum exosomal-miRNA signatures can accurately diagnose glioblastoma preoperatively. 
miRNA signatures identified are distinct from previously reported ‘free-circulating’ miRNA 
studies in GBM patients, and appear to be superior. 
 
 
 
IMPORTANCE OF STUDY  
 
There is a real need for accurate biomarkers that can measure glioblastoma disease activity 
and treatment response in a safe, sensitive, affordable and timely manner. This study 
demonstrates that exosome-associated microRNAs isolated from patient sera have 
exceptional utility as blood-based biomarkers in glioma patients. These tests have the 
potential to provide objectively measured surrogate endpoints to allow clinical trial protocols 
to be more dynamic and adaptive.  
 
 
Keywords (5 max): glioblastoma; exosomes; microRNA; glioma; liquid biopsy 
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INTRODUCTION 
 
Malignant gliomas, particularly glioblastoma (GBM), represent the most lethal primary brain 
tumors, owing in part to their highly infiltrative growth patterns. The World Health 
Organization (WHO) guidelines sub-categorize glioma by histopathologic evaluation into 
tumor grades I-IV, where GBM (grade IV) is the most aggressive and also the most common. 
Despite surgery, radiation, and chemotherapy, essentially all GBM tumors recur, at which 
point patients have reduced treatment options and worsening prognoses. Compounding this 
aggressive cancer phenotype are challenges in monitoring responses to treatment and tumor 
progression. While recent revisions to the Response Assessment in Neuro-Oncology (RANO) 
criteria helps to standardize glioma tumor monitoring[1], radiographic measurements can be 
unreliable and insensitive to early signs of treatment failure and tumor relapse. Moreover, 
there are still difficulties deciphering pseudo-progression and pseudo-responses in some 
patients. Brain biopsy and histologic analysis can provide definitive diagnoses and evaluation 
of disease progression, however serial biopsies are impractical given the cumulative surgical 
risk, and biopsied tissue may not reflect the heterogeneity of GBM tumors. 
 
An important step towards the provision of personalized GBM patient care is the ability to 
assess tumors in-situ. As such, there is a real need for biomarkers that can measure disease 
burden and treatment responses in GBM patients in a safe, accurate and timely manner, and 
preferably before changes become clinically apparent. The recently popularized idea of 
‘liquid biopsy’ presents an ideal approach to monitor GBM tumor load and evolution in 
response to treatment. If developed and implemented alongside new treatments, such tests 
would provide useful surrogate endpoints and allow clinical trial protocols to be more 
dynamic and adaptive.  
 
Exosomes are nano-sized (30-100 nm) membrane-bound extracellular vesicles released by all 
cells in both health and disease, and there is growing interest in their use as non-invasive 
biomarkers for disease diagnosis and monitoring of disease recurrence[2]. GBM-derived 
exosomes circulate in the peripheral blood of patients, and can contain diagnostic nucleic acid 

[3]. We recently described a GBM exosome protein signature[4] and also showed that GBM 
exosomes contain abundant, selectively packaged small non-coding RNAs (sncRNAs)[5]. 
Using unbiased sncRNA deep sequencing, we identified several unusual and/or completely 
novel sncRNAs within GBM exosomes in vitro as well as an enrichment of microRNA 
(miRNA) implicated in oncogenesis, including miR-23a, miR-30a, miR-221 and miR-451[5]. 
 Thus, while GBM exosomal miRNA contents broadly reflect their cell of origin, there is a 
unique profile of miRNAs within exosomes. 
 
Some studies of exosomal miRNA in GBM patients have already been reported; these studies 
utilized methods that focused on pre-defined and relatively small groups of miRNA species. 
One previous study found that miR-21 levels in CSF exosomes of GBM patients were up-
regulated 10-fold compared to controls[6], while another reported that serum exosomal miR-
320, mir-547-3p, and RNU6-1 were significantly associated with GBM diagnosis, as well as 
outcome (RNU6-1)[7]. However, to date no comprehensive analysis of the entire miRNA 
repertoire of serum exosomes in glioma patients has been performed. Here, we have used 
unbiased next generation sequencing and an integrative bioinformatics pipeline[8] to assay the 
complete repertoire of exosomal-associated miRNAs in the serum of patients with 
glioblastoma, lower grade gliomas, and healthy controls. We describe a novel miRNA 
signature within serum exosomes that is highly predictive of pre-operative GBM diagnosis. 
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Furthermore, we show that this approach has potential for describing unique miRNA 
signatures for distinct glioma entities. 
 
MATERIALS AND METHODS 
Participants 
Serum (1 mL) was accessed from the Neuropathology Tumor and Tissue Bank at Royal 
Prince Alfred Hospital, New South Wales, Australia (Sydney Local Health District HREC 
approval, X014-0126 & HREC/09RPAH/627). Twenty-six serum specimens were collected 
pre-operatively from patients with histologically confirmed glioma tumors, including 16 with 
GBM, IDH-wildtype (IDHWT) WHO (2016) grade IV, and 10 patients with grade II-III IDH-
mutant (IDHMUT) gliomas (refer to Table 1; Supp.Table 1 for more detailed information). 
Age- and gender-matched healthy control sera (n=16) were used for discovery miRNA 
analyses. Sera from an additional nine healthy controls and ten non-glioma patients (active 
multiple sclerosis, n=9, and ganglioglioma, n=1) were used to test the GBM miRNA 
signature. This study was performed under RPAH, and USYD HREC approved protocols 
(#X13-0264 and 2012/1684), and all participants provided written informed consent. All 
methods were performed in accordance with the relevant guidelines and regulations. 
 
Table 1A: Overview of cohorts used for discovery miRNA analyses. 
 
 GBM, 

IDHWT 
GBM-matched 
HC  

GII-III, 
IDHMUT 

GII-III-matched 
HC 

Sample n 12 12 10 10 
Age (mean 
±SD) 

63.3 ± 11.5 56.2 ± 12.4 42.9 ± 12.7 42.7 ± 10.2 

Gender 7M, 5F 7M, 5F 6M, 4F 6M, 4F 
 
Table 1B: Additional patients and cohorts used for validation 
 

 
For more detailed demographic, clinical and histopathologic information, please refer to 
Supplementary Tables 1A-C. The mean age with standard deviation is provided for each cohort. 
Abbreviations: F, female; GBM, glioblastoma; GII-III, glioma grade II-III; GI_C, Ganglioglioma 
grade I control case; HC, healthy controls; M, male; MS_C, multiple sclerosis control cohort 

Patient/cohort Age	 Gender Diagnosis Notes 

GBM1_relapse 46	 M GBM IV Pre-operative blood taken after recurrence 
of GBM1 (8-month relapse) 

GBM12_prior 45	 F GBM IV 
Pre-operative blood taken before removal 
of earlier GBM lesion (GBM12; 4.6 
months prior) 

GBM13 33	 M GBM IV GBM, IDHMUT, WHO (2016) grade IV 

GBM14 56	 M high-grade glioma 
No surgery/tissue pathology performed, 
diagnosis based on repeat MRIs. Overall 
survival of 8.1 months. 

GI_C 24	 F Ganglioglioma 
grade I 

GFAP+ in glial component/ NeuN+ in 
neuronal component, IDH1WT, ATRX+, 
BRAF(V600E)+++  

HC (n=9) 36.2± 10.3	 5F, 4M Healthy controls - 

MS_C (n=9) 35.3±10.4	 5M, 4F Relapse-remitting 
Multiple Sclerosis 

All patients had active enhancing lesions; 
were untreated (n=5) or receiving 
different immunomodulatory therapies 
(n=4) 
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Exosome purification and characterization 
Exosomes were isolated from serum as previously described[8]. Briefly, serum (1 mL from 
each subject) was treated with RNase A (37 °C for 10 min; 100 ng/ml; Qiagen, Australia) 
before exosome purification by size exclusion chromatography (qEV iZONE Science). Ten 
fractions (500 µL) were eluted in PBS, as per manufacturer’s instructions. Fractions 8, 9, and 
10 were previously shown to contain purified exosome populations[8] and were collected and 
stored at −80 °C. Captured exosomes were characterized in accordance with the criteria 
outlined by the International Society for Extracellular Vesicles (ISEV)[9]. Specifically, we 
identified more than three exosome-enriched proteins by mass spectrometry proteome 
profiling and characterized vesicle heterogeneity using two technologies, transmission 
electron microscopy (TEM) and nanoparticle tracking analysis (NTA).  
 
Transmission electron microscopy: Combined qEV-captured fractions 8-10 were loaded 
onto carbon-coated, 200 mesh Cu formvar grids (#GSCU200C; ProSciTech Pty Ltd, QLD, 
Australia), fixed (2.5% glutaraldehyde, 0.1 M phosphate buffer, pH7.4), negatively stained 
with 2% uranyl acetate for 2 min and dried overnight. Exosomes were visualised at 40,000 X 
magnification on a Philips CM10 Biofilter TEM (FEI Company, OR, USA) equipped with an 
AMT camera system (Advanced Microscopy Techniques, Corp., MA, USA) at an 
acceleration voltage of 80 kV. 
 
Nanoparticle tracking analysis: Particle size distributions and concentrations were 
measured by NTA software (version 3.0) using the NanoSight LM10-HS (NanoSight Ltd, 
Amesbury, UK), configured with a 532-nm laser and a digital camera (SCMOS Trigger 
Camera). Video recordings (60 s) were captured in triplicate at 25 frames/s with default 
minimal expected particle size, minimum track length, and blur setting, a camera level of 10 
and detection threshold of 5.  
 
Proteome analysis of exosomal preparations: Serum exosome fractions 8, 9 and 10 were 
prepared for mass spectrometry (MS)-based proteomic analysis. Proteomes were 
concentrated using chloroform-methanol precipitation, dissolved in 90% formic acid (FA), 
their concentrations estimated at 280 nm using a Nanodrop (ND-1000, Thermo Scientific, 
USA) and aliquots dried using vacuum centrifugation. Proteomes were then processed and 
quantified as before [10]. Peptides from each fraction were desalted using C18 ZipTipsTM, 
concentrations estimated by Qubit quantitation (Invitrogen), dried by vacuum centrifugation 
and re-suspended in 3% acetonitrile (ACN; v/v)/0.1% formic acid (v/v). Samples (0.5 µg) 
from exosome elution fractions 8-10 were separated by nanoLC using an Ultimate nanoRSLC 
UPLC and autosampler system (Dionex) before analyzed on a QExactive Plus mass 
spectrometer (Thermo Electron, Bremen, Germany) as previously described[10]. MS/MS data 
were analyzed using Mascot (Matrix Science, London, UK; v2.4.0) with a fragment ion mass 
tolerance of 0.1 Da and a parent ion tolerance of 4.0 PPM. Peak lists were searched against a 
SwissProt database (2017_11), selected for Homo sapiens, trypsin digestion, max. 2 missed 
cleavages, and variable modifications methionine oxidation and cysteine 
carbamidomethylation. Exosome proteins were annotated using Vesiclepedia 
(http://microvesicles.org)[11] and Functional Enrichment Analysis Tool (FunRich; v2.1.2; 
http://funrich.org)[12]. 
 
RNA extraction and small RNA sequencing 
Serum exosomes were processed for RNA extraction using the Plasma/Serum Circulating & 
Exosomal RNA Purification Mini Kit (Norgen Biotek, Cat. 51000) according to the 
manufacturer’s protocol. Extracted total RNA samples were analyzed with a Eukaryote Total 
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RNA chip on an Agilent 2100 Bioanalyser (Agilent Technologies, United States) to confirm 
sufficient yield, quality and size of RNA. Exosome RNA sequencing libraries were then 
constructed using the NEBNext Multiplex Small RNA Library Prep Kit for Illumina 
(BioLabs, New England) according to the manufacturer’s instructions. Yield and size 
distribution of resultant libraries were validated using Agilent 2100 Bioanalyzer on a High-
sensitivity DNA Assay (Agilent Technologies, United States). Libraries were then pooled 
with an equal proportion for multiplexed sequencing on Illumina HiSeq. 2000 System at the 
Ramaciotti Centre for Genomics. 
 
Data pre-processing, differential expression analysis and pathway analysis 
Data pre-processing was performed using a pipeline comprising of adapter trimming 
(cutadapt), followed by genome alignment to human genome hg 19 using Bowtie (18 bp seed, 
1 error in seed, quality score sum of mismatches<70). Where multiple best strata alignments 
existed, tags were randomly assigned to one of those coordinates. Tags were annotated 
against mirBase 20 and filtered for at most one base error within the tag. Counts for each 
miRNA were tabulated and adjusted to counts per million miRNAs passing the mismatch 
filter. All samples achieved miRNA read counts >50,000 read counts and miRNAs with low 
abundance (<100 read counts across more than 50% of samples) were removed. Differential 
expression analysis was performed using three different statistical hypothesis tests including 
a non-parametric two-sample Wilcoxon test and two parametric tests- Student’s t-test, and an 
Exact test (implemented in Bioconductor EdgeR), which tests for differences between the 
means of two groups of negative-binomially distributed counts. Benjamini & Hochberg 
adjusted p-values were also calculated. Data pre-processing and differential expression 
analysis were performed using Bioconductor and R statistical packages. Pathway analysis 
was performed using Ingenuityâ software (Ingenuity Systems, USA; 
http://analysis.ingenuity.com). MicroRNA target filters were applied to significant, 
differentially expressed miRNAs (unadjusted p-value≤0.05 in all three statistical methods) 
and mRNA target lists were generated based on highly predicted or experimentally observed 
confidence levels. Core expression analyses were performed with default criteria to determine 
the most significant functional associations (biological and canonical pathways) of mRNAs 
targeted by dysregulated miRNAs. 
 
Univariate analysis 
We performed logistic regression (LR) and receiver operator characteristic (ROC) analysis to 
assess the predictive power of individual miRNAs between the two groups of interest. LR 
was used to identify linear predictive models with each miRNA as the univariate predictor. 
The quality of each model was depicted by the corresponding ROC curve, which plots the 
true positive rate (i.e., sensitivity) against the false-positive rate (i.e., 1-specificity). The area 
under the ROC curve (AUROC) was then computed as a measure of how well each LR 
model can distinguish between two diagnostic groups. We then used leave-one-out cross-
validation (LOO-CV) to estimate the prediction errors of the LR models. LOO-CV learns the 
model on all samples except one and tests the learnt model on the left-out sample. The 
process is repeated for each sample and the error rate is the proportion of misclassified 
samples. Overall, cross validation is a powerful model validation technique for assessing how 
the results of a statistical analysis can be generalized to an independent dataset[13]. These 
analyses were performed using R stats (glm) and boot (cv.glm) packages. 
 
 
 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 8, 2018. ; https://doi.org/10.1101/342154doi: bioRxiv preprint 

https://doi.org/10.1101/342154


 7 

Multivariate Analysis 
To assess the predictive power of multiple miRNAs as disease signatures, samples were first 
randomly partitioned into two disjoint sets of discovery (70% of samples) and validation 
(30% of samples). MiRNAs differentially expressed in the discovery set (i.e., changes 
increased or decreased by fold change³2 and unadjusted p-value≤0.05 in all three statistical 
hypothesis tests) were then selected as features/predictors of Random Forest (RF) 
multivariate predictive model. RF is a multivariate nonlinear classifier that operates by 
constructing a multitude of decision trees at training time in order to correct for the 
overfitting problem[14]. RF was trained on the discovery set and the resultant predictive model 
was then used to predict GBM or GII-III patients versus healthy controls based on the read 
count values of identified miRNAs in validation samples. For statistical rigour, to account for 
random partitioning of the samples into discovery and validation sets, the whole process was 
repeated 100 times. We then chose stable miRNAs—i.e., those identified to be differentially 
expressed in more than 75% of iterations—as predictors of an RF model using all samples 
and the out-of-bag (OOB) error was reported as an unbiased estimate of the model predictive 
power.  The ‘importance’ or relative contribution of each feature (differentially expressed 
miRNAs) in the RF performance was then estimated based on the ‘mean decrease accuracy’ 
measure as discussed in[15]. All the analyses were performed using R ‘caret’ and 
‘RandomForest’ packages. 
 
 
 
RESULTS 
Characterization of serum exosomes isolated prior to miRNA sequencing 
Serum exosomes were isolated by size exclusion chromatography. The combined elution 
fractions 8-10 showed particle sizes with a mean diameter 89.1 ± 2.5 nm and modal diameter 
of 81.7±5.5 nm (Fig. 1a). TEM confirmed the presence of similarly sized particles with 
vesicular morphologies, characteristic of exosomes (Fig. 1b). MS analysis confidently 
identified 1167, 861 and 636 proteins in qEV elution fractions 8, 9 and 10 from healthy 
serum, respectively (Supp.Table 2). Overall, 87 of the top 100 proteins commonly identified 
in exosomes were confidently sequenced across the three fractions, including all top 10 
exosomal proteins (Fig. 1c-1). Primary sub-cellular localizations included significant 
enrichments of ‘exosome’ and ‘blood microparticle’ related proteins across all fractions, with 
minimal contamination from other compartments, including the nucleolus (Fig. 1c-2) where 
certain miRNAs show specific nuclear enrichment[16]. Prior to RNA extraction, serums were 
treated with RNaseA to remove circulating RNAs that may confound measurements of 
exosomal RNAs[8]. RNA extracted from each sample yielded profiles typical for exosomes, 
showing an absence of ribosomal RNA and enrichment of small (<200 nt) RNA species (Fig. 
1d). 

Insert Figure 1 here 
 
Differentially expressed exosomal miRNAs in GBM patient sera 
Circulating exosomal miRNA profiles from patients with histopathologically confirmed 
IDHWT GBM (n=12) were compared to age- and gender-matched healthy controls (n=12; 
Table 1). We employed three statistical approaches (Student’s t-test, Fisher’s exact, 
Wilcoxon rank sum) to identify a discovery set of differentially expressed miRNA 
biomarkers. miRNA biomarkers were identified if their differential expression met a fold 
change³2 in either direction and unadjusted p-values≤0.05 in all statistical tests applied. 
Using this approach, we identified 26 miRNAs significantly dysregulated between healthy 
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controls and GBM patients (Table 2; Fig. 2-a; normalized miRNA counts are available in 
Supp.Table 3 and differential expression analysis in Supp.Table 4A). 
 
Table 2. Significant dysregulated miRNAs in serum exosomes from glioblastoma (GBM) 
patients (n=12) relative to healthy controls (HC; n=12). 
miRNA CPM 

(GBM) 
CPM 
(HC) 

FC Exact 
test 

t-test Wilcoxon Error 
rate 

AUROC 

486-5p 25291.6 8522.6 3.0 1.6E-07* 4.0E-04* 1.0E-04* 0.149 0.924 
182-5p 2090.5 850.6 2.5 5.7E-07* 3.0E-04* 2.0E-04* 0.151 0.917 
486-3p 277.4 114 2.4 5.0E-06* 0.002* 3.0E-04* 0.149 0.910 
378a-3p 2083.2 875.2 2.4 1.4E-06* 0.003* 4.0E-04* 0.158 0.903 
183-5p 645.8 267.9 2.4 2.0E-05* 0.001* 0.001* 0.176 0.882 
501-3p 359.6 157.3 2.3 1.1E-05* 0.002* 0.001* 0.161 0.875 
20b-5p 594.6 266.3 2.2 2.9E-06* 0.002* 1.0E-04* 0.133 0.938 
106b-3p 2703.2 1215 2.2 3.9E-06* 0.001* 0.001* 0.160 0.889 
629-5p 896.8 415 2.2 0.001* 0.047 0.04 0.235 0.743 
185-5p 23250.5 11424.1 2.0 4.3E-05* 0.007* 0.005* 0.207 0.833 
25-3p 21838.8 10949.9 2.0 0.001* 0.002* 0.006* 0.199 0.826 
21-5p 73535.3 142796.9 0.5 2.7E-04* 4.2E-05* 5.0E-05* 0.133 0.944 
7a-3p 82.1 176.3 0.5 0.003* 0.005* 0.010* 0.187 0.806 
381-3p 190.5 397.9 0.5 0.009* 0.012 0.012 0.220 0.799 
409-3p 1146.9 2242.5 0.5 0.019 0.029 0.024 0.233 0.771 
7d-3p 1050.5 1912.9 0.5 0.005* 0.013 0.017 0.209 0.785 
323b-3p 117.3 288.3 0.4 0.004* 0.010* 0.004* 0.199 0.840 
328-3p 382.5 922.5 0.4 4.6E-06* 2.0E-04* 2.2E-05* 0.117 0.958 
339-5p 90.1 234.8 0.4 1.2E-06* 2.0E-04* 3.3E-05* 0.109 0.951 
340-5p 1536 3848.1 0.4 4.8E-06* 1.0E-04* 5.0E-05* 0.134 0.944 
126-5p 1222.3 2947 0.4 5.6E-06* 0.002* 0.001* 0.150 0.896 
130b-5p 111.9 248.9 0.4 0.007* 0.009* 0.024 0.203 0.771 
493-5p 210 514.4 0.4 0.010* 0.015 0.028 0.221 0.764 
543 223.1 753.2 0.3 2.5E-06* 3.0E-04* 2.0E-04* 0.143 0.917 
654-3p 110.2 342.5 0.3 2.2E-04* 0.009* 0.006* 0.193 0.826 
485-3p 93.2 352.3 0.3 5.8E-07* 1.0E-04* 3.3E-05* 0.123 0.951 
 
Abbreviations: CPM, miRNA counts per million; FC, fold change; error rates estimated by 
leave-one-out cross validation; AUROC, area under the receiver operating characteristic; 
Significant Benjamini & Hochberg adjusted p-values are indicated by asterisks. 
 
Functional analysis of dysregulated miRNAs in GBM 
We explored biological and canonical pathways associated with exosomal miRNAs changing 
in GBM patient sera relative to healthy controls. The identities of 44 miRNAs (p-value≤0.05 
in all three tests; no fold change restriction) were uploaded into the IPA environment to 
analyze molecular pathways overrepresented in their targets. The dysregulated miRNAs 
target mRNAs that are significantly associated with ‘cancer’ (1.96E-06<p-value<1.52E-16) and 
‘neurological disease’ (1.72E-06<p-value<8.76E-13) with around half of targeted mRNAs 
implicated in GBM (p-value=3.36E-12) and glioma signaling pathways (p-value=1.25E-09; 
Fig. 2-b, Suppl.Fig.1).  
 

Insert Figure 2 here 
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Selection of signature miRNA classifiers for preoperative GBM diagnosis 
The predictive power of each miRNA was estimated using LR models, in which individual 
miRNA expression profiles were used as predictors. ROC curves were determined and 
AUROC measures were ³0.74 across the 26 dysregulated miRNAs (Table 2; Supp.Fig.2). 
In silico validation by LOO-CV correctly identified the test sample on average 83% of the 
time (range 77–89%). We then used partitioning (70% training and 30% test) and Random 
Forest multivariate modeling to determine whether expression patterns of a subset of 
differentially expressed miRNAs could improve the predictive power. Using these 
methods, seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-485-
3p, miR-486-5p and miR-543) distinguished GBM patients from healthy subjects in more 
than 75% of the random data partitions and were selected as the most ‘stable’ miRNA 
classifiers (Fig.3a-b). The RF model was repeated using all iterations of the seven most 
stable miRNAs and achieved an overall predictive power of 91.7% for classifying GBM 
patients from healthy controls (Fig.3c-d). Strikingly, within this model, several miRNA 
combinations were able to distinguish GBM patients from healthy controls with perfect 
accuracy, including a panel of four miRNAs (miR-182-5p, miR-328-3p, miR-485-3p, miR-
486-5p) and five miRNAs (miR-182-5p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-
5p; Fig. 3e). 
 
To assess the temporal stability of the GBM miRNA signature in the same patients, we tested 
preoperative sera collected at a GBM recurrence (GBM1 patient relapsed and required 
additional surgery after 8 months) and from an earlier GBM lesion (excised 4.6 months 
before GBM12; Table 1B). Using the panel of seven exosomal miRNAs, both GBM1-
relapse and GBM12-prior were classified as GBM, in line with diagnostic histopathology. 
We also tested two independent samples, including a patient diagnosed with IDHMUT GBM 
(GBM13) and a patient diagnosed with ‘high-grade glioma’ based on repeat MRIs and 
overall survival of 8.1 months (GBM14; see Table 1B). Both GBM13 and GBM14 were 
classified as GBM using the miRNA panel. 
 
To further test the specificity of the GBM miRNA signature, we assessed its ability to 
distinguish GBM patients from additional healthy subjects and non-glioma disease controls. 
The panel accurately classified all additional healthy subjects (n=9; Table 1B) as well as a 
patient with ganglioglioma WHO (2016) grade I, a slow-growing, benign brain tumor with 
glioneuronal components (GIC-1). Next, we assessed the impact of neuroinflammatory 
disease processes on the specificity of our exosomal miRNA panel ability. The 
bioinformatics analysis above showed that dysregulated miRNAs also target mRNAs 
significantly associated with autoimmune rheumatoid arthritis and broadly to ‘neurological 
disease’ (Fig. 2-b). Our GBM miRNA panel was used to discriminate patients with the 
inflammatory autoimmune disease, multiple sclerosis (MS). Sera were sampled from MS 
patients with active gadolinium enhancing demyelinating lesions, either untreated or 
receiving immunomodulatory therapies (n=9; Table 1B).  All MS patients were classified as 
controls, indicating the robustness of our exosomal miRNA signature for GBM identification. 

Insert Figure 3 here 
 
miRNAs dysregulated in IDH-mutant grade II-III gliomas provide additional markers for 
glioma severity and IDH mutational status 
We then compared serum exosome miRNA profiles between IDHMUT grade II-III glioma 
patients (n=10; mean age=42.7) and matched healthy controls (n=10; mean age=42.9; see 
Table 1) and identified 23 differentially expressed miRNAs (fold change³2; unadjusted 
p<0.05 in all three tests; Supp.Table 4b.). Of these, 12 miRNAs were shared with the GBM 
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analysis and showed the same direction of change (Fig. 4-a). AUROC curve measures were 
³0.78 (average 0.88) across the 23 dysregulated miRNAs, and LOO-CV correctly identified 
the test sample on average 83% of the time (range 77–88%; Supp.Table 5a.; Supp.Fig. 3a-
b). RF modeling performed on partitioned data selected miR-7d-3p, miR-98-5p, miR-
106b-3p, 130b-5p and 185-5p as the most stable features for classifying grade II-III glioma 
patients from healthy participants, with a predictive power of 75.0% (Fig. c-1.; 
Suppl.Fig.3c). The most stable miRNAs for classifying GII-III IDHMUT from healthy 
controls were distinct from GBM IDHWT signature miRNAs (Fig.s 4b-1 and 4b-2). 
 
The sncRNA data was further interrogated to ascertain whether a subset of miRNAs showed 
potential for distinguishing glioma disease severity or IDH mutational status. Direct 
comparisons between GBM IDHWT and GII-III IDHMUT patients revealed 13 differentially 
expressed miRNAs (fold change³2; unadjusted p<0.05 in all three tests; (Fig. 4c-1.; 
Supp.Table 4c). AUROC curve measurements were ³0.78 (average 0.84) across the 13 
dysregulated miRNAs and LOO-CV correctly identified the test sample on average 80% of 
the time (range 76–86%; Supp.Table 5b.; Supp.Fig. 4a-b). Numbers of significant miRNA 
were too few to perform partitioning, so a single RF model was constructed from all 13 
dysregulated miRNAs that showed an estimated predictive power of 77.4% (Fig. 4c-2.) 
Interestingly, three of the top four features that discriminate GBM IDHWT from GII-III 
IDHMUT are members of the GBM miRNA signature (i.e., miR-543, miR-485-3p and miR-
486-3p), changing only in GBM patient sera relative to healthy participants (indicated by 
asterisks in Fig. 4). 
 

Insert Figure 4 here  
 
DISCUSSION 
Using unbiased high-throughput next generation sequencing and an integrative 
bioinformatics pipeline[8], we have identified differentially expressed serum exosomal 
miRNAs that discriminate GBM patients from healthy controls. Machine-learning approaches 
on miRNAs were used to examine their individual and shared predictive abilities for a pre-
operative GBM diagnosis via a blood test. Of the 26 differentially expressed miRNAs in 
GBM patients’ relative to healthy controls, we selected a stable signature panel of seven 
miRNAs. Together, expression levels of miR-182-5p, miR-328-3p, miR-339-5p, miR-340-
5p, miR-485-3p, miR-486-5p and miR-543 predicted a preoperative GBM diagnosis with a 
91.7% accuracy. Within this multivariate model a combination of just four miRNAs (miR-
182-5p, miR-328-3p miR-485-3p miR-486-5p) distinguished GBM patients from healthy 
controls with perfect accuracy (100.0%). 
 
There have been multiple studies examining ‘free-circulating’ miRNAs in glioma patients 
with varying success. A recent meta-analysis of these studies found the specificity and 
sensitivity of circulating miRNAs was 0.87 and 0.86, respectively, while noting the large 
heterogeneity of circulating miRNAs within the included studies [17]. The heterogeneity is 
likely due to differences in data normalization used in qRT-PCR studies, with no universally 
accepted endogenous housekeeping control [17].  Interestingly, the majority of miRNAs 
identified in our exosomal signature have not been previously identified in ‘free-circulating’ 
studies. This is consistent with the notion that exosomes represent a distinct pathway of 
nucleic acid release from cells, and contain selectively packaged miRNA species [5]. We 
have previously shown the effects of RNAse pre-treatment of serum prior to exosome 
isolation, as performed in this study, drastically alters the miRNA profiles identified, 
presumably due to eradication of co-precipitated ‘free-circulating’ miRNAs [8]. Moreover, 
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normalization of deep sequencing data is not dependant on comparison to a reference signal 
or housekeeping gene, potentially reducing variability in data analysis. 
 
Functional pathway analysis of mRNA species targeted by exosomal miRNAs dysregulated 
in GBM patient sera showed highly significant associations to specific GBM molecular 
pathways. This provides confidence that the miRNA biomarkers resolved by our methods are 
relevant to this particular disease setting. Previous studies have identified roles for all seven 
GBM miRNA classifiers in various aspects of glioma and GBM biology. miR-182, detected 
here in significantly higher levels in GBM sera, was proposed as a marker of glioma 
progression, critical for glioma tumorigenesis, tumor growth and survival in vitro[18, 19], with 
high miR-182 tissue expression observed in GBM[20] and associated with poor overall 
survival[21]. Also in line with observations here, the up-regulation of miR-486 was shown to 
promote glioma aggressiveness both in vitro and in vivo[22]. Exosomal miRNAs identified 
with lower expression levels in GBM patient sera are also substantiated by the literature. 
Functional assays indicate tumor suppressive roles of miR-328[23], miR-340[24, 25], miRNA-
485-5p[26] and miR-543[27] with low levels observed in tumor tissues relative to normal 
brain[23, 25-27] and low tissue expression levels significantly associated to poor patient 
outcomes[23, 25]. While miR-339 (decreased levels in GBM patients here) was shown to 
contribute to immune evasion of GBM cells by modulating T-cell responses[28], inhibitory 
roles for miR-339 were reported in acute myeloid leukemia[29], hepatocellular carcinoma[30], 
gastric[31], colorectal[32], breast[33] and ovarian cancers[34]. 
 
The GBM miRNA signature was able to accurately classify all additional specimens in the 
validation sets (healthy, n=9; non-glioma, n=10), including patients with gadolinium 
enhancing active demyelinating lesions. Tumefactive demyelination is a well-recognized 
mimic of GBM[35]. The GBM signature also correctly classified four additional GBM 
specimens, including two serial collections from patients within the discovery cohort as well 
as two independent patients. Further testing is needed to determine whether the miRNA panel 
can reliably diagnose GBM in large, independent patient cohorts. Moreover, the correlation 
between a positive GBM classification and tumor burden needs to be addressed. To this end, 
longitudinal studies should be pursued to assess whether the GBM miRNA panel can detect 
time critical GBM tumor recurrences. 
 
There is more than one pathological route to a GBM; primary and secondary GBMs are 
distinct entities with IDH mutations considered a genetic signpost [36]. The only patients 
where early detection of a GBM tumor is likely are arguably those with diffuse and anaplastic 
(grade II-III) gliomas who progress with a secondary GBM recurrence (IDHMUT). 
Accordingly, the identification of reliable and readily accessible circulating progression 
markers is an important step towards precision medicine for patients diagnosed with low 
grade gliomas. While the GBM miRNA signature was described in serum exosomes from 
IDHWT GBM patients, it was also able to categorize a patient with IDHMUT GBM (GBM13) 
from healthy participants. It is worth noting that miRNA members of the GBM signature 
panel (specifically, increased miR-182-5p, decreased miR339-5p and miR-340-5p) were also 
identified in the IDHMUT GII-III comparative analysis. Whether these miRNA changes are 
related to IDH mutational status, glioma grade, or a combination of the two, cannot be 
delineated here. However, our multivariate modeling did identify distinct panels of miRNAs 
for classifying GBM and glioma patients from their corresponding matched healthy control 
cohorts. Moreover, three GBM signature panel miRNAs that were unique to the GBM vs 
control comparative analysis (increased miR-486-5p and decreased miR-485-3p and miR-
543) were among the top four features that distinguish GBM IDHWT from GII-III IDHMUT 
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and therefore, might be specific for GBM IDHWT (indicated by asterisks in Fig.4). These 
encouraging results demonstrate the potential for exosomal miRNA profiles to be used for 
glioma subtyping and grading, including the determination of mutational states. Expansion of 
these discovery analyses to include well defined cohorts of glioma subtypes with sufficient n, 
will likely resolve biomarkers of more nuanced specificity. 
 
 
SUMMARY 
In summary, we have described a serum exosomal miRNA signature that can accurately 
predict a GBM diagnosis, preoperatively. This study demonstrates that exosomal associated 
miRNAs have exceptional utility as biomarkers in the glioma disease setting. If these 
exosomal biomarkers are able to offer non-invasive, early indications of tumor progression 
and/or recurrence, they are likely to have significant clinical utility. These exciting findings 
have significant potential to transform current diagnostic paradigms, as well as provide 
distinct surrogate endpoints for clinical trials. Assessment of serum exosomal miRNAs in 
larger longitudinal cohorts of patients with GBM are required to definitely determine their 
utility in clinical practice, and these studies are currently underway. 
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Figure 1. Characterization of serum exosomes isolated in fractions 8-10 by size exclusion chromatography prior to miRNA sequencing. (a) Size 
distribution of particles as analyzed by nanoparticle tracking analysis. (b) Transmission electron microscopy allowed visualization of vesicles 
with sizes ranging from 60-110 nm in diameter, scale bars = 500 nm (b-1, wide field) and 200 nm (b-2, close-up). (c-1) Mass spectrometry-based 
proteome analysis of size chromatographic elution fractions 8-10 identified all top 10 exosome marker proteins and (c-2) showed significant 
enrichment of proteins characteristic of exosomes and blood microparticles. Proteins identified in fractions 8-10 showed limited, non-significant 
associations to compartments like the nucleolus, where certain miRNA species are concentrated. (d) Bioanalyzer trace of RNA extracted from 
serum exosomes shows the main population of small RNA and no ribosomal RNA.  
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Figure 2. (a) Hierarchical clustering of 26 differentially expressed miRNAs shows clear separation of glioblastoma (GBM) patients and 
healthy control (HC) exosomal profiles (fold change³2; unadjusted p-values≤0.05 in all three statistical tests). (b) Functional pathway 
analysis of mRNAs targeted by 44 significantly changing miRNA (unadjusted p-values≤0.05 in all three statistical tests) in GBM circulating 
exosomes. Top canonical pathways, diseases and disorders and molecular and cellular functions are listed with the numbers of overlapping 
molecules and significance of associations (right-tailed Fisher exact test, p-value). 
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Figure 3. (a) miRNAs appearing in >75 of 100 partitions (70% training set, 30% test set) were selected as the most stable miRNA classifiers by 
Random Forest modeling (frequencies are specified in brackets). (b) Box-and-whisker plots and receiver operator characteristic (ROC) curves 
with area under the curve (AUC) calculations demonstrate the individual discriminatory power of the seven most stable miRNA classifiers. (c) 
miRNAs were ordered by the importance of their contribution to discriminating GBM from [healthy] controls; overall out-of-the-bag (OOB) 
error rate of the seven features was 8.33%. (d) Random Forest model was performed again using all possible combinations of seven most 
stable miRNAs to find combinations (i.e., signatures) with the highest multivariate predictive power. Error rates of different combinations 
were stratified by the number of miRNAs (signature size) and their distributions were displayed as violin plots. e. miRNA combinations that 
discriminate between GBM and healthy controls with the highest accuracy. 
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Figure 4. (a.) A Venn diagram summarizes the differentially expressed miRNAs between IDHMUT glioma tumor grades II-III (GII-III; n=10), 
IDHWT glioblastoma (GBM; n=12) and corresponding age- and gender-matched healthy controls (HC; fold change³2; unadjusted p-values≤0.05 
in all three statistics tests, i.e., Exact, t-test and Wilcoxon), with 12 overlapping differentially expressed miRNAs. Decreased expression is 
indicated in blue and increased expression in red. The most stable miRNAs for classifying (b-1.) GII-III IDHMUT and (b-2.) GBM IDHWT 
from HCs are listed and show distinct features. (c-1.) Summary of differentially expressed miRNAs between the GBM IDHWT and GII-III 
IDHMUT cohorts and (c-2.) plot of ‘importance’ of each individual miRNA for discriminating GBM from GII-III; out-of-the-bag (OOB) error 
rate is 22.73%. Three of the top four features that distinguish GBM IDHWT from GII-III IDHMUT were only identified in the GBM vs. HC 
comparative analysis, are members of the GBM miRNA signature that together accurately classify GBMs from HCs and may be specific 
markers for GBM (indicated by asterisks in a., b-2., c-1., and c-2.). 
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