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ABSTRACT 34 

Exosomes are nano-sized extracellular vesicles released by many cells that contain 35 

molecules characteristic of their cell-of-origin, including microRNA. Exosomes released 36 

by glioblastoma cross the blood-brain-barrier into the peripheral circulation, and carry 37 

molecular cargo distinct to that of ‘free-circulating’ miRNA. In this pilot study, serum 38 

exosomal-microRNAs were isolated from glioblastoma (n=12) patients and analyzed 39 

using unbiased deep sequencing. Results were compared to sera from age- and gender-40 

matched healthy controls, and to grades II-III (n=10) glioma patients. Significant 41 

differentially expressed microRNAs were identified, and the predictive power of 42 

individual and subsets of microRNAs were tested using univariate and multivariate 43 

analyses. Additional sera from glioblastoma patients (n=4) and independent sets of 44 

healthy (n=9) and non-glioma (n=10) controls were used to further test the specificity and 45 

predictive power of this unique exosomal-microRNA signature. Twenty-six microRNAs 46 

were differentially expressed in serum exosomes from glioblastoma patients’ relative to 47 

healthy controls. Random forest modeling and data partitioning selected seven miRNAs 48 

(miR-182-5p, miR-328-3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p and 49 

miR-543) as the most stable for classifying glioblastoma. Strikingly, within this model, 50 

six iterations of these miRNA classifiers could distinguish glioblastoma patients from 51 

controls with perfect accuracy. The seven-miRNA panel was able to correctly classify 52 

all specimens in validation cohorts (n=23). Also identified were 23 dysregulated 53 

miRNAs in IDHMUT gliomas, a partially overlapping yet distinct signature of lower 54 

grade glioma. Serum exosomal-miRNA signatures can accurately diagnose glioblastoma 55 

preoperatively. miRNA signatures identified are distinct from previously reported ‘free-56 

circulating’ miRNA studies in GBM patients, and appear to be superior. 57 

 58 
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INTRODUCTION 59 

Malignant gliomas, particularly glioblastoma (GBM), represent the most lethal primary 60 

brain tumors, owing in part to their highly infiltrative growth patterns. The World Health 61 

Organization (WHO) guidelines sub-categorize glioma by histopathologic evaluation into 62 

tumor grades I-IV, where GBM (grade IV) is the most aggressive and also the most 63 

common. Despite surgery, radiation, and chemotherapy, essentially all GBM tumors 64 

recur, at which point patients have reduced treatment options and worsening prognoses. 65 

Compounding this aggressive cancer phenotype are challenges in monitoring responses to 66 

treatment and tumor progression. While recent revisions to the Response Assessment in 67 

Neuro-Oncology (RANO) criteria helps to standardize glioma tumor monitoring1, 68 

radiographic measurements can be unreliable and insensitive to early signs of treatment 69 

failure and tumor relapse. Moreover, there are still difficulties deciphering pseudo-70 

progression and pseudo-responses in some patients. Brain biopsy and histologic analysis 71 

can provide definitive diagnoses and evaluation of disease progression, however serial 72 

biopsies are impractical given the cumulative surgical risk, and biopsied tissue may not 73 

reflect the heterogeneity of GBM tumors. 74 

 75 

An important step towards the provision of personalized GBM patient care is the ability to 76 

assess tumors in-situ. As such, there is a real need for biomarkers that can measure 77 

disease burden and treatment responses in GBM patients in a safe, accurate and timely 78 

manner, and preferably before changes become clinically apparent. The recently 79 

popularized idea of ‘liquid biopsy’ presents an ideal approach to monitor GBM tumor 80 

load and evolution in response to treatment. If developed and implemented alongside new 81 

treatments, such tests would provide useful surrogate endpoints and allow clinical trial 82 

protocols to be more dynamic and adaptive.  83 
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Exosomes are nano-sized (30-100 nm) membrane-bound extracellular vesicles released by 84 

all cells in both health and disease, and there is growing interest in their use as non-85 

invasive biomarkers for disease diagnosis and monitoring of disease recurrence2. GBM-86 

derived exosomes circulate in the peripheral blood of patients, and can contain diagnostic 87 

nucleic acid 3. We recently described a GBM exosome protein signature4 and also showed 88 

that GBM exosomes contain abundant, selectively packaged small non-coding RNAs 89 

(sncRNAs)5. Using unbiased sncRNA deep sequencing, we identified several unusual 90 

and/or completely novel sncRNAs within GBM exosomes in vitro as well as an 91 

enrichment of microRNA (miRNA) implicated in oncogenesis, including miR-23a, miR-92 

30a, miR-221 and miR-4515. Thus, while GBM exosomal miRNA contents broadly 93 

reflect their cell of origin, there is a unique profile of miRNAs within exosomes. 94 

 95 

Some studies of exosomal miRNA in GBM patients have already been reported; these 96 

studies utilized methods that focused on pre-defined and relatively small groups of 97 

miRNA species. One previous study found that miR-21 levels in CSF exosomes of GBM 98 

patients were up-regulated 10-fold compared to controls6, while another reported that 99 

serum exosomal miR-320, mir-547-3p, and RNU6-1 were significantly associated with 100 

GBM diagnosis, as well as outcome (RNU6-1)7. However, to date no comprehensive 101 

analysis of the entire miRNA repertoire of serum exosomes in glioma patients has been 102 

performed. Here, we have used unbiased next generation sequencing and an integrative 103 

bioinformatics pipeline8 to assay the complete repertoire of exosomal-associated miRNAs 104 

in the serum of patients with glioblastoma, lower grade gliomas, and healthy controls. We 105 

describe a novel miRNA signature within serum exosomes that is highly predictive of pre-106 

operative GBM diagnosis. Furthermore, we show that this approach has potential for 107 

describing unique miRNA signatures for distinct glioma entities.  108 
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RESULTS 109 

Characterization of serum exosomes isolated prior to miRNA sequencing 110 

Serum exosomes were isolated by size exclusion chromatography. The combined elution 111 

fractions 8-10 showed particle sizes with a mean diameter 89.1 ± 2.5 nm and modal 112 

diameter of 81.7±5.5 nm (Fig. 1a). TEM confirmed the presence of similarly sized 113 

particles with vesicular morphologies, characteristic of exosomes (Fig. 1b). MS analysis 114 

confidently identified 1167, 861 and 636 proteins in qEV elution fractions 8, 9 and 10 115 

from healthy serum, respectively (Supp.Table 2). Overall, 87 of the top 100 proteins 116 

commonly identified in exosomes were confidently sequenced across the three fractions, 117 

including all top 10 exosomal proteins (Fig. 1c-1). Primary sub-cellular localizations 118 

included significant enrichments of ‘exosome’ and ‘blood microparticle’ related proteins 119 

across all fractions, with minimal contamination from other compartments, including the 120 

nucleolus (Fig. 1c-2) where certain miRNAs show specific nuclear enrichment9. Prior to 121 

RNA extraction, serums were treated with RNaseA to remove circulating RNAs that may 122 

confound measurements of exosomal RNAs8. RNA extracted from each sample yielded 123 

profiles typical for exosomes, showing an absence of ribosomal RNA and enrichment of 124 

small (<200 nt) RNA species (Fig. 1d). 125 

 126 

Insert Figure 1 here 127 

 128 

Differentially expressed exosomal miRNAs in GBM patient sera 129 

Circulating exosomal miRNA profiles from patients with histopathologically confirmed 130 

IDHWT GBM (n=12) were compared to age- and gender-matched healthy controls (n=12; 131 

see Table 1A for discovery cohorts; Table 1B for validation cases). We employed three 132 

statistical approaches (Student’s t-test, Fisher’s exact, Wilcoxon rank sum) to identify a 133 
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discovery set of differentially expressed miRNA biomarkers. miRNA biomarkers were 134 

identified if their differential expression met a fold change≥2 in either direction and 135 

unadjusted p-values≤0.05 in all statistical tests applied. Using this approach, we identified 136 

26 miRNAs significantly dysregulated between healthy controls and GBM patients 137 

(Table 2; Fig. 2-a; normalized miRNA counts are available in Supp.Table 3 and 138 

differential expression analysis in Supp.Table 4A). 139 

 140 

Table 1A: Overview of cohorts used for discovery miRNA analyses. 141 
 142 
 GBM, IDHWT GBM-matched 

HC  

GII-III, 

IDHMUT 

GII-III-matched 

HC 

Sample n 12 12 10 10 

Age (mean 

±SD) 

63.3 ± 11.5 56.2 ± 12.4 42.9 ± 12.7 42.7 ± 10.2 

Gender 7M, 5F 7M, 5F 6M, 4F 6M, 4F 

 143 
 144 
Table 1B: Additional patients and cohorts used for validation 145 
 146 

 147 
For more detailed demographic, clinical and histopathologic information, please refer to 148 
Supplementary Tables 1A-C. The mean age with standard deviation is provided for each cohort. 149 
Abbreviations: F, female; GBM, glioblastoma; GII-III, glioma grade II-III; GI_C, Ganglioglioma 150 
grade I control case; HC, healthy controls; M, male; MS, multiple sclerosis control cohort 151 
 152 

 153 

Patient/cohor

t 
Age 

Gende
r 

Diagnosis Notes 

GBM1_relapse 46 M GBM IV 
Pre-operative blood taken after 
recurrence of GBM1 (8-month relapse) 

GBM12_prior 45 F GBM IV 
Pre-operative blood taken before 
removal of earlier GBM lesion (GBM12; 
4.6 months prior) 

GBM13 33 M GBM IV 
Glioblastoma, IDHMUT, WHO (2016) 
grade IV 

GBM14 56 M high-grade glioma 

No surgery/tissue pathology 
performed, diagnosis based on repeat 
MRIs. Overall survival of 8.1 months. 

GI_C 24 F 
Ganglioglioma 

grade I 

GFAP+ in glial component/ NeuN+ in 
neuronal component, IDH1WT, ATRX+, 
BRAF(V600E)+++  

HC (n=9) 36.2± 10.3 5F, 4M Healthy controls - 

MS (n=9) 35.3±10.4 5M, 4F 
Relapse-remitting 
Multiple Sclerosis 

All patients had active lesions; were 
untreated (n=5) or receiving different 
immunomodulatory therapies (n=4).  
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Table 2. Significant dysregulated miRNAs in serum exosomes from glioblastoma (GBM) 154 
patients (n=12) relative to healthy controls (HC; n=12). 155 
 156 

miRNA CPM 
(GBM) 

CPM 
(HC) 

FC Exact 
test 

t-test Wilcoxon Error 
rate 

AUROC 95% CI of 
AUROC 

486-5p 25291.6 8522.6 3.0 1.6E-07* 4.0E-04* 1.0E-04* 0.149 0.924 (0.823, 1) 

182-5p 2090.5 850.6 2.5 5.7E-07* 3.0E-04* 2.0E-04* 0.151 0.917 (0.808, 1) 

486-3p 277.4 114 2.4 5.0E-06* 0.002* 3.0E-04* 0.149 0.910 (0.791, 1) 

378a-
3p 

2083.2 875.2 2.4 1.4E-06* 0.003* 4.0E-04* 0.158 0.903 
(0.783, 1) 

183-5p 645.8 267.9 2.4 2.0E-05* 0.001* 0.001* 0.176 0.882 (0.749, 1) 

501-3p 359.6 157.3 2.3 1.1E-05* 0.002* 0.001* 0.161 0.875 (0.726, 1) 

20b-5p 594.6 266.3 2.2 2.9E-06* 0.002* 1.0E-04* 0.133 0.938 (0.834, 1) 

106b-
3p 

2703.2 1215 2.2 3.9E-06* 0.001* 0.001* 0.160 0.889 
(0.752, 1) 

629-5p 896.8 415 2.2 0.001* 0.047 0.04 0.235 0.743 (0.532, 0.954) 

185-5p 23250.5 11424.1 2.0 4.3E-05* 0.007* 0.005* 0.207 0.833 (0.670, 0.997) 

25-3p 21838.8 10949.9 2.0 0.001* 0.002* 0.006* 0.199 0.826 (0.662, 0.991) 

21-5p 73535.3 142796.9 -2.0 2.7E-04* 4.2E-05* 5.0E-05* 0.133 0.944 (0.862, 1) 

7a-3p 82.1 176.3 -2.0 0.003* 0.005* 0.010* 0.187 0.806 (0.611, 1) 

381-3p 190.5 397.9 -2.0 0.009* 0.012 0.012 0.220 0.799 (0.620, 0.977) 

409-3p 1146.9 2242.5 -2.0 0.019 0.029 0.024 0.233 0.771 (0.575, 0.967) 

7d-3p 1050.5 1912.9 -2.0 0.005* 0.013 0.017 0.209 0.785 (0.574, 0.996) 

323b-
3p 

117.3 288.3 -2.4 0.004* 0.010* 0.004* 0.199 0.840 
(0.665, 1) 

328-3p 382.5 922.5 -2.5 4.6E-06* 2.0E-04* 2.2E-05* 0.117 0.958 (0.889, 1) 

339-5p 90.1 234.8 -2.5 1.2E-06* 2.0E-04* 3.3E-05* 0.109 0.951 (0.864, 1) 

340-5p 1536 3848.1 -2.5 4.8E-06* 1.0E-04* 5.0E-05* 0.134 0.944 (0.858, 1) 

126-5p 1222.3 2947 -2.5 5.6E-06* 0.002* 0.001* 0.150 0.896 (0.767, 1) 

130b-
5p 

111.9 248.9 -2.5 0.007* 0.009* 0.024 0.203 0.771 
(0.556, 0.986) 

493-5p 210 514.4 -2.5 0.010* 0.015 0.028 0.221 0.764 (0.561, 0.967) 

543 223.1 753.2 -3.3 2.5E-06* 3.0E-04* 2.0E-04* 0.143 0.917 (0.808, 1) 

654-3p 110.2 342.5 -3.3 2.2E-04* 0.009* 0.006* 0.193 0.826 (0.642, 1) 

485-3p 93.2 352.3 -3.3 5.8E-07* 1.0E-04* 3.3E-05* 0.123 0.951 (0.876, 1) 

 157 
Abbreviations: CPM, miRNA counts per million; FC, fold change; error rates estimated 158 
by leave-one-out cross validation; AUROC, area under the receiver operating 159 
characteristic; CI, confidence interval; Significant Benjamini & Hochberg adjusted p-160 
values are indicated by asterisks. 161 
 162 
 163 

 164 

 165 

 166 

 167 
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Functional analysis of dysregulated miRNAs in GBM 168 

We explored biological and canonical pathways associated with exosomal miRNAs 169 

changing in GBM patient sera relative to healthy controls. The identities of 44 miRNAs 170 

(p-value≤0.05 in all three tests; no fold change restriction) were uploaded into the IPA 171 

environment to analyze molecular pathways overrepresented in their targets. The 172 

dysregulated miRNAs target mRNAs that are significantly associated with ‘cancer’ 173 

(1.96E-06<p-value<1.52E-16) and ‘neurological disease’ (1.72E-06<p-value<8.76E-13) with 174 

around half of targeted mRNAs implicated in GBM (p-value=3.36E-12) and glioma 175 

signaling pathways (p-value=1.25E-09; Fig. 2-b, Suppl.Fig.1).  176 

 177 

Insert Figure 2 here 178 

 179 

Selection of signature miRNA classifiers for preoperative GBM diagnosis 180 

The predictive power of each miRNA was estimated using LR models, in which 181 

individual miRNA expression profiles were used as predictors. ROC curves were 182 

determined and AUROC measures were ≥0.74 across the 26 dysregulated miRNAs. 183 

The 95% confidence intervals corresponding to AUROC estimates did not contain the 184 

null hypothesis value (AUROC=0.5 for a random prediction) indicating that all 26 185 

miRNAs are statistically accurate univariate diagnostic predictors of GBM (Table 2; 186 

Supp.Fig.2). In silico validation by LOO-CV correctly identified the test sample on 187 

average 83% of the time (range 77–89%). We then used partitioning (70% training and 188 

30% test) and Random Forest multivariate modeling to determine whether expression 189 

patterns of a subset of differentially expressed miRNAs could improve the predictive 190 

power. Using these methods, seven miRNAs (miR-182-5p, miR-328-3p, miR-339-5p, 191 

miR-340-5p, miR-485-3p, miR-486-5p and miR-543) distinguished GBM patients from 192 
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healthy subjects in more than 75% of the random data partitions and were selected as 193 

the most ‘stable’ miRNA classifiers (Fig.3a-b). The RF model was repeated using all 194 

iterations of the seven most stable miRNAs and achieved an overall predictive power 195 

of 91.7% for classifying GBM patients from healthy controls (Fig.3c). The diagnostic 196 

accuracies of all possible combinations of the seven miRNAs were determined using 197 

AUROC measures along with the corresponding 95% confidence intervals  (Fig.3d; 198 

Supplementary Table 5). Strikingly, six miRNA combinations were able to distinguish 199 

GBM patients from healthy controls with perfect accuracy (Fig. 3e).  200 

 201 

To assess the temporal stability of the GBM miRNA signature in the same patients, we 202 

tested preoperative sera collected at a GBM recurrence (GBM1 patient relapsed and 203 

required additional surgery after 8 months) and from an earlier GBM lesion (excised 4.6 204 

months before GBM12; Table 1B). Using the panel of seven exosomal miRNAs, both 205 

GBM1-relapse and GBM12-prior were classified as GBM, in line with diagnostic 206 

histopathology. We also tested two independent samples, including a patient diagnosed 207 

with IDHMUT GBM (GBM13) and a patient diagnosed with ‘high-grade glioma’ based on 208 

repeat MRIs and overall survival of 8.1 months (GBM14; see Table 1B). Both GBM13 209 

and GBM14 were classified as GBM using the miRNA panel. 210 

 211 

To further test the specificity of the GBM miRNA signature, we assessed its ability to 212 

distinguish GBM patients from additional healthy subjects and non-glioma disease 213 

controls. The panel accurately classified all additional healthy subjects (n=9; Table 1B) as 214 

well as a patient with ganglioglioma WHO (2016) grade I, a slow-growing, benign brain 215 

tumor with glioneuronal components (GIC-1). Next, we assessed the impact of 216 

neuroinflammatory disease processes on the specificity of our exosomal miRNA panel 217 
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ability. The bioinformatics analysis above showed that dysregulated miRNAs also target 218 

mRNAs significantly associated with autoimmune rheumatoid arthritis and broadly to 219 

‘neurological disease’ (Fig. 2-b). Our GBM miRNA panel was used to discriminate 220 

patients with the inflammatory autoimmune disease, multiple sclerosis (MS). Sera were 221 

sampled from MS patients with active gadolinium enhancing demyelinating lesions, either 222 

untreated or receiving immunomodulatory therapies (n=9; Table 1B).  All MS patients 223 

were classified as controls, indicating the robustness of our exosomal miRNA signature 224 

for GBM identification. 225 

Insert Figure 3 here 226 

 227 

miRNAs dysregulated in IDH-mutant grade II-III gliomas provide additional markers 228 

for glioma severity and IDH mutational status 229 

We then compared serum exosome miRNA profiles between IDHMUT grade II-III glioma 230 

patients (n=10; mean age=42.7) and matched healthy controls (n=10; mean age=42.9; see 231 

Table 1B) and identified 23 differentially expressed miRNAs (fold change≥2; unadjusted 232 

p<0.05 in all three tests; Supp.Table 4b.). Of these, 12 miRNAs were shared with the 233 

GBM analysis and showed the same direction of change (Fig. 4-a). AUROC curve 234 

measures were ≥0.78 (average 0.88) across the 23 dysregulated miRNAs, and LOO-CV 235 

correctly identified the test sample on average 83% of the time (range 77–88%; 236 

Supp.Table 5a.; Supp.Fig. 3a-b). RF modeling performed on partitioned data selected 237 

miR-7d-3p, miR-98-5p, miR-106b-3p, 130b-5p and 185-5p as the most stable features 238 

for classifying grade II-III glioma patients from healthy participants, with a predictive 239 

power of 75.0% (Fig. c-1.; Suppl.Fig.3c). The most stable miRNAs for classifying GII-240 

III IDHMUT from healthy controls were distinct from GBM IDHWT signature miRNAs 241 

(Fig.s 4b-1 and 4b-2). 242 
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 243 

The sncRNA data was further interrogated to ascertain whether a subset of miRNAs 244 

showed potential for distinguishing glioma disease severity or IDH mutational status. 245 

Direct comparisons between GBM IDHWT and GII-III IDHMUT patients revealed 13 246 

differentially expressed miRNAs (fold change≥2; unadjusted p<0.05 in all three tests; 247 

(Fig. 4c-1.; Supp.Table 4c). AUROC curve measurements were ≥0.78 (average 0.84) 248 

across the 13 dysregulated miRNAs and LOO-CV correctly identified the test sample on 249 

average 80% of the time (range 76–86%; Supp.Table 5b.; Supp.Fig. 4a-b). Numbers of 250 

significant miRNA were too few to perform partitioning, so a single RF model was 251 

constructed from all 13 dysregulated miRNAs that showed an estimated predictive power 252 

of 77.4% (Fig. 4c-2.) Interestingly, three of the top four features that discriminate GBM 253 

IDHWT from GII-III IDHMUT are members of the GBM miRNA signature (i.e., miR-254 

543, miR-485-3p and miR-486-3p), changing only in GBM patient sera relative to 255 

healthy participants (indicated by asterisks in Fig. 4). 256 

 257 

Insert Figure 4 here 258 

DISCUSSION 259 

Using unbiased high-throughput next generation sequencing and an integrative 260 

bioinformatics pipeline8, we have identified differentially expressed serum exosomal 261 

miRNAs that discriminate GBM patients from healthy controls. Machine-learning 262 

approaches on miRNAs were used to examine their individual and shared predictive 263 

abilities for a pre-operative GBM diagnosis via a blood test. Of the 26 differentially 264 

expressed miRNAs in GBM patients’ relative to healthy controls, we selected a stable 265 

signature panel of seven miRNAs. Together, expression levels of miR-182-5p, miR-328-266 

3p, miR-339-5p, miR-340-5p, miR-485-3p, miR-486-5p and miR-543 predicted a 267 
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preoperative GBM diagnosis with a 91.7% accuracy. Within this multivariate model a 268 

combination of just four miRNAs (miR-182-5p, miR-328-3p miR-485-3p miR-486-5p) 269 

distinguished GBM patients from healthy controls with perfect accuracy (100.0%). 270 

 271 

There have been multiple studies examining ‘free-circulating’ miRNAs in glioma patients 272 

with varying success. A recent meta-analysis of these studies found the specificity and 273 

sensitivity of circulating miRNAs was 0.87 and 0.86, respectively, while noting the large 274 

heterogeneity of circulating miRNAs within the included studies 10. The heterogeneity is 275 

likely due to differences in data normalization used in qRT-PCR studies, with no 276 

universally accepted endogenous housekeeping control 10.  Interestingly, the majority of 277 

miRNAs identified in our exosomal signature have not been previously identified in ‘free-278 

circulating’ studies. This is consistent with the notion that exosomes represent a distinct 279 

pathway of nucleic acid release from cells, and contain selectively packaged miRNA 280 

species 5. We have previously shown the effects of RNAse pre-treatment of serum prior to 281 

exosome isolation, as performed in this study, drastically alters the miRNA profiles 282 

identified, presumably due to eradication of co-precipitated ‘free-circulating’ miRNAs 8. 283 

Moreover, normalization of deep sequencing data is not dependant on comparison to a 284 

reference signal or housekeeping gene, potentially reducing variability in data analysis. 285 

 286 

Functional pathway analysis of mRNA species targeted by exosomal miRNAs 287 

dysregulated in GBM patient sera showed highly significant associations to specific GBM 288 

molecular pathways. This provides confidence that the miRNA biomarkers resolved by 289 

our methods are relevant to this particular disease setting. Previous studies have identified 290 

roles for all seven GBM miRNA classifiers in various aspects of glioma and GBM 291 

biology. miR-182, detected here in significantly higher levels in GBM sera, was proposed 292 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/342154doi: bioRxiv preprint 

https://doi.org/10.1101/342154


 

 13

as a marker of glioma progression, critical for glioma tumorigenesis, tumor growth and 293 

survival in vitro11,12, with high miR-182 tissue expression observed in GBM13 and 294 

associated with poor overall survival14. Also in line with observations here, the up-295 

regulation of miR-486 was shown to promote glioma aggressiveness both in vitro and in 296 

vivo15. Exosomal miRNAs identified with lower expression levels in GBM patient sera 297 

are also substantiated by the literature. Functional assays indicate tumor suppressive roles 298 

of miR-32816, miR-34017,18, miRNA-485-5p19 and miR-54320 with low levels observed in 299 

tumor tissues relative to normal brain16,18-20 and low tissue expression levels significantly 300 

associated to poor patient outcomes16,18. While miR-339 (decreased levels in GBM 301 

patients here) was shown to contribute to immune evasion of GBM cells by modulating 302 

T-cell responses21, inhibitory roles for miR-339 were reported in acute myeloid 303 

leukemia22, hepatocellular carcinoma23, gastric24, colorectal25, breast26 and ovarian 304 

cancers27. 305 

 306 

The GBM miRNA signature was able to accurately classify all additional specimens in 307 

the validation sets (healthy, n=9; non-glioma, n=10), including patients with gadolinium 308 

enhancing active demyelinating lesions. Tumefactive demyelination is a well-recognized 309 

mimic of GBM28. The GBM signature also correctly classified four additional GBM 310 

specimens, including two serial collections from patients within the discovery cohort as 311 

well as two independent patients. This pilot study utilised a relatively small patient group, 312 

and further testing is needed to determine whether the miRNA panel can reliably diagnose 313 

GBM in large, independent patient cohorts. Moreover, the correlation between a positive 314 

GBM classification and tumor burden needs to be addressed. To this end, longitudinal 315 

studies should be pursued to assess whether the GBM miRNA panel can detect time 316 

critical GBM tumor recurrences. 317 
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 318 

There is more than one pathological route to a GBM; primary and secondary GBMs are 319 

distinct entities with IDH mutations considered a genetic signpost 29. The only patients 320 

where early detection of a GBM tumor is likely are arguably those with diffuse and 321 

anaplastic (grade II-III) gliomas who progress with a secondary GBM recurrence 322 

(IDHMUT). Accordingly, the identification of reliable and readily accessible circulating 323 

progression markers is an important step towards precision medicine for patients 324 

diagnosed with low grade gliomas. While the GBM miRNA signature was described in 325 

serum exosomes from IDHWT GBM patients, it was also able to categorize a patient with 326 

IDHMUT GBM (GBM13) from healthy participants. It is worth noting that miRNA 327 

members of the GBM signature panel (specifically, increased miR-182-5p, decreased 328 

miR339-5p and miR-340-5p) were also identified in the IDHMUT GII-III comparative 329 

analysis. Whether these miRNA changes are related to IDH mutational status, glioma 330 

grade, or a combination of the two, cannot be delineated here. However, our multivariate 331 

modeling did identify distinct panels of miRNAs for classifying GBM and glioma patients 332 

from their corresponding matched healthy control cohorts. Moreover, three GBM 333 

signature panel miRNAs that were unique to the GBM vs control comparative analysis 334 

(increased miR-486-5p and decreased miR-485-3p and miR-543) were among the top 335 

four features that distinguish GBM IDHWT from GII-III IDHMUT and therefore, might 336 

be specific for GBM IDHWT (indicated by asterisks in Fig.4). These encouraging results 337 

demonstrate the potential for exosomal miRNA profiles to be used for glioma subtyping 338 

and grading, including the determination of mutational states. Expansion of these 339 

discovery analyses to include well defined cohorts of glioma subtypes with sufficient n, 340 

will likely resolve biomarkers of more nuanced specificity. 341 

 342 
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 343 

SUMMARY 344 

In summary, we have described a serum exosomal miRNA signature that can accurately 345 

predict a GBM diagnosis, preoperatively. This pilot study demonstrates that exosomal 346 

associated miRNAs have exceptional utility as biomarkers in the glioma disease setting. If 347 

these exosomal biomarkers are able to offer non-invasive, early indications of tumor 348 

progression and/or recurrence, they are likely to have significant clinical utility. These 349 

exciting findings have significant potential to transform current diagnostic paradigms, as 350 

well as provide distinct surrogate endpoints for clinical trials. Assessment of serum 351 

exosomal miRNAs in larger longitudinal cohorts of patients with GBM are required to 352 

definitely determine their utility in clinical practice, and these studies are currently 353 

underway. 354 

 355 

 356 

 357 

 358 

METHODS 359 

Participants 360 

Serum (1 mL) was accessed from the Neuropathology Tumor and Tissue Bank at Royal 361 

Prince Alfred Hospital, New South Wales, Australia (Sydney Local Health District HREC 362 

approval, X014-0126 & HREC/09RPAH/627). Twenty-six serum specimens were 363 

collected pre-operatively from patients with histologically confirmed glioma tumors, 364 

including 16 with GBM, IDH-wildtype (IDHWT) WHO (2016) grade IV, and 10 patients 365 

with grade II-III IDH-mutant (IDHMUT) gliomas (refer to Table 1; Supp.Table 1 for more 366 

detailed information). Age- and gender-matched healthy control sera (n=16) were used for 367 
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discovery miRNA analyses. Sera from an additional nine healthy controls and ten non-368 

glioma patients (including active MS, n=9, and ganglioglioma, n=1) were used to test the 369 

GBM miRNA signature. This study was performed under RPAH, and USYD HREC 370 

approved protocols (#X13-0264 and 2012/1684), and all participants provided written 371 

informed consent. All methods were performed in accordance with the relevant guidelines 372 

and regulations. 373 

 374 

Exosome purification and characterization 375 

Exosomes were isolated from serum as previously described8. Briefly, serum (1 mL from 376 

each subject) was treated with RNase A (37�°C for 10�min; 100 ng/ml; Qiagen, 377 

Australia) before exosome purification by size exclusion chromatography (qEV iZONE 378 

Science). Ten fractions (500�μL) were eluted in PBS, as per manufacturer’s instructions. 379 

Fractions 8, 9, and 10 were previously shown to contain purified exosome populations8 380 

and were collected and stored at −80�°C. Captured exosomes were characterized in 381 

accordance with the criteria outlined by the International Society for Extracellular 382 

Vesicles (ISEV)30. Specifically, we identified more than three exosome-enriched proteins 383 

by mass spectrometry proteome profiling and characterized vesicle heterogeneity using 384 

two technologies, transmission electron microscopy (TEM) and nanoparticle tracking 385 

analysis (NTA).  386 

 387 

Transmission electron microscopy: Combined qEV-captured fractions 8-10 were loaded 388 

onto carbon-coated, 200 mesh Cu formvar grids (#GSCU200C; ProSciTech Pty Ltd, 389 

QLD, Australia), fixed (2.5% glutaraldehyde, 0.1 M phosphate buffer, pH7.4), negatively 390 

stained with 2% uranyl acetate for 2�min and dried overnight. Exosomes were visualised 391 

at 40,000 X magnification on a Philips CM10 Biofilter TEM (FEI Company, OR, USA) 392 
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equipped with an AMT camera system (Advanced Microscopy Techniques, Corp., MA, 393 

USA) at an acceleration voltage of 80�kV. 394 

 395 

Nanoparticle tracking analysis: Particle size distributions and concentrations were 396 

measured by NTA software (version 3.0) using the NanoSight LM10-HS (NanoSight Ltd, 397 

Amesbury, UK), configured with a 532-nm laser and a digital camera (SCMOS Trigger 398 

Camera). Video recordings (60 s) were captured in triplicate at 25 frames/s with default 399 

minimal expected particle size, minimum track length, and blur setting, a camera level of 400 

10 and detection threshold of 5.  401 

 402 

Proteome analysis of exosomal preparations: Serum exosome fractions 8, 9 and 10 were 403 

prepared for mass spectrometry (MS)-based proteomic analysis. Proteomes were 404 

concentrated using chloroform-methanol precipitation, dissolved in 90% formic acid 405 

(FA), their concentrations estimated at 280 nm using a Nanodrop (ND-1000, Thermo 406 

Scientific, USA) and aliquots dried using vacuum centrifugation. Proteomes were then 407 

processed and quantified as before 31. Peptides from each fraction were desalted using 408 

C18 ZipTipsTM, concentrations estimated by Qubit quantitation (Invitrogen), dried by 409 

vacuum centrifugation and re-suspended in 3% acetonitrile (ACN; v/v)/0.1% formic acid 410 

(v/v). Samples (0.5 μg) from exosome elution fractions 8-10 were separated by nanoLC 411 

using an Ultimate nanoRSLC UPLC and autosampler system (Dionex) before analyzed on 412 

a QExactive Plus mass spectrometer (Thermo Electron, Bremen, Germany) as previously 413 

described31. MS/MS data were analyzed using Mascot (Matrix Science, London, UK; 414 

v2.4.0) with a fragment ion mass tolerance of 0.1 Da and a parent ion tolerance of 4.0 415 

PPM. Peak lists were searched against a SwissProt database (2017_11), selected for 416 

Homo sapiens, trypsin digestion, max. 2 missed cleavages, and variable modifications 417 
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methionine oxidation and cysteine carbamidomethylation. Exosome proteins were 418 

annotated using Vesiclepedia (http://microvesicles.org)32 and Functional Enrichment 419 

Analysis Tool (FunRich; v2.1.2; http://funrich.org)33. 420 

 421 

RNA extraction and small RNA sequencing 422 

Serum exosomes were processed for RNA extraction using the Plasma/Serum Circulating 423 

& Exosomal RNA Purification Mini Kit (Norgen Biotek, Cat. 51000) according to the 424 

manufacturer’s protocol. Extracted total RNA samples were analyzed with a Eukaryote 425 

Total RNA chip on an Agilent 2100 Bioanalyser (Agilent Technologies, United States) to 426 

confirm sufficient yield, quality and size of RNA. Exosome RNA sequencing libraries 427 

were then constructed using the NEBNext Multiplex Small RNA Library Prep Kit for 428 

Illumina (BioLabs, New England) according to the manufacturer’s instructions. Yield and 429 

size distribution of resultant libraries were validated using Agilent 2100 Bioanalyzer on a 430 

High-sensitivity DNA Assay (Agilent Technologies, United States). Libraries were then 431 

pooled with an equal proportion for multiplexed sequencing on Illumina HiSeq. 2000 432 

System at the Ramaciotti Centre for Genomics. 433 

Data pre-processing, differential expression analysis and pathway analysis 434 

Data pre-processing was performed using a pipeline comprising of adapter trimming 435 

(cutadapt), followed by genome alignment to human genome hg 19 using Bowtie (18�bp 436 

seed, 1 error in seed, quality score sum of mismatches<70). Where multiple best strata 437 

alignments existed, tags were randomly assigned to one of those coordinates. Tags were 438 

annotated against mirBase 20 and filtered for at most one base error within the tag. Counts 439 

for each miRNA were tabulated and adjusted to counts per million miRNAs passing the 440 

mismatch filter. All samples achieved miRNA read counts >45,000 read counts and 441 

miRNAs with low abundance (<50 read counts across more than 20% of samples) were 442 
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removed. Differential expression analysis was performed using three different statistical 443 

hypothesis tests including a non-parametric two-sample Wilcoxon test and two parametric 444 

tests- Student’s t-test, and an Exact test (implemented in Bioconductor EdgeR), which 445 

tests for differences between the means of two groups of negative-binomially distributed 446 

counts. Benjamini & Hochberg adjusted p-values were also calculated. Data pre-447 

processing and differential expression analysis were performed using Bioconductor and R 448 

statistical packages. Pathway analysis was performed using Ingenuity® software 449 

(Ingenuity Systems, USA; http://analysis.ingenuity.com). MicroRNA target filters were 450 

applied to significant, differentially expressed miRNAs (unadjusted p-value≤0.05 in all 451 

three statistical methods) and mRNA target lists were generated based on highly predicted 452 

or experimentally observed confidence levels. Core expression analyses were performed 453 

with default criteria to determine the most significant functional associations (biological 454 

and canonical pathways) of mRNAs targeted by dysregulated miRNAs. 455 

 456 

Univariate analysis 457 

We performed logistic regression (LR) and receiver operator characteristic (ROC) 458 

analysis to assess the predictive power of individual miRNAs between the two groups of 459 

interest. LR was used to identify linear predictive models with each miRNA as the 460 

univariate predictor. The quality of each model was depicted by the corresponding ROC 461 

curve, which plots the true positive rate (i.e., sensitivity) against the false-positive rate 462 

(i.e., 1-specificity). The area under the ROC curve (AUROC) was then computed as a 463 

measure of how well each LR model can distinguish between two diagnostic groups. The 464 

95% confidence intervals (CI) of AUROC measures were estimated using Delong 465 

method34 to assess the significance of a model’s predictive power as compared to a 466 

random trial (i.e., AUROC = 0.5). We then used leave-one-out cross-validation (LOO-467 
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CV) to estimate the prediction errors of the LR models. LOO-CV learns the model on all 468 

samples except one and tests the learnt model on the left-out sample. The process is 469 

repeated for each sample and the error rate is the proportion of misclassified samples. 470 

Overall, cross validation is a powerful model validation technique for assessing how the 471 

results of a statistical analysis can be generalized to an independent dataset35. These 472 

analyses were performed using R stats (glm) and boot (cv.glm) packages. 473 

 474 

Multivariate Analysis 475 

To assess the predictive power of multiple miRNAs as disease signatures, samples were 476 

first randomly partitioned into two disjoint sets of discovery (70% of samples) and 477 

validation (30% of samples). MiRNAs differentially expressed in the discovery set (i.e., 478 

changes increased or decreased by fold change≥2 and unadjusted p-value≤0.05 in all three 479 

statistical hypothesis tests) were then selected as features/predictors of Random Forest 480 

(RF) multivariate predictive model. RF is a multivariate nonlinear classifier that operates 481 

by constructing a multitude of decision trees at training time in order to correct for the 482 

overfitting problem36. RF was trained on the discovery set and the resultant predictive 483 

model was then used to predict GBM or GII-III patients versus healthy controls based on 484 

the read count values of identified miRNAs in validation samples. For statistical rigour, to 485 

account for random partitioning of the samples into discovery and validation sets, the 486 

whole process was repeated 100 times. We then chose stable miRNAs—i.e., those 487 

identified to be differentially expressed in more than 75% of iterations—as predictors of 488 

an RF model using all samples and the AUROC with 95% CI as well as out-of-bag 489 

(OOB) error was reported as an unbiased estimates of the model predictive power. The 490 

‘importance’ or relative contribution of each feature (differentially expressed miRNAs) in 491 

the RF performance was then estimated based on the ‘mean decrease accuracy’ measure 492 
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as discussed in37.  All analyses were performed using R ‘caret’ and ‘RandomForest’ 493 

packages. 494 

 495 

Data Availability 496 

Exosomal miRNA raw data will be accessible at NCBI Gene Expression Omnibus 497 

(GEO; accession number to be provided). In the interim, the miRNA sequencing data is 498 

available at: https://github.com/VafaeeLab/glioblastoma_exosomal_miR_markers.  499 

Normalised data used for statistical analysis is provided in Supplementary Table 3. 500 

 501 

 502 

 503 
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FIGURE LEGENDS 646 

Figure 1. Characterization of serum exosomes isolated in fractions 8-10 by size exclusion 647 

chromatography prior to miRNA sequencing. (a.) Size distribution of particles as 648 

analyzed by nanoparticle tracking analysis. (b.) Transmission electron microscopy 649 

allowed visualization of vesicles with sizes ranging from 60-110 nm in diameter, scale 650 

bars = 500 nm (b-1., wide field) and 200 nm (b-2,. close-up). (c-1.) Mass spectrometry-651 

based proteome analysis of size chromatographic elution fractions 8-10 identified all top 652 

10 exosome marker proteins and (c-2.) showed significant enrichment of proteins 653 

characteristic of exosomes and blood microparticles. Proteins identified in fractions 8-10 654 

showed limited, non-significant associations to compartments like the nucleolus, where 655 

certain miRNA species are concentrated. (d.) Bioanalyzer trace of RNA extracted from 656 

serum exosomes shows the main population of small RNA and no ribosomal RNA. 657 

 658 

Figure 2. (a.) Hierarchical clustering of 26 differentially expressed miRNAs shows 659 

clear separation of glioblastoma (GBM) patients and healthy control (HC) exosomal 660 

profiles (fold change≥2 or ≤0.5; unadjusted p-values≤0.05 in all three statistical tests). 661 

(b.) Functional pathway analysis of mRNAs targeted by 44 significantly changing 662 

miRNA (unadjusted p-values≤0.05 in all three statistical tests) in GBM circulating 663 

exosomes. Top canonical pathways, diseases and disorders and molecular and cellular 664 

functions are listed with the numbers of overlapping molecules and significance of 665 

associations (right-tailed Fisher exact test, p-value). 666 

 667 

Figure 3. (a.) miRNAs appearing in >75 of 100 partitions (70% training set, 30% test set) 668 

were selected as the most stable miRNA classifiers by Random Forest modeling 669 

(frequencies are specified in brackets). (b.) Box-and-whisker plots and receiver operator 670 
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characteristic curves with area under the curve (AUROC) calculations demonstrate the 671 

individual discriminatory power of the seven most stable miRNA classifiers. (c.) miRNAs 672 

were ordered by the importance of their contribution to discriminating GBM from 673 

[healthy] controls; overall out-of-the-bag (OOB) error rate of the seven features was 674 

8.33%. (d.) AUROC measures of all possible combinations of the seven miRNAs 675 

previously identified to be the most stable predictors, stratified by the number of 676 

miRNAs (signature size) and their distributions and displayed as violin plots. (e.) 677 

miRNA signatures that discriminate between GBM and healthy controls with the 678 

perfect accuracy. 679 

 680 

Figure 4. (a.) A Venn diagram summarizes the differentially expressed miRNAs between 681 

IDHMUT glioma tumor grades II-III (GII-III; n=10), IDHWT glioblastoma (GBM; n=12) 682 

and corresponding age- and gender-matched healthy controls (HC; fold change≥2 or ≤0.5; 683 

unadjusted p-values≤0.05 in all three statistics tests, i.e., Exact, t-test and Wilcoxon), with 684 

12 overlapping differentially expressed miRNAs. Decreased expression is indicated in 685 

blue and increased expression in red. The most stable miRNAs for classifying (b-1.) 686 

GII-III IDHMUT and (b-2.) GBM IDHWT from HCs are listed and show distinct features. 687 

(c-1.) Summary of differentially expressed miRNAs between the GBM IDHWT and GII-688 

III IDHMUT cohorts and (c-2.) plot of ‘importance’ of each individual miRNA for 689 

discriminating GBM from GII-III; out-of-the-bag (OOB) error rate is 22.73%. Three of 690 

the top four features that distinguish GBM IDHWT from GII-III IDHMUT were only 691 

identified in the GBM vs. HC comparative analysis, are members of the GBM miRNA 692 

signature that together accurately classify GBMs from HCs and may be specific 693 

markers for GBM (indicated by asterisks in a., b-2., c-1., and c-2.). 694 
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