
 
 
 
 
 
 

NOVEL SIGNIFICANT STAGE-SPECIFIC DIFFERENTIALLY 
EXPRESSED GENES IN LIVER HEPATOCELLULAR CARCINOMA 

 
 
 
 
 

Arjun Sarathi1 and Ashok Palaniappan2* 
 
 
 
 
 
 
 

Depts. of 1Bioengineering and 2Bioinformatics, School of Chemical and BioTechnology, SASTRA 
deemed University, Thanjavur, Tamil Nadu 613401. INDIA 
 
*Corresponding author: apalania@scbt.sastra.edu 

 
 
 
 
 
 
 
 

 
 
 
KEY WORDS:  LIHC transcriptomics, HCC stages, stage-specific biomarkers, differentially 
expressed genes, pairwise contrasts, significance analysis, linear  modelling, tumorigenesis, cancer 
progression, metastasis 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2018. ; https://doi.org/10.1101/342204doi: bioRxiv preprint 

https://doi.org/10.1101/342204
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT 
 
Liver cancer is among the top deadly cancers worldwide with a very poor prognosis, and the liver is 
a particularly vulnerable site for metastasis of other cancers. In this study, we developed a novel 
computational framework for the stage-specific analysis of hepatocellular carcinoma initiation and 
progression. Using publicly available clinical and RNA-Seq data of cancer samples and controls, 
we  annotated the  gene expression matrix with sample stages. We performed a linear modelling 
analysis of gene expression across all stages and found significant genome-wide changes in gene 
expression in cancer samples relative to control. Using a contrast against the control, we were able 
to identify differentially expressed genes (log fold change >2) that were significant at an adjusted p-
value < 10E-3. In order to identify genes that were specific to each stage without confounding 
differential expression in other stages, we developed a  full set of pairwise stage contrasts and 
enforced a p-value threshold (<0.05) for each such contrast. Genes were specific for a stage if they 
passed all the significance filters for that stage. Our analysis yielded two stage-I specific genes 
(CA9, WNT7B), two stage-II specific genes (APOBEC3B, FAM186A), ten stage-III specific genes 
including DLG5, PARI and GNMT, and ten stage-IV specific genes including GABRD, PGAM2 
and PECAM1. Of these, only APOBEC3B is an established cancer driver gene. DLG5 was found to 
be tumor-promoting contrary to the cancer literature on this gene. Further, GABRD, well studied in 
literature on other cancers, emerged as a stage-IV specific gene. Our findings could be validated 
using multiple sources of omics  data as well as experimentally. The biomarkers identified herein 
could potentially underpin diagnosis as well as pinpoint drug targets.  
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INTRODUCTION 
 
Liver cancer is the second most deadly cancer in terms of mortality rate, with a very poor prognosis 
(Yang et al 2010). It accounted for 9.1% of all cancer deaths, and 83% of the annual new estimated 
782,000 liver cancer cases worldwide occur in developing countries (Ferlay et al., 2015). Liver 
cancer showed the greatest increase in mortality in the last decade for both males (53%) and 
females (59%) (Cancer Research UK, 2018). Liver hepatocellular carcinoma (LIHC; HCC) is the 
most common type of liver cancer. 78% of all reported cases of LIHC were due to viral infections 
(53% Hepatitis B virus and 25% Hepatitis C virus) (Perz et al., 2006). There are several non-viral 
causes of LIHC as well, mainly aflatoxins and alcohol (Chuang et al., 2009). As shown in Fig. 1, all 
the factors converge to a common mechanism of genetic alterations that lead to the acquisition of 
cancer hallmarks (Hanahan and Weinberg, 2011) and the eventual emergence of a cancer cell 
(Farazi et al., 2006). Genetic alterations constitute the heart of the problem, and studying changes 
due to these genetic alterations is paramount to understand LIHC. Early gene expression studies 
using EST data detected differential expression in cancer tissue compared to non-cancerous liver 
and proposed the existence of genetic aberrations and changes in transcriptional regulation in LIHC 
(Xu et al., 2001). The Cancer Genome Atlas (TCGA) research network (2017) have subtyped and 
identified many potential targets for LIHC based on a comprehensive multi-omics analysis. An 
independent analysis of TCGA RNA-Seq data encompassing 12 cancer tissues has uncovered liver 
cancer-specific genes (Peng et al., 2015). Zhang et al. (2015) have performed mutation analysis of 
LIHC, and Yang et al. (2017) combined TCGA expression data and natural language processing 
techniques to identify cancer-specific markers.  
 
The burden of disease and mortality rate are both inversely correlated with the cancer stage. The 
response rate to therapy is also inversely correlated with stage. To the best of our knowledge, there 
are no reported research in the literature that have dissected the stage-specific features of LIHC. The 
cancer staging system is based on gross features of cancer anatomical penetration, and one such 
standard is the American Joint Committee on Cancer (AJCC) Tumor-Node-Metastasis (TNM) 
staging (Amin  et al., 2017). It is reasonable to hypothesize that the stage-specific gross changes are 
associated with signature molecular events, and try to probe such molecular bases of stage-wise 
progression of cancer. We had earlier published on stage-specific "hub driver" genes in colorectal 
cancer (Palaniappan et al., 2016). A stage-focussed analysis of colorectal cancer transcriptome data 
yielded negative results vis-a-vis the AJCC staging system (Huo et al., 2017).  
 
METHODS  
 
DATA PREPROCESSING. Normalized and log2-transformed Illumina HiSeq RNA-Seq gene 
expression data processed by the RSEM pipeline (Li and Dewey, 2011) were obtained from TCGA 
via the firebrowse.org portal (Broad Institute TCGA Genome Data Analysis Center, 2016). The 
patient barcode (uuid) of each sample encoded in the variable called 'Hybridization REF' was 
parsed and used to annotate the controls and cancer samples (Fig. 2). To annotate the stage 
information of the cancer samples, we obtained the clinical information dataset for LIHC from 
firebrowse.org (LIHC.Merge_Clinical.Level_1.2016012800.0.0.tar.gz) and merged the clinical data 
with the expression data by matching the "Hybridization REF" in the expression data with the 
aliquot barcode identifier in the clinical data. The stage information of each patient was encoded in 
the clinical variable "pathologic stage". The substages (A,B,C) were collapsed into the parent stage, 
resulting in four stages of interest (I, II, III, IV). We retained a handful of other clinical variables 
pertaining to demographic features, namely age, sex, height, weight, and vital status. With this 
merged dataset, we filtered out genes that showed little change in expression across all samples 
(defined as σ < 1). Finally, we removed cancer samples from our analysis that were missing stage 
annotation (value 'NA' in the "pathologic stage"). The data pre-processing was done using R  
(www.r-project.org). 
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LINEAR MODELLING. Linear modelling of expression across cancer stages relative to the 
baseline expression (i.e, in normal tissue controls) was performed for each gene using the R limma 
package (Ritchie et al., 2015). The following linear model was fit for each gene's expression based 
on the design matrix shown in Fig. 3A: 
 
 

                                        …. (1) 
         
where the independent variables are indicator variables of the sample's stage, the intercept α  is the 
baseline expression estimated from the controls, and βi are the estimated stagewise log fold-change 
(lfc) coefficients relative to controls. The linear model was subjected to empirical Bayes adjustment 
to obtain moderated t-statistics (McCarthy and Smyth, 2009). To account for multiple hypothesis 
testing and the false discovery rate, the p-values of the F-statistic of the linear fit were adjusted 
using the method od Hochberg and Benjamini (1990). The linear trend across cancer stages for the 
top significant genes were visualized using boxplots to ascertain the regulation status of the gene 
relative to the control.  
 
PAIRWISE CONTRASTS. To perform contrasts, a slightly modified design matrix shown in Fig. 
3B was used, which would give rise to the following linear model of expression for each gene: 
 

                                     ….. (2) 
      
where the controls themselves are one of the indicator variables, and the βi are all coefficients 
estimated only from the corresponding samples. Our first contrast of interest, between each stage 
and the control, was achieved using the contrast matrix shown in Table 1.  Four contrasts were 
obtained, one for each stage vs control. A threshold of |lfc| > 2 was applied to each such contrast to 
identify differentially expressed genes (with respect to the control). We used the absolute value of 
the lfc, since driver genes could be either upregulated or downregulated. Genes could be 
differentially expressed in any combination of the stages or no stage at all. To analyze the pattern of 
differential expression (with respect to the control), we constructed a four-bit binary string for each 
gene, where each bit signified whether the gene was differentially expressed in the corresponding 
stage. For example, the string '1100' indicates that the gene was differentially expressed in the first 
and second stages. There are 24 =16 possible outcomes of the four-bit string for a given gene 
corresponding to the combination of stages in which it is differentially expressed. This is illustrated 
in set-theoretic terms in Fig. 4. In our first elimination, we removed genes whose |lfc| < 2 for all 
stages. For each remaining gene, we identified the stage that showed the highest |lfc| and assigned 
the gene as specific to that stage for the rest of our analysis.   
 
SIGNIFICANCE  ANALYSIS. We applied a four-pronged criteria to establish the significance of 
the stage-specific differentially expressed genes.  
(i) Adj. p-value of the contrast with respect to the control < 0.001 
(ii)-(iv) P-value of the contrast with respect to other stages < 0.05 
To obtain the above p-values (ii) - (iv), we used the contrast matrix shown in Table 2, which was 
then used an an argument to the contrastsFit function in limma.
 
FURTHER ANALYSES. Principal component analysis (PCA) were performed using prcomp in 
R. To choose 100 random genes, we used the rand function. Gene set enrichment analysis were 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2018. ; https://doi.org/10.1101/342204doi: bioRxiv preprint 

https://doi.org/10.1101/342204
http://creativecommons.org/licenses/by-nc-nd/4.0/


performed on KEGG (www.kegg.ac.jp) and Gene Ontology (Ashburner et al., 2000) using kegga 
and goana in limma, respectively. In order to visualize outlier genes that are significant with a 
large effect size, volcano plots could be obtained by plotting the -log10 transformed p-value vs. the 
log fold-change of gene expression. Heat maps of significant stage-specific differentially expressed 
genes were visualized using heatmap and clustered using hclust. Novelty of the identified 
stage-specific genes was ascertained by screening against the Cancer Gene Census v84 (Futreal et 
al., 2004). 
 
RESULTS 
 
The TCGA expression data consisted of expression values of 20,532 genes in 423 samples. After 
the completion of data pre-processing, we obtained a final dataset of expression data for 18,590 
genes across 399 samples annoatated with the corresponding sample stage (available in 
Supplementary File S1). The stagewise distribution of TCGA samples along with the corresponding 
AJCC staging is shown in Table 3. A statistical summary of demographic details including age, sex, 
height, weight, and vital status is shown in Table 4.  The body mass index (BMI) distribution was 
derived from patient clinical data that had both height and weight (i.e, neither was 'NA'). The 
average age of onset of LIHC was around 60 years, and the average BMI was about 26, indicating a 
possible link with ageing and obesity.  
 
The dataset was processed through voom in limma to prepare for linear modelling (Law et al., 
2014). At a p-value cutoff of 10E-5, 9618 genes were significant in the linear modelling, implying a 
strong linear trend in their expression across cancer stages.  This was not entirely surprising since 
one of the hallmarks of cancer phenotype is genome-wide instability (Hanahan and Weinberg, 
2011). The linear modelling highlighted top ranked genes, some upregulated in LIHC (GABRD, 
PLVAP, CDH13) and some downregulated  (CLEC4M, CLEC1B, CLEC4G). The lfc for each stage 
with respect to control of top ten genes (ranked by adjusted p-value) are shown in Table 5, along 
with their inferred regulation status. Boxplots of the expression of the top 9 genes (Fig 5) indicated 
a progressive net increase in expression across cancer stages relative to control for up-regulated 
genes, while depressed expression across cancer stages relative to control was indicative of 
downregulated genes. (Boxplots of all other genes in the top 200 are provided in the Supplementary 
Fig. S1) It is worthwhile to note that a given gene might have maximal differential expression in 
any stage (not necessarily stage 4), and the linear trend does not suggest the order of expression 
across stages (Fig. 6). 
 
A PCA of the top 100 genes from the linear model was visualized using the top two principal 
components (Fig. 7A). A clear separation of the controls and the cancer samples could be seen, 
suggesting the extent of differential expression of these genes in cancer samples. Hence linear 
modelling yields cancer-specific genes versus normal controls, and the results for the all the genes, 
including the top 100, are provided in order in Supplementary File S2. For comparison, a PCA plot 
of 100 randomly sampled genes (Fig. 7B) failed to show any separation of the cancer and control 
samples. 
 
The results from the linear modelling were in contrast with those obtained by  Huo et al. (2017) and 
were most likely driven by the inclusion of 51 controls in our study. These positive results provided 
the impetus to pursue stage-driven analysis. Given the conventional AJCC staging, gene expression 
differences would play a major role in driving the cancer progression. To identify the stage-specific 
differentially expressed genes, we applied the first contrast matrix (Table 2) and constructed the 
four-bit stage string of each gene. Based on the stage strings, we binned all the genes, and the 
string-specific gene lists corresponding to all the partitions in the Venn diagram (Fig. 4) is made 
available in Supplementary File S3. The size of each such partition is illustrated in Fig. 8. We 
eliminated the 16,135 genes corresponding to the stage string  '0000' ( |lfc|<2 in all stages). To 
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establish the significance of the remaining genes, we applied the second contrast (Table 3) and 
passed each gene through the four filter criteria. The gradual reduction in candidate stage-specific 
genes as each criterion was applied, is shown in Table 6. Only genes that passed all criteria were 
retained as significant stage-specific differentially expressed genes. We obtained 2 stage-I specific, 
2 stage-II specific, 10 stage-III specific and 35 stage-IV specific genes (Table 7). Fig. 9 shows the 
volcano plot of these 49 stage-specific genes.  
 
In view of the limited sample size for stage-IV and consequent low power for rejecting false-
positives, we stipulated that each stage-IV specific gene would display a smooth increasing or 
decreasing expression trend through cancer progression culminating in maximum differential 
expression in stage-IV. On this basis, we pruned the 35 stage-IV specific genes to  just ten 
topranked by significance in the linear modelling.  
 
A heatmap of the lfc expression of stage-specific genes across different stages was visualized (Fig. 
10A) and revealed systematic variation in expression relative to control on a gradient from blue 
(downregulated) to red (overexpressed). The map was clustered on the basis of differential 
expression (i.e, |lfc|) both across stages and across features (i.e, genes) (Fig. 10B). Stage I genes 
clustered together, stage II genes co-clustered with NCAPG2 and DLG5 from stage-III, all the other 
stage-III genes clustered together, while the stage-IV genes formed two separate clusters. It was 
interesting to note that GABRD emerged as an outgroup to all the clusters, demonstrating its 
uniqueness. 
 
DISCUSSION 
 
When differentially expressed genes are identified in a two-class cancer vs control manner, the 
information about stage-specificity of differential expression is lost. By applying our protocol, this 
information is recovered and available for dissection.  
 
To identify the biological processes specific to each stage, we used the genes with maximal |logFC| 
in each stage and performed a stagewise gene set enrichment analysis on two ontologies, the GO 
and KEGG pathways. Salient results with respect to KEGG pathways are presented below (Table 8) 
and the complete KEGG and GO results are available in Supplementary Tables S1 and S2, 
respectively. In stage I, we found the significant enrichment of cell-cycle signaling pathways 
(Hippo, Wnt, HIF-1), and viral infection-related pathways (cytokine-cytokine receptor interaction, 
human papillomavirus infection, HTLV-I infection). In stage II, key signalling pathways (Ras, 
MAPK) were aberrant. Two liver-specific pathways, alcoholism and cytochrome P450 mediated 
metabolism of xenobiotics were enriched, as well as standard cancer pathways of bladder, brain, 
stomach, and skin that might involve generic genetic alterations necessary for cancer cell growth. In 
stage III, we noticed the significant enrichment of Metabolic pathways that summarize cellular 
metabolism. This might indicate the metabolic shift needed by the cancer to grow and invade 
neighboring tissues. Other salient significantly enriched pathways pertained to increased cell cycle 
progression, DNA replication, chemical carcinogenesis, p53 signaling pathway and cellular 
senescence, all hallmark processes critical to cancer progression. Stage IV gene set was 
significantly enriched for bile-related processes (bile secretion,  primary bile acid biosynthesis), and 
ABC transporters (possibly conferring a drug-resistant advanced cancer phenotype). A signaling 
pathway related to diabetic complications was enriched as well, indicating the role of co-morbidities 
in driving liver cancer progression. The enrichment analysis of the top 100 genes of the linear 
model is included in the Supplementary Table S3.  
 
The top ten linear model genes (Table 5) and all the stage-specific differentially expressed genes 
(Table 10) were analyzed with respect to the existing literature. Three C-type lectin domain proteins 
(CLEC4M, CLEC1B, CLEC4G) were detected in the top ten genes  of linear modelling across 
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stages. Interestingly, this identical cluster of three genes was detected as the most significantly 
downregulated liver cancer-specific genes in a qPCR study of an independent cohort of 65 tumor-
normal matched cases (Ho et al., 2015). On screening the top 200 linear model genes against cancer 
driver genes in the Cancer top 200 Gene Census, only four genes were found, namely BUB1B, 
CDKN2A, EZH2, and RECQL4.  
 
Stage-I specific DEGs (Fig. 11). CA9 is a member of carbonic anhydrases, which are a large family 
of zinc metalloenzymes that catalyse the reversible hydration of carbon dioxide. Its expression in 
clear cell Renal carcinoma, but not in functional kidney cells has gained attention for its use as a 
pre-operative biomarker (Li et al., 2017). The WNT7B protein is part of the Wnt family, a family of 
secreted signalling proteins. Elevated WNT7B in pancreatic adenocarcinoma has been found to 
mediate anchorage independent growth (Arensman et al., 2014).  Surprisingly, both CA9 and 
WNT7B are downregulated in LIHC, most so in stage-I, contrary to their role in other cancers.  A 
concrete interpretation of the role of these genes in LIHC awaits appropriately designed 
experimental studies.  
 
It is pertinent to ask the following question here: which genes are essential for the initiation of 
LIHC? Clearly these genes would be differentially expressed in stage I relative to control. All 
significantly differentially expressed genes with maximal |lfc| in stage-I would be the best 
candidates for genes involved in the initiation of LIHC. These 122 genes are provided in the 
Supplementary File S3.  
 
Stage-II specific DEGs (Fig. 12). APOBEC3B, a DNA cytidine deaminase, is a known cancer driver 
gene in the Cancer Gene Census, but there are no literature reports of its stage-specificity in any 
cancer. It is known to accountfor half the mutational load in breast carcinoma, and its target 
sequence was found to be highly mutated in Bladder, lung, cervix, neck, and head cancers as well 
(Burns et al., 2013). Here APOBEC3B is upregulated possibly conferring a gain-of-function 
comparable to that achieved by a mutation mechanism. FAM186A polymorphisms have been 
reported in GWAS and SNP studies on colorectal cancer patients and shown to have a significant 
odds ratio in risk heritability (Timofeeva et al., 2015).   
 
Stage-III specific DEGs (Fig. 13). C12orf48, also known as PARI, participates in the homologous 
recombination pathway of DNA repair, and its overexpression has been reported in pancreatic 
cancer(O'Connor et al., 2013). Further PARI was recently identified as a transcriptional target of 
FOXM1 (Zhang et al., 2018), which is a well-validated upregulated gene in LIHC (Ho et al., 2015). 
DLG5 is a cell polarity gene and its  downregulation has been implicated in the malignancy of 
breast (Liu et al., 2017), prostate (Tomiyama et al., 2015) and bladder cancers (Zhou et al., 2015). It 
has been recently found that lower DLG5 expression is correlated with advanced stages of HCC and 
essential for invadopodium formation, an event critical to cancer metastasis (Ke et al., 2017). It is 
surprising that our study has identified a stage-III specific upregulation in DLG5. Interestingly, 
evidence is emerging to lend support to our finding that DLG5 might be tumor-promoting. In a very 
recent review, Saito et al. (2018) reinterpreted published results on cell polarity and cancer, and 
advanced an alternative perspective on the role of polarity regulators in cancer biology. They argued 
that both cellular and subcellular polarity would be regulated by DLG5 and related polarity 
proteins. Subcellular polarity might improve the cellular fitness for proliferation and stemness, 
thereby causing tumor promotion. Hence cell polarity regulation is anti-tumorigenic and subcellular 
polarity regulation is pro-tumorigenic, and our analysis has uncovered the pro-tumorigenic 
upregulated activity of DLG5. . ECT2 encodes a guanine nucleotide exchange factor that remains 
elevated during the G2 and M phase in cellular mitosis. ECT2 is found to be upregulated in lung 
adenocarcinoma and lung squamous cell carcinoma (Zhou et al., 2017), as well as in invasive breast 
cancer (Wang et al., 2017). NCAPG2 is a component of the condensing II complex and involved in 
chromosome segregation during mitosis. NCAPG2 level were found to be increased in non-small 
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cell lung cancer, and its over-expression was found to be correlated with lymph node metastasis, 
thus enabling the use of NCAPG2 as a poor prognostic biomarker in lung adenocarcinoma (Zhan et 
al., 2017). GNMT is a methyltransferase that catalyses conversion of S-adenosine methionine to s-
adenosyl cysteine. In the absence of GNMT, S-adenosine methionine causes hypermethylation of 
DNA, which represses GNMT levels and is found in HCC samples (Huidobro et al., 2013). This is 
an epigenetic mechanism for loss of function of tumor suppressors and our study here confirmed the 
downregulation of GNMT expression. PRR11 is found to be over-expressed in lungs, and its 
silencing using siRNA resulted in cell cycle arrest and apoptotic cell death, followed by decreased 
cell growth and viability (Zhao 2015). A similar knock out experiment of PRR11 in hilar 
cholangiocarcinoma cell lines resulted in decreased cellular proliferation, migration, and tumor 
growth (Chen et al., 2015).  WDHD1 is a key post-transcriptional regulator of centromeric, and 
consequently genomic, integrity (Hsieh et al., 2011) and its overexpression has been identified as 
biomarker of acute myeloid leukemia (Wermke et al., 2015), and lung and esophageal carcinomas 
(Sato et al., 2010). C15orf42 has been implicated in nasopharyngeal carcinoma (An et al., 2015). 
ORC6L overexpression has been identified as a prognostic biomarker of colorectal cancer possibly 
by enhancing chromosomal instability (Xi et al., 2008). XRCC2 was found to increase locally 
advanced rectal cancer radioresistance by repairing DNA double-strand breaks and preventing 
cancer cell apoptosis (Qin et al 2015).  
 
Stage-IV specific DEGs (Fig. 14). GABRD, which is the top gene in the linear model as well, 
encodes for the delta subunit of the gamma-amino butyric acid receptor. The GABA receptor family 
was found to be frequently downregulated in cancers, except for GABRD, which was found to be 
up-regulated. Gross et al. (2015) proposed that the GABA receptor gene family might play a role in 
the proliferation independent differentiation of cancer cells . GBX2 is part of the GBX gene family, 
which are homeobox containing DNA binding transcription factors. GBX2 is overexpressed in 
prostate cancer and studies show that expression of GBX2 is required for malignant growth of 
human prostate cancer (Gao et al., 1998). PECAM1 overexpression has been linked to peritoneal 
recurrence of stage II/III gastric cancer patients (Terashima et al., 2017). CEND1 has been 
identified as a cell-cycle protein (Tsioras et al., 2013). PGAM2 is a glycolytic enzyme whose 
upregulation is essential for tumor cell proliferation (Xu et al., 2014). NR1I2 downregulation has 
been used in constructing a prognostic 9-genes expression signature of gastric cancer (Wang et al., 
2017). GDF5 has been shown to be a downstream target of the TGF-beta signaling pathway 
(Margheri et al., 2012), stimulating angiogenesis required for the growth and spread of the cancer. 
GPR1 has been reported to be involved in promoting cutaneous squamous cell carcinoma migration 
(Farsam et al., 2016). Two more stage-IV specific genes, namely CXCR2P1, which is a C-X-C 
motif chemokine receptor 2 pseudogene 1, and LOC25845, are undocumented in the literature in 
the context of LIHC, other cancers or any other condition.  
 
CONCLUSION 
 
We have developed an original protocol for the stagewise dissection of the LIHC transcriptome. We 
were able to successfully fit a linear model across cancer stages and detected genes with a strong 
linear expression trend in the cancer phenotype. These genes were found to effectively separate the 
control and cancer samples. We were able to assign 2455 differentially expressed genes into one of 
four stages and visualized their stage specific expression using boxplots. Using a multi-layered 
approach, we were able to assess the significance of each stage-specific DEG and narrowed down to 
a handful of candidate significant stage-specific DEG's. Our analysis yielded two stage-I specific 
genes (CA9, WNT7B), two stage-II specific genes (APOBEC3B, FAM186A), ten stage-III specific 
genes and ten stage-IV specific genes. Though all these genes except APOBEC3B are novel, a 
literature search indicated that most of the genes have a cancer connection (albeit not with LIHC).  
Experimental validation would be useful to translate these results into a panel of biomarkers for 
clinical use and rational drug development. It is straightforward to extend our computational 
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methodology to the stage-based analysis of other cancers to obtain a fuller view of disease 
initiation, progression, and metastasis. 
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FIGURES  
 
 

 
Figure 1 Major causative pathways of hepatocarcinogenesis. All pathways converge to 
progressive genomic alterations, leading a normal cell to acquire the hallmarks of cancer.  
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Figure 2 TCGA 'Hybridization REF' Barcode. The first 10 characters constitute an anonymized 
unique patient identifier and the following two characters denote whether the sample is tumor or 
normal. 
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Figure 3 Design matrices. A, In the linear modeling, the control samples served as the baseline 
expression (intercept) of each gene against which the stage-specific expression was estimated. B, 
the design matrix for the contrasts analysis. 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2018. ; https://doi.org/10.1101/342204doi: bioRxiv preprint 

https://doi.org/10.1101/342204
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 4. A Venn representation of the pairwise stages contrasts. A gene could be differentially 
expressed in any combination of the four stages and this could be represented by a 4-bit string, one
bit for each stage. For e.g, '1111' at the overlap of all four stages would be assigned to genes that are 
differentially expressed in all four stages.  
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Figure 5 Boxplots of top 9 linear model genes. For each gene, notice that the trend in expression 
could be overexpression or downregulations relative to the control. For e.g, GABRD, PLVAP, 
CXorf36, CDH13 and UBE2T are overexpressed, while CLEC4M, CLEC1B, BMP10, and 
CLEC4G are downregulated. It could be seen that a linear trend does not imply maximal |lfc| in 
stage 4, as illustrated most clearly in the case of UBE2T. 
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Figure 6 Boxplots illustrating stage-specificity of differentially expressed genes. Extremal 
expression in a stage could be either maximal expression or minimal expression relative to the 
control and all other stages, and could be termed maximal differential expression. Here we show 
genes with maximal differential expression in stage-I (WDR72; minimum expression), stage-II 
(GLI4, maximum expression; COLEC11, minimum expression), stage-III (CKAP2; maximum 
expression), and stage-IV (MAPK11; maximum expression).   
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Figure 7. Principal components analysis of cancer vs control.  A, The first two principal 
components of the top 100 genes from linear modeling are plotted. It could be seen that control 
samples (red) clustered independent of the cancer samples (colored by stage). B, The same analysis 
repeated with 100 random genes failed to effect a clustering of the control samples relative to the 
cancer samples.  
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Figure 8 Venn illustration of the size of each 4-bit string. The number of genes having each 
pattern of differential expression are shown.  
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Figure 9 Volcano plot of final 49 significant stage-specific differenetially expressed genes. Stage 
1 genes, red; Stage 2, blue; Stage 3, green; and Stage 4, orange. The genes are seen away from the 
origin, indicating significance and effect size. 
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Figure 10 Heatmaps of final stage-specific 24 genes. A, heatmap generated from the lfc values of 
all the stage-specific genes (arranged stagewise). Log fold changes upto sixfold are seen, indicating 
64 times differential expression with respect to control. B, Clustered representation of the stagewise 
gene expression based on differential expression (corresponding to |lfc|). 
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Figure 11 Boxplot of stage-I specific genes. It is seen that CA9 and WNT7B are both maximally 
downregulated in stage-I.   
 
 
 
 
 
 
 
 

 

Figure 12 Boxplot of stage-II specific genes. It is seen that both APOBEC3B and FAM186A 

expression are maximum in stage-II, following an inverted U-shape.  
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Figure 13 Boxplot of stage-III specific genes. Except for GNMT, the expression of all other genes 

show a in stage-III, following an inverted U-shape. The expression trend is reversed for the 

downregulated GNMT, following a U-shape.  
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Figure 14 Boxplot of top 10 stage 4 specific genes. All genes, except NR1I2 and CXCR2P1, show 

a smooth increasing trend of expression reaching its maximum in stage-IV. For NR1I2 and 

CXC2RP1, the trend is reversed, with a smooth decreasing expression reaching its minimum in 

stage-IV.  
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TABLES 
 

 

 Stage1-control Stage2-control Stage3-control Stage4-control 

Control -1 -1 -1 -1 

Stage1 1 0 0 0 

Stage2 0 1 0 0 

Stage3 0 0 1 0 

Stage4 0 0 0 1 

 

Table 1. Contrast matrix with control. Each stage (indicated by '1') is contrasted against the 

control (indicated by '-1') in turn. 
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 Stage2-

Stage1 

Stage3-

Stage1 

Stage3-

Stage2 

Stage4-

Stage1 

Stage4-

Stage2 

Stage4-

Stage3 

Control 0 0 0 0 0 0 

Stage1 -1 -1 0 -1 0 0 

Stage2 1 0 -1 0 -1 0 

Stage3 0 1 1 0 0 -1 

Stage4 0 0 0 1 1 1 

 

Table 2. Contrast matrix for inter-stage contrasts. There are six possible pairwise contrasts 

between the stages that are essential to identifying stage-specific genes.  
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TCGA Stage TNM classification Cases 

1A T1a N0 M0 172 

1B T1b N0 M0 

2 T2 N0 M0 87 

3A T3 N0 M0 65  

 

85 

3B T4 N0 M0 8 

3C - 9 

3 - 3 

4A T(any) N1 M0 1  

5 4B T(any) N(any) M1 2 

4 - 2 

CONTROL - 50 

NA - 24 

 
Table 3 AJCC Cancer staging. The correspondence between the AJCC staging and the TCGA 
staging for LIHC is noted, along with the number of LIHC cases in each stage in the TCGA dataset. 
Control indicates the number of normal tissue control samples, and NA denotes cases where the 
stage information is unavailable. 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2018. ; https://doi.org/10.1101/342204doi: bioRxiv preprint 

https://doi.org/10.1101/342204
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Characteristic Control Stage1 Stage2 Stage3 Stage4 NA Overall 
Number of 
samples 

50 172 87 85 5 24 423 

Age (Years) 61.7±16.1 60.6±12.2 59.0±13.3 56.2±14.8 42.8±20.7 68.1±10.7 59.7±13.2 

Height (cm) 170.6±9.5 166.5±12.3 167.9±8.3 169.0±8.9 162.3±4.9 166.2±11.1 167.7±10.6 

Weight (Kg) 76.1±22.1 73.2±19.8 73.3±18.9 69.9±18.8 72.3±21.5 79.7±19.8 73.2±19.7 

BMI 26.2±7.8 26.7±10.2 26.0±5.8 24.3±6.0 27.7±9.3 29.1±7.6 26.1±8.4 

Sex Male 28 122 60 55 1 14 280 
Female 22 50 27 30 4 10 143 

Vital 
Status 

Alive 20 134 71 65 2 12 304 
Dead 30 38 16 20 3 12 119 

 
Table 4 Summary of key demographic features of the dataset. For continuous variables (age, 
height, weight and BMI), the mean ± standard deviation is given. BMI is calculated only for 
patients with both height and weight data.  
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Genes Stage I 
lfc (β1) 

Stage II 
lfc (β2) 

Stage III 
lfc (β3) 

Stage IV 
lfc (β4) 

Adj.  p 
value 

Regulation status 

GABRD 5.08 5.11 5.24 6.55 5.529e-78 Up-regulated 

PLVAP 3.51 3.24 3.24 3.79 7.498e-75 Up-regulated 

CLEC4M -8.32 -8.67 -8.48 -9.24 6.058e-74 Down-regulated 

CXORF36 2.91 2.86 2.76 3.44 5.376e-73 Up-regulated 

CLEC1B -7.85 -8.46 -8.05 -9.44 6.292e-71 Down-regulated 

BMP10 -4.66 -4.75 -4.67 -5.25 1.447e-66 Down-regulated 

CLEC4G -7.75 -8.23 -7.95 -8.75 2.437e-66 Down-regulated 

CDH13 3.30 3.34 3.32 3.86 3.454e-66 Up-regulated 

UBE2T 3.85 4.50 4.47 3.76 2.544e-65 Up-regulated 

SLC26A6 3.10 3.39 3.34 3.07 7.438e-65 Up-regulated 

 
Table 5 Top 10 genes of the linear model. The log-fold change expression of the gene in each 
stage relative to the controls are given, followed by p-value adjusted for the false discovery rate, 
and the regulation status of the gene in the cancer stages with respect to the control.  
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 8, 2018. ; https://doi.org/10.1101/342204doi: bioRxiv preprint 

https://doi.org/10.1101/342204
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Filtering 
criteria 

STAGE 1 STAGE 2 STAGE 3 STAGE 4 Total 

Exclusive DE 
genes 

40 75 223 481 819 

DE  genes 122 407 844 1082 2455 
Adj.p-value 

w.r.to control 
120 406 839 293 1658 

p-value 1 x 2 26 187 - - 213 
p-value 1 x 3 19 - 670 - 689 
p-value 1 x 4 2 - - 88 90 
p-value 2 x 3 - 13 70 - 83 
p-value 2 x 4 - 2 - 46 48 
p-value 3 x 4 - - 10 35 45 
Final genes 2 2 10 35 45 

 
Table 6 Number of genes in each step of the significance analysis. Differential expression is 
defined with respect to a threshold |logFC| = 2. Significance analysis proceeds first by significance 
(i.e, p-value) with respect to control, followed by p-value in each possible pairwise contrast 
between the different stages. Exclusive DE genes refer to genes differentially expressed in only one 
of the four stages (corresponding to the bit strings '1000', '0100', '0010' and '0001').   
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STAGE 1 STAGE 2 STAGE 3 STAGE 4 

CA9 
WNT7B 

FAM186A 
APOBEC3B 

 

C12orf48 
C15orf42 
ORC6L 
ECT2 

WDHD1 
DLG5 

XRCC2 
NCAPG2 
GNMT 
PRR11 

 
 

GABRD 
PECAM1 

LOC25845 
CEND1 
GBX2 

PGAM2 
NR1I2 
GDF5 

CXCR2P1 
GPR1 

MUSTN1 
EHD2 

LOC143188 
HIST3H2BB 

CA12 
CDX1 

MYO16 
CPE  

LPPR3 
ZMYND12 

KCNF1 
GPR126 
MCCD1 

GABRB2 
SNCB 

TRIM50 
MT3 

KCNQ2 
DUXA 

C14orf72 
ECEL 
FOXE 

MYH13 
ARHGAP42 

BMP7 
 
Table 7 Final set of highlighted genes in each stage. The genes in each stage are ordered by 
increasing adjusted p-values of the linear modelling analysis.  
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Stage Enriched pathways p-value 

Stage 1 Hippo signalling pathway 3.276e-03 

Cytokine-cytokine receptor interaction 1.218e-02 

Wnt signalling pathway 1.528e-02 
Human papillomavirus infection 1.763e-02 

HTLV-I infection 2.552e-02 

HIF-1 signalling pathway 2.787e-02 
Stage 2 Bladder cancer 4.643e-03 

Ras signalling pathway 5.264e-03 

Pathways in cancer 6.211e-03 

Glioma 6.457e-03 

Alcoholism 1.027e-02 

Gastric cancer 1.210e-02 

MAPK signalling pathway 2.526e-02 

Melanoma 3.183e-02 

Metabolism of xenobiotics by cytochrome P450 3.472e-02 

Stage 3 Cell cycle 2.881e-18 

DNA replication 6.526e-11 
Chemical carcinogenesis 1.233e-06 

Metabolic pathways 1.204e-03 

Cellular senescence 7.203e-03 
p53 signalling pathway 7.275e-03 

Stage 4 Bile secretion 2.479e-06 
ABC transporters 7.146e-06 

Primary bile acid biosynthesis 2.357e-03 
AGE-RAGE signalling pathway in diabetic complications 3.024e-02 

 
Table 8 Gene set enrichment analysis. Stage-specific gene sets (all the differentially expressed 
genes, corresponding to row 'DE genes' in Table 6) were analyzed for significant enrichment with 
respect to KEGG Pathways. Significance was based on p-value <0.05.
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GENE β0 β1 β2 β3 β4 Adj.p.value 

(from 
contrasts 
against 
control) 

Adj.p.value 
(from linear 

model) 

Regulation 
status 

(Up/Down) 

STAGE 1 

CA9 0.1 -2.5 -0.9 0.2 1.3 3.66e-05 3.44e-09 Down 

WNT7B -1.8 -2.3 -1.4 -1.1 0.3 5.45e-07 2.07e-06 Down 
STAGE 2 

APOBEC3B -0.9 2.0 2.6 1.7 -0.6 1.12e-10 1.17e-09 Up 
FAM186A -4.2 1.7 2.2 1.8 0.4 2.62e-18 1.50e-12 Up 

STAGE 3 

NCAPG2 1.5 1.5 1.8 2.1 0.4 6.03e-25 1.76e-24 Up 
DLG5 2.3 1.8 2.1 2.5 1.1 1.23e-29 2.90e-29 Up 

GNMT 6.9 -1.6 -2.6 -3.6 -1.3 9.69e-16 2.40e-15 Down 

PRR11 -3.8 2.1 2.7 3.4 1.0 1.74e-14 4.65e-13 Up 
WDHD1 -1.4 2.3 2.7 3.2 1.8 2.25e-31 8.87e-31 Up 

XRCC2 -3.8 2.9 3.2 3.8 1.9 2.29e-28 7.06e-28 Up 
C12orf48 -1.9 2.8 3.2 3.7 2.4 5.88e-43 1.19e-43 Up 
C15orf42 -3.5 3.7 4.2 4.7 3.2 1.52e-41 1.17e-42 Up 

ECT2 0.2 2.5 3.0 3.5 2.2 2.62e-35 4.29e-35 Up 

ORC6L -2.4 3.1 3.5 4.0 2.6 4.19e-41 5.55e-42 Up 

STAGE 4 

GABRD -3.8 5.1 5.1 5.2 6.5 3.15e-17 5.53e-78 Up 

PECAM1 3.8 1.3 1.2 1.2 2.1 4.69e-07 7.64e-24 Up 

LOC25845 2.0 1.3 1.4 1.6 2.5 4.47e-06 1.29e-20 Up 

CEND1 -5.0 2.2 2.2 2.4 4.1 4.42e-06 1.08e-17 Up 

GBX2 -6.3 1.0 1.5 1.3 2.8 1.20e-05 2.59e-13 Up 

PGAM2 -1.7 1.9 2.4 2.5 5.0 5.73e-05 1.72e-11 Up 

NR1I2 5.6 -1.5 -2.3 -2.9 -5.8 8.41e-05 8.06e-11 Down 

GDF5 -6.1 1.3 1.3 1.2 2.9 2.73e-05 8.22e-11 Up 

CXCR2P1 2.0 -2 -2 -2.2 -4.0 4.52e-04 1.77e-10 Down 

GPR1 -5.5 1.3 2.1 1.8 3.9 1.42e-04 4.33e-10 Up 

Table 9 Stage specific genes and parameters. The log-expressions (β's) of each gene from our 
analysis are shown, along with adjusted p-values with respect to control and the linear model, and 
the inferred regulation status of the gene in LIHC. The stage-specificity of the genes are 
emphasized.  
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