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Translational Relevance 

Pancreatic carcinogenesis progresses through pre-cancerous PanIN lesions to invasive cancer. Even 

though these morphological changes are histologically distinct, imaging techniques are not able to 

distinguish the pre-invasive PanINs from normal pancreas, making detection of a tumor at a 

precancerous stage impossible . Thus, majority of cases (85-90%) present with advanced pancreatic 

cancer at the time of diagnosis. This contributes to the dismal survival rate in this disease. Our study of 

gut microbiome analysis on KPC mice during tumor progression followed by metabolic reconstruction 

and experimental validation in human samples indicate that gut-microbiome analysis along with an 

analysis of the microbial metabolites can be developed as potential biomarkers for detection of PDAC 

at early stages when histological changes are not yet grossly apparent.  
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Abstract 

Purpose: The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly 

correlated to the abysmal survival rate in patients. In addition to several potential detection tools under 

active investigation, we tested the gut microbiome and its metabolic complement as one of the earliest 

detection tools that could be useful in patients at high-risk for PDAC. 

Experimental Design:  A combination of 16s pyrosequencing and whole-genome sequencing of gut 

microbiota was used in a spontaneous genetically engineered PDAC murine model 

(KRASG12DTP53R172HPdxCre or KPC). Metabolic reconstruction of microbiome was done using the 

HUmanN2 pipeline. Serum polyamine levels were measured from murine and patient samples using 

standard methods. 

Results: Results showed a progressive Proteobacterial and Firmicutes dominance in gut microbiota in 

early stages of PDAC development. Upon in silico reconstruction of active metabolic pathways within 

the altered microbial flora, polyamine and nucleotide biosynthetic pathways were significantly elevated. 

These metabolic products are known to be actively assimilated by the host and eventually utilized by 

rapidly dividing cells for proliferation validating their importance in the context of tumorigenesis. In KPC 

mice, as well as PDAC patients, we show significantly elevated serum polyamine concentration. 

Therefore, at the early stages of tumorigenesis, the gut microbial composition changes in a way to 

release metabolites that foster host tumorigenesis, thereby fulfilling the ‘vicious cycle hypothesis’ of the 

role of the microbiome in health and disease states.   

Conclusions: Our results provide a potential, precise, non-invasive tool for early detection of PDAC, 

which will result in improved outcomes. 

Keywords: Pancreatic ductal adenocarcinoma; microbiome; PanIN; Bacterial metabolites 
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Introduction 

 

Pancreatic cancer is the 3rd most common cause of cancer related deaths in United States with a very 

poor 5-year survival rate of 9%. The disease is characterized by relatively late onset of symptoms and 

rapid progression with very limited treatment options. Lack of efficient biomarkers that can facilitate 

early detection of the disease is one of the primary challenges of the field. With effective tools of early 

detection, the survival rate would eventually increase, as more patients would be able to have their 

tumors resected (1). Thus, there is an urgent need for non-invasive, discriminatory biomarkers for early 

detection of this disease. During carcinogenesis, a pancreatic tumor progresses through the pre-

cancerous pancreatic intraepithelial neoplasia (PanINs) lesions (2,3). However, even though these 

changes in the pancreas morphology are histologically distinct, imaging techniques used in the clinics 

are not able to distinguish the early PanINs from the normal pancreas. As a result, detection of a tumor 

at an early stage becomes difficult. Retrospective study has shown that 20-25% of patients with 

pancreatic cancer develop diabetes mellitus 6-36 months before pancreatic cancer is diagnosed (4). 

This observation is also being evaluated as a possible indication of early detection in this disease. 

 

Pancreatic tumorigenesis is heavily dependent on inflammation. Recent studies have shown that 

systemic inflammation plays a significant role in altering the microbial flora in the gut, leading to 

microbial dysbiosis (5,6). The role of gut microbiome, and specifically its dysbiosis in cancer 

development, is becoming more evident in recent years. It becomes increasingly apparent that the gut 

microbiome plays an integral role in modulating host physiology, including  disease-specific unique 

cellular metabolism and immune function (7). Initial studies of the gut microbiome focused primarily on 

colon cancer, however, recent studies have shown that microbial changes are associated with 

development of melanoma (8), gastric cancer (9), lung cancer (10) as well as PDAC (11-18). It is now 

well-established that the gut bacteria play an integral role in cellular metabolism and immune function 

that become deregulated during carcinogenesis. While microbiome research has concentrated on its 
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role in tumor progression, change in the microbiome and their metabolites have not been exploited as 

potential biomarker for early detection in pancreatic cancer (19-22).  

 

Previous reports have suggested that oral microbiome dysbiosis occurs during pancreatic 

tumorigenesis (12,23). Bacterial species have been detected in pancreatic cysts, as well as in PDAC 

tumors (24). In addition, other studies have revealed that the microbiome plays an active role in stromal 

modulation (16) and depletion of the microbiome plays a profound role in reduction of pancreatic tumor 

burden (18). 

Most of these studies, however, have utilized the most common sequencing approach of an amplicon 

analysis of the 16S ribosomal RNA (rRNA) gene (25,26). This method is limited by the fact that the 

annotation is based on putative association of the 16S rRNA gene with an operational taxonomic unit 

(OTU). Since OTUs are analyzed at the phyla or genera level, the study is often unable to detect 

species within those taxa. An alternative approach to the 16S rRNA amplicon sequencing method is 

whole genome shotgun sequencing (WGS) which uses sequencing with random primers to sequence 

overlapping regions of a genome allowing for the taxa to be more accurately defined at the species 

level (27).  

 

In the current study, we analyzed the microbiome of in a genetic mouse model for PDAC 

(KRASG12DTP53R172HPdxCre or KPC) and age-matched controls using WGS at very early time points of 

tumorigenesis. During these time points, the KPC mice do not show any detectable tumors in their 

pancreas. Our results show that at these early time points, the histological changes in the pancreas 

correspond to a significant change in certain gut microbial population. Our predictive metabolomic 

analysis on the identified bacterial species reveal that the primary microbial metabolites involved in 

progression and development of PDAC tumors are involved in polyamine metabolism. Consistent with 

our analysis in mice, estimation of polyamine from serum of PDAC patients show that total polyamine 

concentration in increased in PDAC patients compared to healthy volunteers. Furthermore, serum 
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polyamine levels in KPC mice show an increased concentration of polyamines as tumors progress from 

PanINs to PDAC.  Together these observations indicate that analysis of gut microbial flora along with 

an analysis of the microbial metabolites can be developed as potential biomarkers for detection of 

PDAC at early stages when histological changes are not yet grossly apparent.  
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Results 

Gut microbial profile in KPC mice diverges from age-matched control mice over time. 

We employed a variety of indices to understand the composition and distribution of bacterial 

communities (species richness, evenness, distribution; alpha-diversity) in one and six months old KPC; 

and age-matched control mice. While controversies exist in the implementation of various diversity 

indices on 16s microbial data, originally developed for ecological studies with macro-organisms, a 

combination of these indices for 16s phylogenetic studies provide an overall spectrum of the 

composition of each group (28). We started with the Shannon’s H index (29), which accounts for both 

the abundance and evenness (measure of species diversity and distribution in a community) in both 

age groups and genotypes (Figure 1A). The Shannon’s H index showed no difference between the 

overall composition of the two age groups (1 and 6 months old control or KPC mice), implying that the 

numbers of different OTUs encountered (diversity), as well as the instances these unique OTUs were 

sampled (evenness) was relatively similar between the two groups. Since Shannon’s index is blinded to 

the identities of the OTUs, we also included Chao1 diversity (30) which accounts for the rarity or 

abundance of individual OTUs and provides a measure of species richness for individual groups which 

can then be compared (Figure 1B). The Chao1 diversity analysis showed significantly diminished OTU 

richness in KPC mice compared to control mice at 6 months of age. Faith’s phylogenetic diversity 

(PD_whole_tree) represents taxon richness of each sample expressed as the numbers of phylogenetic 

tree branches encountered for each sample based on sequenced OTUs (31). In a similar manner as 

was seen in the Chao1 index, a significant reduction in OTU diversity was observed in KPC mice 

compared to control in 6-month age groups (Figure 1C). 

The disparity between Shannon index and Chao1/PD can be described through the ‘Observed 

OTU’ metric (Figure 1D), which accounts for an absolute presence/absence of the OTU irrespective of 

the number of instances it is represented in a sample. This index also exhibited a significant reduction 

of richness in 6-month-old KPC mice compared to the control animals. This disparity implies that some 

species of microbes are actually getting diminished with tumor development. The evenness of 
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distribution makes the Shannon index comparable between the two age groups, despite differences in 

alpha-diversity using other matrices. This is not uncommon, as described in other microbial studies(32), 

and ensures that the differences in the beta-diversity (difference between groups) are not entirely due 

to differences in absolute OTU counts (32).  

Next, we used Bray-Curtis Principle Co-ordinate Analysis (pCoA; beta-diversity) to qualitatively 

examine differences in microbial composition and associated changes due to age in control (Figure 1E) 

and KPC mice (Figure 1F). Microbial composition of control mice did not change over the course of 6 

months, whereas a tendency towards clustering was observed in KPC 6 months old mice. However, the 

differences were statistically insignificant (p=0.054). Since there was a significant drop in phylogeny-

informed diversity indices for KPC mice over time, we decided to study the major differences between 

the two KPC age-groups, in the context of identified genera, family and class of microbes. 

 

There are significant early differences in a small group of microbes at the class and genera level 

between one- and six-month old KPC animals. 

An analysis of the five major phyla revealed a relatively unchanged Bacteroides and a trend 

towards decrease in relative abundance in Actinobacteria, Deferribacteres, Firmicutes and 

Proteobacteria (Figure 2A). None of these phyla had statistically significant changes over time. 

However, when we looked at the class-level in the hierarchy, several classes of bacteria showed 

significant changes in relative abundance between 1-month- and 6-month-old KPC animals (Figure 

2B). Compared to non-significant changes in class Bacteroidea, there was a significant drop in the 

relative abundance for classes Clostridia, Bacilli, Erysipelotrichia (All phylum Firmicutes), 

Deferribacteres (Phylum Deferribacteres), class Actinobacteria (Phylum Actinobacteria) and Delta-, 

Epsilon-, Gamma-, and Betaproteobacteria (All phylum Proteobacteria). Within Phylum Proteobacteria, 

however, there was a significant relative expansion of class Alphaproteobacteria in 6-month-old KPC 

animals. At the genus level, 6 genera exhibited significant relative expansion, whereas 19 showed 

diminished relative abundance from 1 to 6 months in KPC animals (Figure 2C). Interestingly, it is 
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obvious from Figure 2c that there is a clear disconnect between the trends seen in upper hierarchical 

levels and genera-level changes, specifically for genera showing relative expansion (1-6, Figure 2C). 

While Actinobacteria as a phylum (Figure 2A) and class (Figure 2B) are seen to have diminished 

relative abundance, Adlercreutzia has a significant relative expansion in 6-month-old KPC animals. 

Similarly, within phylum Firmicutes, classes Erysipelotrichi, Clostridia and Bacilli exhibit lower relative 

abundance (Figure 2B), genera within the classes respectively, Turicibacter, Coprococcus and 

Staphylococcus are significantly elevated in 6 months old KPC animals. In a similar vein, genera 

including Bacteroides, Parabacteroides and Prevotella (all Phylum Bacteroides) exhibit significantly 

lower abundance in 6-month-old KPC animals, despite no differences in the Phylum or Class levels of 

their hierarchy. Furthermore, upon mapping all independent OTUs (n=24) mapping to genus 

Bacteroides, several minor OTUs also have significantly elevated abundance in 6 months old KPC 

animals (Supplementary Figure 1) but are beyond the scope for any further identification due to the 

limitations of the 16s platform used. For mapping, microbial changes in spontaneous PDAC model and 

predicting functional attributes, it became abundantly clear that a better understanding of the early 

changes in genus/species level is of paramount importance. Unfortunately, phylogeny based on 16s 

amplicon sequencing does not provide sufficient genus/species level coverage, and, hence, we decided 

to restrict the time points and employ shotgun metagenomics for further studies. 

 

Microbial Dysbiosis occurred during early processes of tumor development 

For the pre-neoplastic time points, in order to obtain functionally relevant data with species-level 

identification, we performed whole genome sequencing on control and KPC animals at 2, 3, and 4 

months of age in animals that did not have visible tumors. A total of 1359 genera were identified with 

100% species-level coverage. Initial comparison of the overall microbial composition between control 

and KPC mice showed progressive microbial changes in the KPC mice from 2 to 4 months (Figure 3A-

3C). At 2 months of age, microbiome of control animals and majority of KPC animals form a single 

cluster (circled), with apparent changes in some of the KPC animals (Figure 3A). By the third month of 
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age, control animals maintained the cluster, one KPC animal shifted out of the circled cluster, 

accompanied by mortality of another KPC mice, which was outside the cluster from 2 months of age 

(Figure 3B). Finally, at 4 months age, all KPC animals except one, were seen to acquire a distinct 

microbial composition compared to the control animals (Figure 3C). At this point however, all KPC 

animals outside the cluster at 3 months of age had not survived. This phenomenon is also evident from 

the Class/genus level heatmap of top 50% representative bacteria at 2- and 4-month-old control and 

KPC mice, where we do not see any distinct pattern between the two genotypes at 2 months age 

(Supplementary Figure 2), while a distinct pattern can be seen emerging in 3 out of 4 KPC animals at 

4 months of age, consistent with the pCoA findings in Figure 3C (Supplementary Figure 3). In general, 

the KPC mice seem to maintain a higher species richness and evenness of distribution, which is 

significantly higher in the 3rd and 4th months of age (Figure 3D).  

This prompted us to analyze the control and KPC microbiome separately across all three 

months. 

The microbiota of control animals, as evident from Figure 3A-3C, does not alter from the 2nd to the 4th 

month (Figure 3E). While there is some variability among individual animals across the time points, 

there were no distinct clusters within the defined time points. In KPC animals however, the microbiome 

at 4 months age was distinctly and significantly different from the other age groups (Figure 3F). As 

mentioned earlier in Figure 3D, KPC microbiome maintains a higher level of species richness and 

evenness. However, there were no significant changes in control (Figure 3G) or KPC (Figure 3H) mice 

across the time points measured. Hence, the differences in the microbial composition with age is not 

influenced by the richness/evenness component of evaluation. 

Next, we concentrated on the significantly changed species within the 2 months and 4 months 

KPC animals (Supplementary Figure 4A). A total of 89 species, across all classes and phyla, were 

found to be significantly up- or down-regulated with age. Among the significantly changing species, only 

7 were found to lose abundance, with 4 belonging to phylum Firmicutes and 3 from Proteobacteria (all 

gammaproteobacteria).  The remaining 82 species exhibited significantly expanded relative abundance 
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from 2 months to 4 months of age, represented by 14 different bacterial phyla (Supplementary Figure 

4B).  As shown, approximately 40% of these species belong to Phylum Proteobacteria, followed by 

Firmicutes (18%), Actinobacteria, Bacteroidetes, Cyanobacteria and Euryarchaeota (all 6-7%). The 

significantly altered species in 4 months old KPC animals were compositionally close and formed a tight 

cluster in a pCoA plot, compared to 2 months old KPC animals (Figure 3I). This is despite no 

significant differences seen in the Shannon (Figure 3J) or Chao1 (Figure 3K) indices, implying that the 

relative abundances of the significantly changing species in 4-month-old KPC animals are influenced by 

the disease and not the richness or evenness of the microbiome. 

 

The metabolic landscape of the microbiota shows a shift from dominance of energy metabolism 

to upregulation in polyamine and lipid metabolism with PDAC tumor progression. 

 We then characterized the functional profile of the microbiota of 2-month-old and 4-month-old 

KPC mice using the HUMAnN2 pipeline (33,34). The resulting pathways were classified and curated 

manually into: (a) significant pathways in 2-month-old KPC only, (b) significant pathways in 4-month-old 

KPC only and (c) significantly changed pathways in 4-month-old KPC, compared to 2-month-old KPC 

animals (continuously valued relative abundance).  We found that in 2 months old KPC, there is a 

distinct dominance of energy metabolism pathways in the 227 pathways identified (top 25 pathways 

depicted in Figure 4A). Within the top 25 pathways, apart from energy metabolism, pathways 

contributing to cell division (e.g. amino acid biosynthesis and nucleotide biosynthesis pathways) were 

adequately represented. However, in 4-month-old KPC animals, the landscape was found to be 

significantly dominated by polyamine biosynthesis (Figure 4B). Biosynthesis of polyamines Putrescine, 

Spermidine, and Spermine dominated the metabolic landscape of the dysbiotic microbiome of 4-month-

old KPC mice. The rest of the pathways were represented by metabolic shunt pathways and lipid 

metabolic pathways. Next, we looked into the differential upregulation of pathways between 2nd and 4th 

month KPC animals (Figure 4C). We found a 29% upregulation of polyamine biosynthesis pathways in 

4 months KPC animals, followed by 24% upregulation in nucleotide biosynthesis pathways. Essentially, 
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more than 50% of bacterial metabolism seems to be promoting DNA synthesis/ replication pathways, 

where the metabolic products are readily assimilated by the host (35-37). This is supported by a 14% 

upregulation of lipid biosynthetic pathways, important for de novo cell membrane synthesis/remodeling.  

 To validate our predictive metabolomics, we next estimated polyamines from serum samples of 

KPC animals at different stages of tumor progression. Our results showed that while there was low 

polyamine in the serum of the animals of 1-2 month age, there was a significant increase in the serum 

concentration of these polyamines in 4 months animals that had PanIN2 and PanIN3 lesions but no 

observable tumor. Serum Polyamine concentration increased further in a full tumor (6 month and older) 

mice (Figure 5A). To further validate this, we next estimated polyamines in the serum from PDAC 

patients and compared their concentration to that in serum from normal healthy volunteers. Our results 

showed that in PDAC patients, serum polyamine concentrations were significantly increased (Figure 

5B).  

 

Discussion 

 

The role of microbiome in disease development, progression, and therapy are becoming 

increasingly clear. While this became apparent in colon cancer and other colonic disorders like 

inflammatory bowel disease where the bacterial population in the gut has direct influence on the 

inflammatory milieu of the disease, its influence in other diseases is only starting to be acknowledged 

(8,34,38). Changes in gut microbiome have now been associated with therapeutic response in 

melanoma (19,39), hepatocellular carcinoma, (14) and even in PDAC (16,18). While the current focus 

in microbiome research in PDAC has been primarily focused on therapy and its response with respect 

to microbial changes, there have been almost no studies on the role of this dysbiosis with respect to 

disease development and progression. Earlier studies have revealed that changes in the salivary and 

oral microbiome may correlate with risk of PDAC (12). In a recent study by Ren et al, a miSeq analysis 

showed that some potential pathogens like Veillonella, Klebsiella, and Selenomonas and LPS-
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producing bacteria including Prevotella, Hallella, and Enterobacter were enriched in pancreatic 

adenocarcinoma, whereas probiotics including Bifidobacterium and some butyrate-producing bacteria, 

such as Coprococcus, Clostridium IV, Blautia, Flavonifractor and Anaerostipes were reduced (40).  

KPC mice have been a gold standard for understanding the progression of pancreatic tumors 

(41). In the current study, we found a distinct microbial dysbiosis between the microbiome of mice with 

no tumor at 1 month of age compared with mice with PDAC tumors at 6-months of age. To further 

resolve when the microbial dysbiosis occurs, we next collected and analyzed the fecal microbiome of 2- 

to 4-month old mice that did not have overt tumors (but had histological indication of panINs and some 

dysplasia). We gave an arbitrary dysplasia score in which histologically normal pancreases of one-

month-old mice were considered 0 and histologic PDAC tumor-bearing mice were considered 4. Our 

results showed that microbial dysbiosis predominantly occurred at 4 months of age (mean histological 

score of 2.33), when there were no observable tumors in the animals. Our study corroborated the 

recent study by Pushalker et al.(16) We observed that there is a distinct difference in the microbial 

population as a pancreatic tumor develops (Figure 1). At this stage, a significant difference was 

observed at the class level, particularly for classes like Clostridia, Bacilli and Erysipelotrichi, 

Actinobacteria, and Deferribacteres (Figure 2).  Interestingly, when we further analyzed the microbiome 

of KPC mice at an early “pre-tumor” stage in which there was no observable tumor (only histological 

indication), the microbial population seemed to emerge as a distinct pattern (Figure 3). The KPC 

animals appeared to maintain a higher species richness and evenness of distribution. Our analysis 

further showed that the significantly altered species in 4-month-old KPC animals were compositionally 

close and formed a tight cluster in a principal coordinate analysis despite no significant difference in the 

Shannon or Chao1 index, indicating that this difference was due to the progression of the disease 

(Figure 3). 

 Microbial population is known to influence the host metabolism in a number of ways. Studies 

have shown that bile acid metabolism is one of the main metabolic pathways that are affected by 

microbial dysbiosis (42). Similarly, short chain fatty acids that the exclusive products of microbial 
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metabolism are known to affect the host epigenetic machinery (43). Our metagenomics analysis on the 

predictive metabolome of the microbial species shows that there is a distinct dominance of energy 

metabolism pathways (Figure 4). Interestingly, the major metabolic pathways that are deregulated from 

2 months to 4 months of age in KPC mice are those involved in polyamine biosynthesis and pyrimidine 

biosynthesis (Figure 4). It is well known that polyamine biosynthesis is critically regulated in a cell. This 

class of compounds is known to promote rapid proliferation by specifically contributing to the 

purine/pyrimidine biosynthesis in a cell and is thus considered a marker for neoplastic progression (44). 

Thus, the fact that our predictive metabolomics analysis shows this class of metabolites to be 

significantly deregulated in the pre-cancerous stage (prior to when invasive tumors starts proliferating 

rapidly) is not surprising. This was further validated upon analysis of serum from KPC mice – mice that 

did not have observable tumors, but had PanINs, showed an increased serum polyamine concentration 

(Figure 4D,E).  Interestingly, upon comparing the abundance of top 5 species as the KPC tumors 

progressed, we observed that the bacterial species, Lactobacillus reuteri, was detected in the 4-month 

sample, while it was below detection in the earlier time points (Figure 5). In our metabolomic 

reconstruction analysis, Lactobacillus reuteri was associated with polyamine metabolism. It is reported 

that in gastric cancer H.pylori promotes DNA damage and neoplastic progression by deregulating 

polyamine metabolism and promoting oxidative stress in the gastric epithelial lining (45-47).  While 

members of Lactobacillus sp. are known to affect polyamine metabolism and growth inhibition in gastric 

cancer (46), their role in pancreatic cancer remain undefined. Consistent with this, we identified serum 

polyamine concentration was significantly higher in 4 month KPC samples (without observable tumors 

but with advanced PanINs) compared to the 2-month samples (Figure 4D).  

 

In summary, early detection of PDAC has been an extremely challenging task. In this context, 

our results show for the first time that microbial dysbiosis and its altered metabolic pathways may 

potentially be exploited to develop a non-invasive biomarker panel. Further, our results indicate a 

definitive shift in the microbial composition sufficiently early in the tumor development timeline. Thus, a 
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comprehensive fecal analysis for the change in the bacterial species (as shown in Supplementary 

Figure 4), along with a serum analysis for pan-polyamines, can be further evaluated in the patient-

derived samples.  

While based on spontaneous mouse models for PDAC, our study forms the first step towards 

understanding how the microbial dysbiosis during tumorigenesis can play a role in the metabolic 

regulation of active proliferation of tumor cells - by regulating polyamine metabolism and influencing 

purine/pyrimidine biosynthesis.  
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Methods 

Ethics Statement 

All animal studies were performed according to the protocols approved by IACUC at University of 

Miami, USA (#16-066) in accordance with the principles of the Declaration of Helsinki. Serum 

from de-identified pancreatic cancer patients and healthy controls were obtained according to the 

approval from the IRB at University of Minnesota (1403M48826) accorded to Dr. Sulagna Banerjee as 

an author of the IRB proposal when she was in the Faculty of that University. All authors had access to 

all data and have reviewed and approved the final manuscript. 

 

Animal models and experimental design 

Spontaneous pancreatic animal model KRASG12D TP53R172HPdx-Cre (KPC) animals from both genders 

were enrolled in the study at 1 month of age. PDX-cre (Cre) animals that were age matched with the 

KPC animals were used as control. Fecal samples were collected at 2 months; 3 months and 4 months 

of age. Initially, 8-9 animals were kept in each group. At 4 months, all animals were sacrificed according 

to protocols approved by University of Miami Animal Care Committee. Gut and pancreas samples were 

flash frozen in liquid nitrogen. Pancreas tissues were formalin fixed for paraffin embedding and 

histochemical analysis. Blood was collected by cardiac puncture prior to euthanizing the animals. 

Plasma and serum samples were stored for analysis of polyamines. 

 

Isolation of DNA 

DNA from the mouse fecal samples was isolated using the Power Soil DNA Isolation Kit (Qiagen) 

according to manufacturer’s instructions. All samples were quantified using the Qubit® Quant-iT dsDNA 

High-Sensitivity Kit (Invitrogen, Life Technologies, Grand Island, NY) to ensure that they met minimum 

concentration and mass of DNA and were submitted to University of Minnesota Genomics Center for 

further analysis by 16s amplicon sequencing or Whole Genome Shotgun sequencing (WGS). 
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16s Pyrosequencing and microbiome analysis 

To enrich the sample for the bacterial 16S V5-V6 rDNA region, DNA was amplified utilizing fusion 

primers designed against the surrounding conserved regions which were tailed with sequences to 

incorporate Illumina (San Diego, CA) flow cell adapters and indexing barcodes. Each sample was PCR 

amplified with two differently bar coded V5-V6 fusion primers and advanced for pooling and sequencing. 

For each sample, amplified products were concentrated using a solid-phase reversible immobilization 

method for the purification of PCR products and quantified by electrophoresis using an Agilent 2100 

Bioanalyzer®. The pooled 16S V5-V6 enriched, amplified, barcoded samples were loaded into the 

MiSeq® reagent cartridge, and then onto the instrument along with the flow cell. After cluster formation 

on the MiSeq instrument, the amplicons were sequenced for 250 cycles with custom primers designed 

for paired-end sequencing.  

Using QIIME 1.9.2 (Quantitative Insights into Microbial Ecology, version 1.9.2)(48) , sequences 

were quality filtered and de-multiplexed using exact matches to the supplied DNA barcodes and 

primers. Resulting sequences were then searched against the Greengenes reference database of 16S 

sequences, clustered at 97% by uclust (closed-reference OTU picking) to obtain phylogenetic identities. 

Analysis for alpha- and beta-diversity was done with standardized QIIME workflow or the ‘R’ statistical 

package, as we have shown before (42).  

 

Metagenomic Sequencing and Microbiome analysis 

Shotgun metagenomic library was constructed with the Nextera DNA sample preparation kit (Illumina, 

San Diego, CA), as per manufacturer’s specification. Barcoding indices were inserted using Nextera 

indexing kit (illumina). Products were purified using Agencourt AMpure XP kit (Beckman Coulter, Brea, 

CA) and pooled for sequencing. Samples were sequenced using MiSeq reagent kit V2 (Illumina). 

Raw sequences were sorted using assigned barcodes and cleaned up before analysis (barcodes 

removed and sequences above a quality score, Q≥30 taken forward for analyses). For assembly and 

annotation of sequences, MetAMOS (49) pipeline or Partek Flow software (Partek® Flow® , Partek Inc., 
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St. Louis, MO) were used. These softwares provide powerful tools to filter unique hits between human 

and mouse-specific genes versus microbial signatures. Alpha and Beta diversity calculations were done 

using embedded programs within the metagenomic pipeline, or using Stata15 (StataCorp LLC, College 

Station, TX) or EXPLICET software(50). 

Functional profiling was performed using HUMAnN2-0.11.1(33)  with Uniref50 database to implement 

KEGG orthologies. 

 

Immunohistochemistry 

For histochemistry, 4 μm paraffin tissue sections were deparaffinized in xylene and rehydrated through 

graded ethanol. Hematoxylin and Eosin (H&E) staining were conducted to confirm histological features. 

Histological scoring was done by an arbitrary scoring method in which scores of 0-4 were assigned 

based on the dysplasia observed in the tissues. A score of 0 was assigned to the histologically normal 

pancreas while a score of 4 was assigned to a fully dysplastic tissue (that observed in the late stages of 

tumor development in the KPC model). All scoring was done in a blinded manner by 3 separate 

investigators. 

 

Polyamine estimation 

Polyamine was estimated from the serum of KPC animals between the age groups of 2-8 months. The 

animals of 1-2 months old showed normal pancreas histolology, those 3-4 months old showed various 

degrees of PanINs and those that were 4-8 months old had observable tumors. Polyamine was 

estimated by Total Polyamine Estimation Kit (Biovision, Milpitas, CA) according to manufacturers’ 

instruction after diluting the serum 1:25 in the assay buffer. 

 

Statistical Analyses 

Microbiome analysis with QIIME and whole genome analysis pipelines: OTU tables were rarefied to the 

sample containing the lowest number of sequences in each analysis. QIIME 1.9.2 was used to calculate 
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alpha diversity (alpha_rarefaction.py) and to summarize taxa (summarize_taxa_through_plots.py). 

Principal Coordinate Analysis was done within this program using observation ID level. The Adonis test 

was utilized for finding significant whole microbiome differences among discrete categorical or 

continuous variables with randomization/Monte Carlo permutation test (with Bonferroni correction). The 

fraction of permutations with greater distinction among categories (larger cross-category differences) 

than that observed with the non-permuted data was reported as the p-value. Relative abundance of 

species identified through the metagenomic pipelines were compared using non-parametric Mann-

Whitney U test at p<0.05 after FDR correction. Apart from statistical functions embedded within the 

metagenomic pipeline mentioned above, we have used GraphPad Prism (GraphPad Inc, La Jolla, CA) 

or Stata15 (StataCorp LLC, College Station, TX) for different statistical analyses, mentioned in the text 

and figure legend as appropriate. 

 

Data Availability 

Microbiome raw data sequences are available from EMBL ArrayExpress with the accession number E-

MTAB-6921. 

 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/342634doi: bioRxiv preprint 

https://doi.org/10.1101/342634


References 

1. Chari ST, Kelly K, Hollingsworth MA, Thayer SP, Ahlquist DA, Andersen DK, et al. Early detection 

of sporadic pancreatic cancer: summative review. Pancreas 2015;44(5):693-712 doi 

10.1097/MPA.0000000000000368. 

2. Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer 

Res 2000;6(8):2969-72. 

3. Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin 

North Am 2007;36(4):831-49, vi doi 10.1016/j.gtc.2007.08.012. 

4. Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early 

diagnosis of pancreatic cancer. Lancet Oncol 2009;10(1):88-95 doi 10.1016/S1470-

2045(08)70337-1. 

5. Dubinkina VB, Tyakht AV, Odintsova VY, Yarygin KS, Kovarsky BA, Pavlenko AV, et al. Links of gut 

microbiota composition with alcohol dependence syndrome and alcoholic liver disease. 

Microbiome 2017;5(1):141 doi 10.1186/s40168-017-0359-2. 

6. Yang BG, Hur KY, Lee MS. Alterations in Gut Microbiota and Immunity by Dietary Fat. Yonsei 

Med J 2017;58(6):1083-91 doi 10.3349/ymj.2017.58.6.1083. 

7. Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog 

2017;13(9):e1006480 doi 10.1371/journal.ppat.1006480. 

8. Salava A, Aho V, Pereira P, Koskinen K, Paulin L, Auvinen P, et al. Skin microbiome in melanomas 

and melanocytic nevi. Eur J Dermatol 2016;26(1):49-55 doi 10.1684/ejd.2015.2696. 

9. Espinoza JL, Matsumoto A, Tanaka H, Matsumura I. Gastric microbiota: An emerging player in 

Helicobacter pylori-induced gastric malignancies. Cancer Lett 2018;414:147-52 doi 

10.1016/j.canlet.2017.11.009. 

10. Mao Q, Jiang F, Yin R, Wang J, Xia W, Dong G, et al. Interplay between the lung microbiome and 

lung cancer. Cancer Lett 2018;415:40-8 doi 10.1016/j.canlet.2017.11.036. 

11. Ertz-Archambault N, Keim P, Von Hoff D. Microbiome and pancreatic cancer: A comprehensive 

topic review of literature. World J Gastroenterol 2017;23(10):1899-908 doi 

10.3748/wjg.v23.i10.1899. 

12. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome 

and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 

2018;67(1):120-7 doi 10.1136/gutjnl-2016-312580. 

13. Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, et al. Variations of oral microbiota are 

associated with pancreatic diseases including pancreatic cancer. Gut 2012;61(4):582-8 doi 

10.1136/gutjnl-2011-300784. 

14. Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M, et al. The microbiome and 

hepatobiliary-pancreatic cancers. Cancer Lett 2017;402:9-15 doi 10.1016/j.canlet.2017.05.001. 

15. Signoretti M, Roggiolani R, Stornello C, Delle Fave G, Capurso G. Gut microbiota and pancreatic 

diseases. Minerva Gastroenterol Dietol 2017;63(4):399-410 doi 10.23736/S1121-

421X.17.02387-X. 

16. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The Pancreatic Cancer 

Microbiome Promotes Oncogenesis by Induction of Innate and Adaptive Immune Suppression. 

Cancer Discov 2018;8(4):403-16 doi 10.1158/2159-8290.CD-17-1134. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/342634doi: bioRxiv preprint 

https://doi.org/10.1101/342634


17. Riquelme E, Maitra A, McAllister F. Immunotherapy for Pancreatic Cancer: More Than Just a 

Gut Feeling. Cancer Discov 2018;8(4):386-8 doi 10.1158/2159-8290.CD-18-0123. 

18. Sethi V, Kurtom S, Tarique M, Lavania S, Malchiodi Z, Hellmund L, et al. Gut Microbiota 

Promotes Tumor Growth in Mice by Modulating Immune Response. Gastroenterology 2018 doi 

10.1053/j.gastro.2018.04.001. 

19. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota 

modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol 

2017;14(6):356-65 doi 10.1038/nrgastro.2017.20. 

20. Geller LT, Straussman R. Intratumoral bacteria may elicit chemoresistance by metabolizing 

anticancer agents. Mol Cell Oncol 2018;5(1):e1405139 doi 10.1080/23723556.2017.1405139. 

21. Humphries A, Daud A. The gut microbiota and immune checkpoint inhibitors. Hum Vaccin 

Immunother 2018:1-14 doi 10.1080/21645515.2018.1442970. 

22. Jaber DF, Jallad MN, Abdelnoor AM. The effect of ciprofloxacin on the growth of B16F10 

melanoma cells. J Cancer Res Ther 2017;13(6):956-60 doi 10.4103/0973-1482.180610. 

23. Olson SH, Satagopan J, Xu Y, Ling L, Leong S, Orlow I, et al. The oral microbiota in patients with 

pancreatic cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes Control 

2017;28(9):959-69 doi 10.1007/s10552-017-0933-8. 

24. Li S, Fuhler GM, Bn N, Jose T, Bruno MJ, Peppelenbosch MP, et al. Pancreatic cyst fluid harbors 

a unique microbiome. Microbiome 2017;5(1):147 doi 10.1186/s40168-017-0363-6. 

25. Human Microbiome Project C. Structure, function and diversity of the healthy human 

microbiome. Nature 2012;486(7402):207-14 doi 10.1038/nature11234. 

26. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene 

catalogue established by metagenomic sequencing. Nature 2010;464(7285):59-65 doi 

10.1038/nature08821. 

27. Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL. Analysis of the microbiome: Advantages of 

whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 

2016;469(4):967-77 doi 10.1016/j.bbrc.2015.12.083. 

28. Morgan XC, Huttenhower C. Chapter 12: Human microbiome analysis. PLoS Comput Biol 

2012;8(12):e1002808 doi 10.1371/journal.pcbi.1002808. 

29. Shannon CE. The mathematical theory of communication. 1963. MD Comput 1997;14(4):306-

17. 

30. Chiu CH, Chao A. Distance-based functional diversity measures and their decomposition: a 

framework based on Hill numbers. PLoS One 2014;9(7):e100014 doi 

10.1371/journal.pone.0100014. 

31. Faith DP. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points 

and worst-case losses. Philos Trans R Soc Lond B Biol Sci 2015;370(1662):20140011 doi 

10.1098/rstb.2014.0011. 

32. He Y, Zhou BJ, Deng GH, Jiang XT, Zhang H, Zhou HW. Comparison of microbial diversity 

determined with the same variable tag sequence extracted from two different PCR amplicons. 

BMC Microbiol 2013;13:208 doi 10.1186/1471-2180-13-208. 

33. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, et al. Metabolic reconstruction 

for metagenomic data and its application to the human microbiome. PLoS Comput Biol 

2012;8(6):e1002358 doi 10.1371/journal.pcbi.1002358. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/342634doi: bioRxiv preprint 

https://doi.org/10.1101/342634


34. Golombos DM, Ayangbesan A, O'Malley P, Lewicki P, Barlow L, Barbieri CE, et al. The Role of 

Gut Microbiome in the Pathogenesis of Prostate Cancer: A Prospective, Pilot Study. Urology 

2018;111:122-8 doi 10.1016/j.urology.2017.08.039. 

35. McKenna Iii J, Kapfhamer D, Kinchen JM, Wasek B, Dunworth M, Murray-Stewart T, et al. 

Metabolomic studies identify changes in transmethylation and polyamine metabolism in a 

brain-specific mouse model of tuberous sclerosis complex. Hum Mol Genet 2018 doi 

10.1093/hmg/ddy118. 

36. Zhu Q, Huang Y, Marton LJ, Woster PM, Davidson NE, Casero RA, Jr. Polyamine analogs 

modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering 

chromatin structure in human breast cancer cells. Amino Acids 2012;42(2-3):887-98 doi 

10.1007/s00726-011-1004-1. 

37. Johnson CH, Spilker ME, Goetz L, Peterson SN, Siuzdak G. Metabolite and Microbiome Interplay 

in Cancer Immunotherapy. Cancer Res 2016;76(21):6146-52 doi 10.1158/0008-5472.CAN-16-

0309. 

38. Petra CV, Rus A, Dumitrascu DL. Gastric microbiota: tracing the culprit. Clujul Med 

2017;90(4):369-76 doi 10.15386/cjmed-854. 

39. Gut Microbes May Up PD-1 Inhibitor Response. Cancer Discov 2017;7(5):448 doi 10.1158/2159-

8290.CD-NB2017-039. 

40. Ren Z, Jiang J, Xie H, Li A, Lu H, Xu S, et al. Gut microbial profile analysis by MiSeq sequencing of 

pancreatic carcinoma patients in China. Oncotarget 2017;8(56):95176-91 doi 

10.18632/oncotarget.18820. 

41. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and 

KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic 

ductal adenocarcinoma in mice. Cancer Cell 2005;7(5):469-83 doi 10.1016/j.ccr.2005.04.023. 

42. Banerjee S, Sindberg G, Wang F, Meng J, Sharma U, Zhang L, et al. Opioid-induced gut microbial 

disruption and bile dysregulation leads to gut barrier compromise and sustained systemic 

inflammation. Mucosal Immunol 2016;9(6):1418-28 doi 10.1038/mi.2016.9. 

43. Krautkramer KA, Dhillon RS, Denu JM, Carey HV. Metabolic programming of the epigenome: 

host and gut microbial metabolite interactions with host chromatin. Transl Res 2017;189:30-50 

doi 10.1016/j.trsl.2017.08.005. 

44. Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The cross-

talk between oncogenic signaling and polyamine metabolism. Sci Adv 2018;4(1):eaar2606 doi 

10.1126/sciadv.aar2606. 

45. Di Martino ML, Campilongo R, Casalino M, Micheli G, Colonna B, Prosseda G. Polyamines: 

emerging players in bacteria-host interactions. Int J Med Microbiol 2013;303(8):484-91 doi 

10.1016/j.ijmm.2013.06.008. 

46. Russo F, Orlando A, Linsalata M, Cavallini A, Messa C. Effects of Lactobacillus rhamnosus GG on 

the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. Nutr Cancer 

2007;59(1):106-14 doi 10.1080/01635580701365084. 

47. Rasouli BS, Ghadimi-Darsajini A, Nekouian R, Iragian GR. In vitro activity of probiotic 

Lactobacillus reuteri against gastric cancer progression by downregulation of urokinase 

plasminogen activator/urokinase plasminogen activator receptor gene expression. J Cancer Res 

Ther 2017;13(2):246-51 doi 10.4103/0973-1482.204897. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/342634doi: bioRxiv preprint 

https://doi.org/10.1101/342634


48. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows 

analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335-6 doi 

10.1038/nmeth.f.303. 

49. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, et al. MetAMOS: a modular 

and open source metagenomic assembly and analysis pipeline. Genome Biol 2013;14(1):R2 doi 

10.1186/gb-2013-14-1-r2. 

50. Robertson CE, Harris JK, Wagner BD, Granger D, Browne K, Tatem B, et al. Explicet: graphical 

user interface software for metadata-driven management, analysis and visualization of 

microbiome data. Bioinformatics 2013;29(23):3100-1 doi 10.1093/bioinformatics/btt526. 
 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/342634doi: bioRxiv preprint 

https://doi.org/10.1101/342634


Main Figure legend 

Figure 1: KPC microbiome exhibits clustering between 1 and 6 months, compared to control 

microbiome with 16s pyrosequencing. Various alpha-diversity indices were measured for the two 

genotypes and two time-points. (A) Shannon’s H index was similar between the age groups and 

genotypes, whereas (B) Chao1 index, (C) Faith’s Phylogenetic Diversity and (D) Observed OTU indices 

were significantly down in 6 months old KPC animals, compared to age-matched control animals. Bray-

Curtis Principal Co-ordinate Analysis showed that (E) control animals did not form distinct clusters 

between 1 and 6 months of age, whereas (F) KPC animals for a distinct cluster at 6 months age, 

compared to 1 month old animals. This difference, however, was not statistically significant (p= 0.056) 

with 2-tailed test of significance with Bonferroni correction [n= 6 to 8 per group]. 

Figure 2: KPC animals show significant differences at the Class and Genera levels. In a head-to-

head comparison between the OTUs representing the five major phyla, (A) Bacteroidetes did not show 

any difference between 1 and 6 months old KPC mice. The other four phyla showed reduced relative 

abundance, which were statistically insignificant. At the Class level (B) however, Alphaproteobacteria 

exhibited significantly high relative abundance in 6 months old KPC. With Bacteroidea unchanged 

between the two age groups, all other Classes exhibited diminished relative abundance in 6 months old 

KPC mice [Test of significance- non-parametric Mann-Whitney U test. *p<0.05, **p<0.01]. At the Genus 

level (C), six genera showed significant increase in relative abundance from 1 to 6 months of age, 

compensated by 19 genera with severely diminished relative abundance at the same time [All genera- 

p<0.05]. 

 

Figure 3: Whole genome sequencing of control and KPC mice at ages 2, 3, and 4 months. As 

seen above, the microbial composition of KPC animals, which is similar to control (circled) animals at 2 

months age (A), starts changing by 3 months age (B). By 4 months, there are significant differences in 

the control and KPC microbiome (C). In this experiment, only 4 KPC animals survived for 4 months 
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(arrows point to the individual animals which survived from 3rd to 4th month). This is accompanied by 

significantly increased Shannon’s H alpha-diversity index for 3- and 4-month old KPC animals, 

compared to their control counterparts (D). While control animals do not exhibit change in microbial 

composition in pCoA plot with age (E), four surviving members of 4-month-old KPC animals were seen 

to cluster separately from the 2 or 3 months of age collections (F). The Shannon index was not different 

within control (G) or KPC (H) animals over time. In KPC animals, between 2 and 4 months age, 82 

species were found to be significantly different (see Supplementary Figure 4). Analysis of those 82 

species with pCoA plot shows tight clustering of 4-month-old animals, compared to when they were 2 

months old (I). Neither the Shannon (J) or Chao 1 (K) indices were different for the two age groups, 

when analyzed for the significantly changing species only. 

 

Figure 4: Metabolic reconstruction of the microbiome. The HUMAnN2 pipeline generated the 

pathway abundance list from whole genome sequencing input, and we manually curated it for pathways 

found in (A) 2-month-old KPC only and (B) 4-month-old KPC only. While 2 months only was dominated 

by energy metabolism pathways among others (see Table 1), 4 months only was dominated by 

Polyamine biosynthesis pathway. Overall, between the ages of 2 months and 4 months in KPC animals 

(C), the most significant metabolic pathways were dominated by biosynthetic pathways, where the 

majority of metabolites are exchanged between the host and the microbiota.  

 

Figure 5: Serum polyamine levels are significantly high in spontaneous murine model of PDAC 

and in PDAC patients. When we measured the actual total polyamine levels in KPC mice serum (D), 

significant elevation was seen with progressing age and cancer. Similarly, serum polyamines were 

found to be significantly elevated in PDAC patients, compared to healthy controls (E). [n= 5-8 for mice; 

n= 8 for human serum samples]. Test of significance was 2-tailed, non-parametric Mann-Whitney U 

test. P-values are exact and mentioned in the figure. 
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Figure 6: Progression to tumor and microbial/metabolic changes. With progressive cellular 

disorganization and tumor development in KPC mice (A; representative H&E staining), top bacterial 

species between 2 months and 4 months are joined by Lactobacillus reuteri. Lactobacilli is known to 

actively participate in polyamine metabolism. (B) Blinded histological scoring of PDAC progression in 

KPC mice [n=6/group with 4 fields per section]. Test of significance for (B) was non-parametric Mann-

Whitney U test. 

 

Supporting Information: 

Supplimentary Figure 1: Several OTUs mapping to the genus Bacteroides showing increased or 

decreased relative abundance between 1 and 6 months old KPC microbiome. Overall output shows “no 

change”. Hence, deeper analysis of microbial species, with higher species-level identification is the only 

way to decipher the actual role of microbiota in host health and disease. 

 

Supplementary Figure 2: Heatmap of bacterial classes at two months age in ‘Cre’ and ‘KPC’ gut 

microbiome. There is an even spread of the classes within the two genotypes. 

 

Supplementary Figure 3: Heatmap of bacterial species in 4 months old ‘Cre’ and ‘KPC’ mice with 

major changes (both up and down) in many species. The differences have been further elaborated in 

other figures and the manuscript text. 

 

Supplementary Figure 4: Significantly changed species between 2 months old and 4 months old KPC 

mice microbiome. (A) A heatmap of 82 species found to be significantly changed. Species marked with 

an arrow had significantly diminished relative abundance at 4 months age, while the others had 

expanded relative abundance. (B) All 82 species represented 14 different phyla, with dominant 

representation from Proteobacteria, followed by Firmicutes. 
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