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Abstract

To circumvent host immune response, numerous hymenopteran endo-parasitoid
species produce virus-like structures in their reproductive apparatus that are
injected into the host together with the eggs. These viral-like structures are
absolutely necessary for the reproduction of these wasps. The viral evolutionary
origin of these viral-like particles has been demonstrated in only two cases and for
both, the nature of the initial virus-wasp association remains unknown. This is either
because no closely related descendant infects the wasps, because it has not been
sampled yet, or because the virus lineage went extinct. In this paper, we provide
strong evidence that the virus-like particles (VLPs) produced by endoparasitoids
of Drosophila belonging to the genus Leptopilina (Hymenoptera Figitidae) have
a viral origin, solving the debate on their origin. Furthermore, the ancestral
donor virus still has close relatives infecting one of the wasp species, thus giving
us insights on the ecological interaction that possibly allowed the domestication
process. Intriguingly, this contemporary virus is both vertically and horizontally
transmitted and has the particularity to manipulate the superparasitism behavior
of the wasp. This raises the possibility that behavior manipulation has been
instrumental in the birth of such association between wasps and viruses.
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1 Introduction

Genetic information is typically passed on from generation to generation
through reproduction, ie vertical transmission. However, at some point during
the course of evolution, organisms may gain DNA from unrelated organisms,
through horizontal gene transfer (HGT). Most horizontally acquired DNA
is probably purged from the genomes of the population either because it
did not reach the germinal cells in case of metazoan species and/or because
no advantage is carried by the foreign sequence. However, natural selection
may retain the foreign DNA leading ultimately to genetic innovation in the
population/species [33].

The high frequency and relevance of such phenomenon has been recognized
for decades for bacteria but was considered to have had a marginal impact
on the evolution of metazoans[35]. However, this view has been recently
challenged due to the discovery of numerous examples of HGT in metazoans
with some of them leading to genetic innovation[8]. For instance, it has been
shown that some phytophagous mites and Lepidoptera deal with chemical
defenses of their host plant thanks to the acquisition of a bacterial gene
involved in detoxification [69]. Other very distantly related phytophagous
arthropods (Aphids, mites and gall midges) independently acquired genes
involved in carotenoid biosynthesis from fungal donors[50][26][16]. These
carotenoid genes were previously considered as absent from animal genomes,
in spite of the essential role they play on several aspects of animal biology.
Based on its strong conservation in these groups, it is speculated that they
have permitted genetic innovation possibly in relation to phytophagy.

Regarding the question of domestication of horizontally-transfered DNA
in eukaryotes, endoparasitic wasps are of particular interest because they have
repeatedly domesticated not only single genes but entire viral machineries
(review in [22] and since then [11]). Endoparasitic wasps lay their eggs
inside the body of other arthropods, usually other insects, ultimately killing
them. Their progeny is thus exposed to the host immune system. Notably,
it has been found that the ancestor of at least three monophyletic groups of
endoparasitic wasps have independently domesticated a battery of viral genes
allowing them to deliver either DNA encoding immuno-suppressive factors
or immuno-suppressive proteins themselves [31][57]. Strikingly, in the case
DNA is delivered into the host (so-called polydnaviruses, PDV), it integrates
into the host hemocytes DNA and gets expressed [5][15], manipulating the
host physiology and behavior, ultimately favoring the development of wasp
offspring. In cases where proteins are delivered, the viral machinery permits
the delivery of these virulence proteins into host immune cells, thus inhibiting
the host immune response[59] [18]. In both cases, virally-derived genes are used
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by the wasp to produce a vector toolset composed of capsids and/or envelopes.
However, the virulence factors themselves (or the DNA encoding the virulence
factors) are of eukaryotic origin, probably pre-dating the domestication event
[15]. Evolution has thus repeatedly favored the domestication of kits of viral
genes allowing the production of virus-like structures in the reproductive
apparatus of parasitic wasps with clear functional convergence.

Although we may speculate that the intimacy of the association between
the donor viruses and their parasitoid hosts has favored the exchanges,
the biology of these ancestral viruses is mostly unknown. For one such
domestication event (in the Campopleginae sub-family, Ichneumonidae family),
the ancestral virus has not been identified at all, whereas a beta nudivirus has
been identified as the donor virus for wasps belonging to the microgastroid
complex of the Braconidae family. In the recently described case of a viral
replacement in the lineage leading to Venturia canescens (Campopleginae sub-
family), it has been shown that an alpha-nudivirus was the donor. However,
close relatives of the donor viruses are not known to infect present-day wasps,
nor to infect their hosts. One possible explanation is that the ”donor” viral
lineages went extinct and/or have not been sampled yet. The exact nature of
the association wasp/virus that permitted such massive domestication events
is thus still unclear.

In this work, we identify a new independent case of virus domestication in
the genus Leptopilina (Family Figitidae), parasitoids of Drosophila larvae. We
provide strong evidences that the genes of viral origin permit all Leptopilina
wasp species to produce so-called virus-like particles (VLPs). VLPs have
been known for decades in this genus([59]). They are produced in the venom
gland of the wasp, are devoid of DNA but contain virulence proteins that
are injected, together with the egg, into the Drosophila larva. They protect
wasp eggs from Drosophila immune response ([59][17]). We show that a close
relative of the ancestral donor virus is still segregating in the species L. boulardi
and its biology has been extensively studied by our group|[45][54][46][40][66].
The virus, known as LbFV, belongs to a possibly new dsDNA virus family
related to Hytrosaviridae, and more distantly related to Nudiviridae and
Baculoviridae[40]. The virus is vertically transmitted and manipulates the
wasp behaviour by forcing infected females to lay their eggs into already
parasitized larvae. This virus-induced ”host-sharing” benefits to the virus
since it allows its horizontal transmission to new parasitoid lineages. On the
contrary, this ”superparasitism” behaviour comes with a cost to wasp fitness,
making it a nice example of behaviour manipulation[21]. This result suggests
that symbionts such as LbFV, might have been instrumental in the birth of
such association between wasps and viruses.
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2 Results

We analyzed the genomic sequences of L. boulardi[66], L. clavipes[36], L.
heterotoma (this study) and a related species in the Ganaspis genus (G.
brasiliensis, this study). All Leptopilina species as well as G. brasiliensis
belong to the Figitidae family and are endoparasitoids developing from various
species of Drosophila.

The basic statistics for the assemblies used in this paper are presented
in table 1. With an N50 of 2080 bp the G. brasiliensis assembly appeared
more fragmented than those from the Leptopilina species whose N50 ranges
from 12807 bp to 17657 bp. This reflects its two to three times larger genome
size likely due to its higher content in repetitive sequences (44.92% vs. 24.02-
28.82%). All four genomes were sequenced with coverage depth above 24
(between 24x and 85x), which is most likely sufficient to get the whole gene
set[43]. Accordingly, a BUSCO[61] analysis revealed that the vast majority
of the 1066 single copy genes expected to be found in most arthropods are
indeed present in all four assemblies (from 96.6% in G. brasiliensis to 99.1%
in L. boulardi), making these assemblies suitable for HGT detection (table 1).

basic statistics BUSCO stats Genome size [Mb]

species nscaffolds ~ N50 coverage Repetitive Complete Duplicated Fragmented Missing total missing BUSCO.based kmer.based Cytometry.based
L. boulardi 127707 14511 46 27.65% 1044 4 8 10 1066 1% 353 347 361
L. heterotoma 231242 12807 53 28.82 % 1041 2 9 14 1066 1% 445 464 459
L. clavipes 38495 17657 83 24.02 % 1025 7 15 19 1066 2% 257 300 321
G. brasiliensis 2777766 2080 24 44.92 % 830 8 192 36 1066 3% 829 977 968

Table 1: Statistics for the assemblies of wasp genomes. Genome size was
estimated either using the coverage on BUSCO gene containing scaffolds or
using a k-mer approach. For comparison, we give the estimated genome sizes
obtained from flow cytometry analysis [24][36].

We inferred the relationships among the wasps under study using a set of
627 genes ubiquitous to all arthropods (see methods). As expected, the three
Leptopilina species form a monophyletic clade with L. heterotoma being more
closely related to L. clavipes than to L.boulardi (Fig. 1).

In order to identify putative horizontal transfers between an LbFV-like
virus and the wasps, we blasted the 108 proteins encoded by the behaviour-
manipulating virus that infects L. boulardi (LbFV) against the Leptopilina
and Ganaspis genomes (tblastn). Interestingly, we found that 17 viral proteins
had highly significant hits in wasp genomes (1.3 x 1071™ < e-values < 1079).
Among them, two classes should be distinguished. The first class is composed
of four viral genes (ORFs 11, 13, 27 and 66) that have strong similarities with
both Leptopilina and Ganaspis genes (Fig. S1). We previously reported that
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these genes have probably been acquired horizontally by the virus from an
ancestral insect before the Leptopilina diversification ([40], Fig. S1 & 2A).
Two of them (ORFs 27 and 66) are predicted to encode inhibitors of apoptosis,
whereas ORFs 11 and 13 encode a putative demethylase [40]. These two last
genes may derive from a single horizontal transfer followed by a subsequent
gene duplication [40]. In the following section, we will focus on the second
class of genes identified by this blast analysis.

(A) Virus captured (B) 13 viral genes integrated
3 insect genes into the wasp genome

Wasp chromosomes VLPs
—— — i i [N )
@ duplication @ Leptopiling boulardi = =m= == == I .‘
of one

Leptopiling heterotomi —— ...

Leptopiling Clavipes —— e————— .. -

Ganaspis brasiliensis

Figure 2: Hypothetical scenario for genetic exchanges between the wasps and
the virus LbFV. (A) Before the diversification of the Leptopilina genus, LbFV
captured 3 insect genes, most likely involved in apoptosis inhibition (ORF's
27 and 66) and methylation (the ancestor of ORFs 11 and 13). One of them
was probably subsequently duplicated (the ancestor of both ORFs 11 and 13).
(B) After the divergence between Ganaspis and Leptopilina (around 74My
ago[9]), but before the diversification of Leptopilina genus, possibly a whole
genome of a virus closely related to LbFV integrated wasp chromosomes.
Nowadays, all Leptopilina species bear 13 LbFV-derived genes that allow
them to produce VLPs. The cartoons displaying the chromomosomes are just
illustrations depicting the presence of virally-derived genes (red) within wasp
chromosomes of eukaryotic origin (blue). VLPs are symbolized by the black
circular forms.


https://doi.org/10.1101/342758
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/342758; this version posted December 3, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.1 Leptopilina species captured 13 viral genes from
an LbFV-like virus

More surprisingly, we found clear evidence that a single massive integration
of viral DNA into wasp genomes occurred before the diversification of the
Leptopilina genus and after the divergence between Ganaspis and Leptopilina.
This event led to the integration of 13 viral genes into the genome of the
wasps (Fig. 2B). The corresponding 13 viral proteins have highly significant
hits with all Leptopilina species (4.107* < e-values < 1.3107'® median =
1073%), but not with G. brasiliensis. The percentages of identity between
these 13 LbFV proteins and Leptopilina homologs ranged from 21.9 to 41.9
(table 2 and fig. S2-S14). All 13 loci displayed complete open reading frame
(ORF) starting with a methionine and ending with a stop codon in the three
wasp species, and their length was very similar to the corresponding ORF in
LbFV genome (supplementary tables S1, S2 and S3; the regression slopes of
ORF length in the wasp versus ORF length in LbFV were respectively 0.95,
1.02 and 0.894 for L. boulardi, L. heterotoma and L. clavipes; all R? > 0.95
and all p-values< 107 on 11 d.f.). This suggests that those genes do not
contain intron.

query L. boulardi L. heterotoma L. clavipes

query_id Length identity aln.length evalue identity aln.length evalue identity aln.length  evalue
1 LbFV_ORF5 696 34.40 366 5.5e-41  29.70 370 3e-37  33.10 366 1.9e-40
2 LbFV_ORFT72 106 31.80 107 5.2e-10  28.60 70 4e-04  32.70 107 8.8e-09
3 LbFV_ORF92 1593 33.80 1058 2.9e-151  38.10 501 5e-94  33.70 998 3.1e-136
4 LbFV_ORF107 625 29.80 322 1.3e-11  27.10 170 9e-09  28.30 378 5.3e-10
5 LbFV_ORF94 182 29.00 176 5.5e-14 27.60 174 le-11 27.00 174 1.2e-12
6  LbFV_ORF68 645 34.10 646 6.7e-99  32.60 660 3e-92  34.00 674 3.5e-103
7 LbFV_ORF60 362 32.60 377 2.4e-36  26.00 381 7e-30  31.80 384 1.4e-33
8 LbFV_ORF85 215 36.40 225 3.0e-26  35.20 219 le-23  33.00 218 1.3e-23
9 LbFV_ORF87 176 30.90 162 6.5e-12  29.00 162 le-05  31.50 165 3.6e-11
10 LbFV_ORF58 1308 36.70 932 1.3e-129  31.50 1378 8e-158  31.50 1042 1.8e-120
11 LbFV_ORF78 676 40.10 670 1.2e-134  41.00 646 2e-123  41.00 675 3.7e-135
12 LbFV_ORF83 433 24.80 435 1.6e-15 21.90 429 8e-15 24.50 436 1.8e-20

13 LbFV_ORF96 1048 41.90 1024 4.0e-169  36.60 1043 2e-164 4040 1013 1.3e-178

Table 2: Blast hits for the 13 viral proteins against Leptopilina genomes
(tblastn).

To define a set of expected features for typical scaffolds belonging to wasp
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genomes, we calculated the GC content and sequencing depth for scaffolds
containing single-copy arthropod-universal BUSCO genes (Fig. S15). This is
important since it allows one to distinguish genetic entities that may take
part of the sample that have been sequenced. GC usually varies according to
genomes, and coverage depth is directly related to the relative concentration
of the DNA sequence under consideration.

Except for one L. clavipes scaffold (scf7180005174277) encoding an homolog
of ORF68, the general features (GC, sequencing depth) of wasp scaffolds
sharing similarities with LbF'V proteins were very similar to those calculated
for the BUSCO-containing scaffolds (tables S1, S2, S3 and fig. S15). On the
contrary, by analysing these statistics (GC and coverage), we could easily
detect the presence of some known extra-chromosomal symbionts such as
the virus LbFV in L. boulardi (Fig. S15A), or the bacteria Wolbachia in
L. heterotoma (Fig. S15B). In addition, several typical intron-containing
eukaryotic genes were predicted in the vicinity of these genes (depicted in
grey in Fig. 1). Note that apart from these 13 loci specifically found in
Leptopilina genomes, most flanking Leptopilina predicted proteins were also
detected in the G. brasiliensis genome (66/72 for L. boulardi, 8/11 for L.
heterotoma and 10/15 for L.clavipes) showing that the absence of homologs
in G. brasiliensis genome was not the consequence of a less reliable assembly.
Taken together, these observations demonstrate that the Leptopilina scaffolds
containing viral-like genes are part of the wasp genomes. The special case of
scf7180005174277 in L. clavipes assembly may be the consequence of recent
duplications for this gene, possibly explaining its higher coverage depth.

The evolutionary history of the thirteen genes is consistent with an
horizontal transfer from an ancestor of the virus LbFV (or a virus closely
related to this ancestor) to Leptopilina species (Figure 3). Indeed, when
other sequences with homology to the proteins of interest were available in
public databases, the three wasp genomes always formed a highly supported
monophyletic clade with LbFV as a sister group of Leptopilina sequences
(ORFs 58, 78, 92, 60, 68, 85, 96). In addition, for the 6 remaining phylogenies
(for which no homologs was available in public databases), the mid-point
rooting method always led to similar topologies with LbFV as the sister
group of Leptopilina sequences. In addition, the divergence LbFV-Leptopilina
relative to the divergence among Leptopilina species was identical for both
types of loci (Fig. S16), further suggesting that both loci have the same
evolutionary history. Interestingly, it appeared from this analysis of ORF60,
that before being transfered to Leptopilina wasps, the gene has probably been
acquired by the donor virus from an ancestral bacteria (Figure 3).

The clustering of most of these loci on the same scaffold in L. boulardi (8
out of 13 on scaffold 159, N=75550 scaffolds, see Figure 1) strongly suggests
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Figure 3: Phylogenetic evidence for a massive horizontal transfer of thirteen
viral genes into the genome of Leptopilina wasps. The names of the ORF's
refers to the ORF number in LbFV genome. Blue, red and green colors
represent respectively (supposedly) eukaryotic, viral or bacterial branches.
Only aLLRT supports > 0.7 are shown. The mid-point rooting method was
used. Accession numbers of the corresponding sequences are available in table
S4.
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that a single event is at the origin of the phenomenon. In addition, for a
few pairs of L. boulardi and L. heterotoma scaffolds, it was possible to test
for the synteny of their virally-derived genes (ORFs 92 and 107 in scaffolds
159 in Lb and IDBA_7081 in Lh, and ORFs 87 and 58 in scaffolds 2503
of Lb and IDBA_5653 in Lh). In all cases, the synteny appeared to be
maintained between the two Leptopilina species (Fig. 1). In addition, a
few flanking non-virally derived sequences were co-occuring around the same
viral genes in different Leptopilina species (grey connections in Fig.1, see Fig.
S17 for details). The overall shared organization of these genes in the three
Leptopilina species suggests that they have been vertically inherited since a
single ancestral endogenization event.

To further assess the distribution of those virally-derived genes in the
diversity of Leptopilina wasps, we designed primers for ORF96 which is the
most conserved gene. We successfully PCR amplified and sequenced the
corresponding PCR product from DNA extracts obtained from all Leptopilina
species tested (L. guineaensis, L. freyae, L. victoriae in addition to L. boulardi,
L. heterotoma and L. clavipes, figure SI8A). The phylogeny obtained after the
sequencing of the PCR products was congruent with the species-tree estimated
from a phylogeny based on ITS2 sequences (Fig. S18B). As expected, no
PCR product was obtained from Ganaspis brasiliensis extracts.

2.2 Virally-derived genes are under strong purifying
selection in wasp genomes

In order to assess the way natural selection have acted on these virally-
derived genes since their endogenization, we calculated the dN/dS ratios
using alignments involving the three Leptopilina species. We also calculated
dNdS ratios for a set of 942 genes found in the three Leptopilina species and
that are also shared by at least 90% of all arthropods ([61]). Those genes
are thus expected to be under strong purifying selection. Accordingly, the
"universal” arthropod gene set had a very low dN/dS mean value (mean=0.114,
median=0.085), with a distribution skewed towards 0 (Figure 4). Interestingly,
the thirteen virally-derived genes had very low and very similar dN/dS values
(mean=0.215, median=0.222, min=0.125, max=0.284), suggesting that they
are all as essential for the survival and/or reproduction of Leptopilina wasps
as any “universal” arthropod gene.
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Figure 4: dN/dS ratio for a set of 942 universal arthropod genes and for the
13 virally derived genes found in Leptopilina species (indicated by the red
lines).

2.3 Virally-derived genes are only expressed in female
venom glands at the onset of VLPs production

Because Leptopilina wasps harbor VLPs that protect their eggs from Drosophila
immune reaction ([59], [27]), we wondered whether the 13 virally-derived
genes were in fact responsible for their production. Under this hypothesis, our
prediction was that the 13 genes would be expressed only in the venom gland
of females since VLPs are specifically produced in this tissue, and only when
VLPs are being produced. To test this idea, we measured the expression of
the 13 virally-derived genes in the venom glands, ovaries, rest of the body of L.
boulardi females, and also in L. boulardi males. We followed their expression
from the very beginning of the pupal stage (day 11) until the emergence of
the host (day 21). During that period, the venom gland is being formed and
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is matured (Fig. 5). The venom gland produces the VLPs that are released in
the lumen (Fig. 6) and that finally reach the reservoir where they are stored
until the emergence (see the size of the reservoir in Fig. 5E).

Figure 5: Morphogenesis of the venom gland during the pupal stage of L.
boulardi females. G: venom gland; R: reservoir of the venom gland. Overall
structure of the organ under light microscope at day 11 (a), 14 (b), 16 (c),
18(d) and 21(e). At that temperature (25°C), 11 days corresponds to the
beginning of the pupation in L. boulardi, whereas adult females are emerging
at 21 days. Bar= 100pM.

The patterns of expression of all 13 genes fit our prediction: they are all
specifically expressed in the venom glands of females but not in other tissues,
nor in males (Fig. 7). Some virally-derived genes were particularly expressed
at the very beginning of venom gland morphogenesis (day 11), whereas the
other genes had their peak of expression at day 14, when the reservoir of the
gland starts to be filled with VLPs.
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Figure 6: Biogenesis of VLPs in the venom gland of L. boulardi during the
pupal stage until adult emergence: (A) 14 days (pupae), (B) 16 days (pupae),
(C) 18 days (pupae), (D) 21 days (adult). At days 14 and 16, secretory cells
(SC) are releasing empty membranes (Em) into the Lumen (Lu) of the venom
gland where they accumulate. Then at day 18, empty membranes starts to
be filled with electron-dense material (probably virulence proteins, such as
LbGAP) to produce immature VLPs (im-VLPs). Finally at emergence (day
21), the venom gland lumen is filled #th mature VLPs (m-VLPs) ready to
be injected into the host. I: cuticular intima delineating the lumen. Inserts
show details of each image. Bars represent 1uM, except in inserts where they
represent 5004M.
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Two sets of genes could also be identified base on their level of expression.
One set of genes had an expression between 3 and 12 times that of the actin
control gene (ORFs 94, 107, 60 , 83 and 85), whereas the other genes had
lower levels of expression, below 1.8 times that of the actin control (ORF's
5,72,68, 92, 87, 58, 78). ORF96 was even below the detection threshold in our
assay. Finally, we also measured the expression of a wasp virulence protein,
known as a major component of wasp venom, most likely wrapped within the
VLPs in Leptopilina boulardi (the RhoGAP LbGAP [37], [18], [23]).

Contrary to the 13 virally-derived genes, this virulence protein has a
eukaryotic origin ([18]). As expected, this gene is also specifically expressed in
the venom gland, and transcription starts just after the 14-day peak observed
for most virally-derived genes. Interestingly, among ”early” virally-derived
genes, we identified a putative DNA polymerase (ORF58, see table 3). This
opened the fascinating possibility that the DNA encoding those genes is
amplified during this biological process.

2.4 Most virally-derived genes but not the major wasp
virulence factor are amplified in the venom gland

Using real-time PCR, we measured the relative DNA levels of each gene
compared to an actin single copy locus. As in the transcription assay, we
measured it in the venom gland, ovaries, rest of the body and in males of
L. boulardi. We also included another single copy gene (shake) as a control.
As expected the relative copy number of shake did not show any trend in
time, nor differences between tissues, thus validating our assay. We observed
similar "flat” patterns for ORF87, ORF58 and ORF96 although a statistically
significant effect was detected at day 11 for ORFs 87 and 96. On the contrary,
all other virally-derived genes were significantly amplified in the venom
gland, but not in other tissues. This amplification was highly significant
for most genes at day 14, were they all reached their peak of amplification.
Interestingly, among the three genes that were not amplified is the putative
DNA-polymerase (ORF58). This gene showed an early-transcription profile
in the transcriptomic assay. The same ”early-gene expression pattern” is
also observed for the other non-amplified gene (ORF87). For most virally-
derived genes, we observed a striking correlation between the transcription
and amplification profiles (compare figs. 7 and 8). Finally, our dataset
indicates that the gene encoding the major constituent of VLPs (LbGAP) is
not amplified (Fig. 8).
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Figure 7: Expression of the 13 virally-derived genes and of the Rho-Gap
in different tissues of L. boulard: from initial pupal stage to adult. x-axis
represents days since egg-laying. 11 days corresponds to the beginning of
the pupal stage and 21 days to the emergence of adults from the Drosophila
puparium.
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Figure 8: Genomic amplification of virally derived-genes measured by real time
PCR in L. boulardi. The relative quantity of each target gene is represented
relative to the actin control gene and normalized by the ratio observed in males
at day 11. The expected value under no amplification (relative quantity=1) is
indicated as a dotted line. Stars correspond to the tissue effect tested at each
time point (with holm correction for multiple tests) : % < 0.05, #*x < 0.01,
*x + < 0.001.

2.5 Annotation of virally-derived genes

Out of the 13 viral genes, five had similarities with known protein domains
(table 3). First, the viral protein ORF58 showed clear similarity with DNA
polymerase B domain (e-value 2.31072%). The domain was also detected
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in wasp orthologs but only for the L. clavipes protein. For the other four
proteins, similar domains were identified in both the LbFV sequence and
the wasp sequences. ORF60 bears a lecithine cholesterol acyl transferase
(LCAT) domain, ORF68 contains a PIF1-like helicase, ORF78 contains an
RNA-polymerase domain and ORF85 contain an Ac81 domain, a conserved
protein found in all Baculoviruses [53].

locus species alignment start  alignment.end envelope.start envelope.end accession  family name hmm.start hmm.end hmmlength bit.score Individual. E.value Conditional.E.value
ORF58 LbFV 639 870 599 880 PF00136.20 DNA_pol B 40 200 464 72.63 2.3e-20 1.4e-24
ORF58 L. clavipes 349 578 322 591 PF00136.20 DNA_pol B 19 205 164 23.88 1.4e-05 1.7e-09
ORF60 LbFV 76 172 57 351 PF02450.14 LCAT 66 165 392 30.75 1.6e-07 6.7e-11
ORF60 L. boulardi 121 218 105 234 PF02450.14 LCAT 76 172 392 25.45 6.6e-06 3.5e-09
ORF60 L. heterotoma 120 218 103 284 PF02450.14 LCAT 6 173 392 27.26 1.8e-06 9.9e-10
ORFG0 L. clavipes 120 367 103 398 PF02450.14 LCAT 76 280 392 25.24 7.6e-06 1.1e-09
ORF68 LbFV 124 167 122 174 PF05970.13  PIF1-like helicase 3 16 364 21.87 8.00-05 3.30-08
ORF68 LbFV 248 320 226 379 PF05970.13 PIF1-like helicase 103 171 364 15.24 8.3e-03 3.5e-06
ORF68 L. boulardi 138 181 138 191 PF05970.13  PIF1-like helicase 1 44 364 11.92 8.4e-02 7.6e-05
ORF68 L. boulardi 273 344 261 388 PF05970.13 PIF1-like helicase 104 175 364 11.54 1.1e-01 9.8e-05
ORF68 L. heterotoma 139 182 139 193 PF05970.13 PIF1-like helicase 1 44 364 11.49 1.1e-01 8.9e-05
ORFG8 L. heterotoma 283 353 260 396 PF05970.13 PIF1-like helicase 104 174 364 16.27 1.0e-03 3.1e-06
ORF68 L. clavipes 142 183 141 193 PF05970.13  PIF1-like helicase 2 43 364 8.51 9.2e-01 8.8e-04
ORF68 L. clavipes 284 339 265 358 PF05970.13  PIFI-like helicase 103 158 364 12.71 1.8¢-02 1.6¢-05
ORF78 LbFV 358 115 244 122 PF00623.19 RNA_pol Rpb12 100 156 166 16.14 9.1e-03 5.4e-07
ORF78 L. boulardi 238 299 232 303 PF006G23.19 RNA_polRpbl2 100 160 166 15.16 1.8e-02 1.1e-06
ORF78 L. heterotoma 206 273 149 277 PF00623.19 RNA_pol Rpbl2 95 161 166 18.21 2.1e-03 2e-07
ORFT8 L. clavipes 236 305 202 309 PF00623.19 RNA_polRpbl2 93 161 166 19.14 1.1e-03

ORF85 LbFV 56 201 5 201 PF05820.10  Ac81 28 181 181 77.15 Lle-21

ORF85 L. boulardi 62 214 41 214 PF05820.10 Ac81 26 181 181 4.16 9.0e-21

ORF85 L. heterotoma 63 213 34 213 PF05820.10  Ac8l 29 181 181 78.91 3.1e-22

ORF85 L. clavipes 59 212 34 212 PF05820.10 Ac81 25 181 181 73.61 1.3e-20

Table 3: hmmer sequence analysis for the 13 proteins encoded by LbFV and
their orthologs in Leptopilina wasps. Only hits with individual evalues < 0.15
are shown.
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3 Discussion

In this paper, we showed that all Leptopilina species contain a set of genes
of viral origin deriving from either a direct ancestor of LbFV or from a
closely related one. We describe the genomic structure of those genes in
details in L. boulardi, L. heterotoma and L. clavipes, for which the whole
genome was obtained. In addition, we were able to detect the presence of
one LbFV-derived gene (ORF96) in all Leptopilina DNA extracts tested so
far, suggesting that those virally-derived genes are shared by all Leptopilina
species. From this analysis, we conclude that an ancestor of all Leptopilina
species acquired a set of 13 viral genes deriving from a virus related to the
behavior manipulating virus LbF'V. These genes have been conserved in all
Leptopilina species. This is very likely the consequence of a single event.

So far, all studied Leptopilina species are known to produce VLPs in their
venom gland [59][49][27]. These spherical particles are produced at the pupal
stage and are stored in the reservoir of the venom gland. During oviposition,
females inject not only their egg(s) but also some VLPs into their Drosophila
hosts. VLPs are conceptually similar to liposomes that would contain virulence
proteins. VLPs then permit the wasp to address these proteins to Drosophila
immune cells [18]. The virulence proteins delivered to the target cells then
induce important morphological changes in the lamellocytes, precluding them
from initiating an efficient immune reaction against the parasitoid egg [18].
Thus, the VLPs are essential for the reproduction of the wasps. Because
the proteins wrapped within the VLPs have a eukaryotic origin and because
neither viral transcripts, viral proteins, nor viral DNA had been identified
from venom gland analysis, it has been claimed that VLPs do not have a viral
origin [58, 30]. In addition, the description of VLP proteins with eukaryotic
microvesicular signature has been put forward as an evidence of a eukaryotic
origin for these structures [30]. Following this argumentation, the authors
proposed to change the denomination of VLPs for MSEV (mixed-strategy
extracellular vesicle). On the contrary, our data strongly suggest that the
VLPs found in Leptopilina do have a viral origin and derive from a massive
endogenization event involving a virus related to an ancestor of the behaviour
manipulating virus LbFV (Fig 2B). Under our scenario, present-day VLPs are
indeed eukaryotic structures but that evolved thanks to the endogenization
and domestication of ancient viral genes. Nowadays, these structures allow
the delivery of eukaryotic virulence proteins to Drosophila immune cells.

As expected from this hypothesis, we found that the virally-derived genes
are specifically expressed in the venom gland, during the first part of the pupal
stage, time at which the VLPs are beginning to be produced. In addition,
those genes are under strong purifying selection, as could be expected for
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genes involved in the production of such fitness-related structures as VLPs.
Analyzing the putative biological function of the genes brings additional
support in favor of this hypothesis. Although 8 out of the 13 genes had no
conserved domains, three of them had functions suggesting that they could
be involved in the metabolism of membranes.

The first one is ORF60 which contains a lecithine cholesterol acyl transferase
(LCAT) domain. In humans, LCAT is involved in extracellular metabolism
of plasma lipoproteins, including cholesterol. LCAT esterifies the majority
of free cholesterol, catalyzing translocation of fatty acid moiety of lecithin
(phosphatidyl choline) to the free 3-OH group of cholesterol. It thus plays a
major role in the maturation of HDL (high-density lipoprotein cholesterol)
[60]. This putative biological property makes sense under our hypothesis
since VLPs resemble liposomes that may be composed of highly hydrophobic
compounds such as cholesterol. We may thus speculate that ORF60 plays
a crucial role in the early formation of the ”empty” membranes observed in
the lumen of the venom gland under transmission electron microscopy (Fig.
2.3A-B). Interestingly, the phylogenetic reconstruction of this gene suggests
that LbFV itself acquired LCAT gene from a bacterial donor species.

The second gene for which annotation could be done is ORF85. ORF85
is an homolog of Ac81, a conserved protein found in all Baculoviruses [53].
Its role has been recently deciphered in Autographa californica multiple
nucleopolyhedrovirus (AcMNPV, [20]). During their cycle, baculoviruses first
produce budded virions (BVs) and, late in infection, occlusion-derived virions
(ODVs). After the initial infection, BVs are responsible for the spread of
the infection from cell to cell within the infected insect. On the contrary,
ODVs are only produced at the final stage of the infection. At that point
nucleocapsids are retained in the nucleus where they acquire an envelope
from microvesicles. They are then exported into the cytoplasm and are
embedded into proteinaceous crystal matrix, thus forming occlusion bodies
(OBs). The OBs are then released in the environment. OBs are absolutely
necessary to initiate new insect infection through horizontal transmission. By
a mutant analysis, Dong et al. [20] showed that Ac81 is necessary for the
capsid envelopment and embedding within the occlusion bodies (OBs). They
also showed that Ac81 contains an hydrophobic transmembrane domain that
is necessary for the correct envelopment and embedding too. Interestingly,
all three orthologs in Leptopilina sp. also contain a TM domain (Fig. S19).
Our hypothesis is that the virally-derived genes found in Leptopilina species
are responsible for the production of the VLPs, which are basically lipidic
membranes. Thus we can speculate that the homolog of Ac81 in Leptopilina
species is involved in the wrapping of proteins into the VLPs, which is observed
at day 18 under electron microscopy (Fig. 2.3C). Interestingly, it has been
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found that the closest viral homolog of this protein (apart from LbFV) is a
structural protein of the Hytrosaviridae GpSGHYV. This is consistent with the
idea that this protein is embedded into phospholipidic membranes.

The other genes containing a conserved domain suggest that the wasp has
retained genes involved in DNA replication and transcription. The presence
of a putative DNA polymerase (ORF58) and an helicase (ORF68) may sound
surprising if one considers that VLPs do not contain DNA, contrary to
polydnaviruses. However, we observed that after the early transcription
activation of the DNA polymerase (at day 11), 10 out of the 13 virall-derived
genes were subsequently amplified (at day 14). This genomic amplification
correlates very well with their respective expression profile which suggests
that the transcriptomic regulation of these virally-derived genes is governed,
at least partly, by the gene copy number in the cell. Interestingly, the
DNA polymerase itself and the nearby virally-derived gene (ORF87) are
not amplified, suggesting that the amplification depends on the location
of the loci in wasp chromosome. It is unclear at that point whether the
genomic amplification involves the production of circular or linear amplicons
or concatemers, and where are located the boundaries of the amplified loci. On
the contrary, the gene encoding the major constituent of the VLPs (LbGAP),
which does not have a viral-origin, is not genomically amplified, although it is
highly transcribed from day 14 until the emergence of the wasp. This suggests
that the virally-derived DNA polymerase targets some specific sequences
flanking the amplified loci. The wasp genome also encodes a virally-derived
RNA polymerase (ORF78) that is likely involved in the transcription of the
virally-derived genes.

All together, our data strongly suggest that VLP production is possible
thanks to the domestication of 13 virally-derived genes, captured from an
ancestor of LbFV. Based on the clustering of the genes in L. boulardi assembly,
and on the synteny conservation, we speculate that a single event led to the
acquisition of the whole gene set. We can even hypothesize that a whole
virus genome integrated into the chromosome of the Leptopilina ancestor.
Several recent publications suggest that large, possibly full-genome insertions
of symbiont into their host DNA do occur in the course of evolution, including
from dsDNA viruses. For instance, whole genome sequencing of the brown
planthopper revealed a total of 66 putative ORFs (74,730bp in total) deriving
from a nudivirus genome, including 32 out of the 33 core nudiviral genes [14].
Also, it has been recently shown that an almost complete Wolbachia genome
has been integrated into the chromosome of its host the common pillbug
Armadillidium vulgare, with dramatic consequences on its sex determinism
system[39]. After this suspected full-genome insertion of an ancestor of LbFV,
we speculate that subsequent rearrangements have eliminated unnecessary
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genes and finally scattered, to a certain degree, the 13 remaining genes. Better
genome assemblies are now necessary to gain insights on this aspect of the
domestication process in the different Leptopilina lineages.

Our results document a novel domestication event of viruses in parasitic
wasps. Indeed, from a function point of view, the domestication we document
here is very similar to what has been described in the microgastroid complex
in Braconidae[4], in Campopleginae[68], and in Banchinae[3]. In all cases, it
is thought that a single endogenization event led to the integration of viral
DNA into wasp chromosomes, and subsequently to the evolution of a virally-
derived system delivering virulence factors to host immune cells. Despite
these similarities, the underlying mechanisms are different. In the braconidae
Cotesia congregata and Microplitis demolitor and in the Campopleginae
Hyposoter dydimator, the putative virally-derived genes are genomically
amplified as well as the genes encoding the virulence factors[42][12][68],
although different mechanisms are involved[12]. The main consequence of
this amplification is the production of the DNA circles that are finally packed
into the polyDNAviruses.

On the contrary in Leptopilina boulardi, we find that only the 13 virally-
derived genes are amplified, but not the virulence gene RhoGAP. The
Leptopilina system best resembles the VLP production observed in Venturia
canescens in the sense that VLP do not contain DNA (contrary to PolyDNAviruses
described above) but instead proteins[30]. In Leptopilina, the genomic
amplification seems to be an original trancriptionnal mechanism occurring
during the production of the VLPs membranes. To our knowledge the
possibility that virally-derived gene and/or virulence factor genes are also
amplified during VLP production has not been investigated in V. canescens.

From these examples, it is clear that the domestication of whole sets
of viral genes have repeatedly occurred in endoparasitoid wasps belonging
to the super-family Ichneumoinoidea, with at least two events leading to
polydnavirus systems (that adress DNA circles encoding virulence factors
to the host) in Braconidae and Ichneumonidae and one event leading to
the evolution of a VLP system (that adress virulence proteins wrapped
into a liposome-like structure to the host) in the lineage of V. canescens
(Ichneumoinidae) [31], [57]. Actually, this last VLP domestication in V.
canescens better corresponds to a replacement of a PDV system by a VLP
system[57], showing that domestication events are frequent in this taxon.
With our results, it is tempting to extend this conclusion to other distant
taxons of endoparasitoids, since Leptopilina belongs to the family Figitidae,
which diverged from Ichneumonoidea 225My ago [56].

One remaining open question for all those events, is the type of interaction
the ancestral virus and its wasp did have before the domestication happened.
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Regarding this question, very few data are available up to now. In two
probably independant cases (PDV in campopleginae such as H. dydimator
and in banchinae such as Glypta fumiferanae) the ancestral virus has not
been clearly identified[68][3]. On the contrary, the putative virus donors have
been identified as beta-nudivirus for PDVs in braconidae[4], and as an alpha-
nudivirus for VLPs found in Venturia canescens[57]. However, their closest
viral relatives are not infecting hymenoptera, but rather other arthropods[63].
In addition, the endogenization event is ancient, at least for Bracoviruses,
which is the only case for which an estimation exists (103My, [52]), rendering
difficult the inferences on the type of association that existed upon emergence
of the association. It is thus unclear what type of interaction did the ancestral
virus have with its host before the endogenization process.

In Leptopilina, we unequivocally identified an ancestor (or a close relative)
of the behaviour-manipulating virus LbFV as the donor virus. First, it should
be noted that in both previous cases for which the ancestor has been identified
the donor virus has a large circular genome composed of a double stranded
DNA. Our results again show the same pattern. Second, the previous studies
repeatedly identified nudiviruses as the donor family. Here we identify a virus
belonging to another, possibly new, virus family[40]. This virus is related to
nudiviruses and baculoviruses, but is more closely related to the hytrosaviruses
[2], which are known to induce Salivary Gland Hypertrophy in tsetse flies and
house flies, although it can also remain symptom-less [1].

Finally, this is the first time that the identified virus ancestor still
has extant relatives infecting one of the wasp species. Furthermore, the
domestication event is more recent than the bracovirus domestication in
Braconidae (103Mya, [52]), since it happened very likely after the Ganaspis/
Leptopilina divergence, which occurred around 73Mya[10]. Although this
is still a large upper bound value, using this biological system may help
us infer about the nature of the initial virus/wasp association. From our
previous work on the interaction between LbFV and its host Leptopilina
boulardi, we know that LbFV is vertically transmitted and replicate in cells of
the oviduct[67]. This result suggests that physical proximity with the germ
line may have facilitated the initial endogenization event, thus allowing the
initiation of the domestication process. The identification of a contemporary
virus still infecting the wasp also opens the way for addressing experimentally
the mechanisms by which the virus could integrate into wasp chromosomes.
Finally, LbFV is responsible for a behavior manipulation in L. boulardi: it
forces females to superparasitize, which allows its horizontal transmission
to other wasps[65]. This raises the fascinating possibility that the ancestral
donor virus also manipulated the behavior of the wasp. To clarify this issue,
the sampling of relatives of LbFV will be essential, to be able to reconstruct
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the ancestral state for the lineage that actually gave rise to such genetic
innovation.
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4 Methods

4.1 Wasp rearing

L. boulardi, L. heterotoma and G. brasiliensis were reared on D. melanogaster
as host (StFoy strain) in a climatic chamber (25C 60% humidity, 12/12 LD).
The G. brasiliensis strain was kindly provided by Dr. Shubha Govind and
L. boulardi and L. heterotoma strains were collected and identified by our
group. Drosophila were fed with a standard medium [19]. All experiments
on L. boulardi were performed on a strain uninfected with the behaviour-
manipulating virus (NSref).

4.2 Wasp genome sequences and annotation

We previously reported the genome of Leptopilina boulardi, strain Sienna
(accession number : PQATO00000000) which has been obtained from the
sequencing of a single female[66]. Although this female was infected by LbFV,
the draft genome does not contain contigs belonging to the virus genome since
we removed them by comparison to the published virus genome sequence[40].
The assembly was performed using IDBA ud [55] followed by a scaffolding
step with assembled RNAseq reads using the software L_RNA scaffolder [71].

We sequenced the genomes of the related L. heterotoma (Gotheron
strain, accession number RICB00000000), and the more distantly related G.
brasiliensis (Va strain, accession number RJVV00000000). L. heterotoma is
refractory to infection by LbFV[54] and no reads mapping to LbFV genome
has been found neither in L. heterotoma nor in G. brasiliensis datasets. We
extracted the DNA of a single female abdomen using Macherey-Nagel columns,
similarly to what was performed for L. boulardi[66]. The DNAs were then
used to prepare paired-end Illumina libraries using standard protocols (TruSeq
PE Cluster v3, TruSeq SBS 200 cycles v3, TruSeq Multiplex Primer). The
libraries were then sequenced on a Hiseq2500 (for L.h, 2 x 100bp, insert size
= 418bp) or Hiseq3000 (for G.b, 2 x 150bp, insert size = 438bp) machine on
the Genotoul sequencing platform.

Similarly to what was done for L. boulard:, the drafts of L.heterotoma
and G.brasiliensis were obtained after assembling genomic DNA reads with
IDBA _ud [55]. For L. heterotoma assembly, this was followed by scaffolding
using publicly available assembled RNAseq reads|23] by running the software
L_RNA scaffolder[71]. This RNA-seq scaffolding step was not performed for
G. brasiliensis because no RNAseq reads were available for this species in
public databases.

The genome of an asexual strain of L. clavipes (strain GBW) which
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is not infected by LbFV was obtained and is described in [36] (accession
PRJNA84205). To have comparable assembly strategies, we included an
additional RNA scaffolding step using publicly available sequences ([48]).

In order to test the completeness of the drafts generated, we ran the
BUSCO pipeline (version 2.0) that looks for the presence of 1066 ubiquitous
genes shared by at least 90% of all arthropods ([61]).

The genome sizes were estimated using several methods. First of all, we
simply divided the total number of bases mapped to the draft by the mean
coverage observed on scaffolds containing complete BUSCO genes. Those
scaffolds are expected to contain non repeated nuclear DNA and their coverage
is a valuable estimate of the coverage for any nuclear locus. Second, after
filtering out adapters containing reads with Skewer version 0.2.2[34], removing
reads duplicates with FastUniq version 1.1[70], filtering out reads mapping to
mitochondrial contigs with Bowtie 2 version 2.3.4.1[38] and samtools version
1.8[41], removing contaminant reads (from viruses, prokaryotes and microbial
eukaryotes) with Kaiju 1.6.2 used with the NR+euk 2018-02-23 database[47],
k-mers frequencies were established from the remaining reads for each species
using Jellyfish 2.2.9[44] and k = 21 (default value). From these 21-mers
distributions genome size was estimated with findGSE[62] used with default
parameters. These estimates were then used to run DNAPipeTE version
1.3[25] (2 samples per run, 0.1X coverage per sample) in order to assess the
repetitive fraction of the genomes. Finally, independant estimates from flow
cytometry experiments were obtained for L. boulardi, L. heterotoma and G.
brasiliensis from [24] and for L. clavipes from [36].

We predicted genes in wasp sequences using the software augustus 3.2.3
[32], with training parameters obtained from the BUSCO outputs.

4.3 Homology search

In order to identify homologies between viral proteins and wasp DNA, we
used a simple tblastn (v. 2.6.0) approach with viral proteins as query and
each wasp genome as database. Default parameters were used except that an
evalue threshold of 0.01 was chosen.

4.4 Phylogenies
4.4.1 Species-tree

Based on 627 "universal arthropod” genes identified by the BUSCO pipeline
[61], a species tree was constructed for L. heterotoma, L. boulardi, L. clavipes
and G. brasiliensis, using Apis mellifera as outgroup. The protein sequences
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were aligned using the bioconductor msa package[7]. Individual alignments
were concatenated and a phylogenetic reconstruction was then performed
using PhyML (parameters: -d aa -m LG -b -4 -v e -c 4 -a e -f m)[28]. In total,
290428 variable sites were found and the branch supports were computed
using approximate likelihood ratio test (aLRT). We also constructed a tree for
10 Leptopilina species and G. brasiliensis using publicly available sequences of
Internal transcribed spacer 2 (ITS2). Alignment was performed with muscle
and a phylogeny was obtained with PhyML (parameters: -d nt -m GTR -b -4
-v 0.0 -c 4 -a e -f e). In total, 399 variable sites were used and the tree was
rooted using mid-point rooting method.

4.4.2 Gene-tree

We searched orthologs of viral proteins of interest in other organisms by
blasting (blastp) them against nr (downloaded on october 2017) with an
evalue threshold of 0.01. After retrieving the sequences, we selected one
sequence per species and added them to the proteins identified in Leptopilina
genomes. The sequences were then aligned using muscle algorithm v3.8.31.
Because the proteins included in the alignment diverged considerably, we
selected blocks of conserved sites using the gblocks algorithm parametrized
with less stringent options (allowing smaller final blocks, gaps within final
blocks and less strict flanking positions, [13]). Phylogenetic reconstruction
was then performed using PhyML (parameters: -d aa-m LG -b-4 -ve-c4-ae
-f m). The branch supports were computed using approximate likelihood ratio
test (aLRT). The accession numbers of the sequences used in the phylogenies
are reported in table S4.

4.5 PCR amplification of ORF96

Based on the sequences of L. boulardi, L. heterotoma and L. clavipes, we
designed primers for the orthologs of LbFVORF96. The primer sequences are
ATTGGTGAAATTCAATCGTC and TCATTCATTCGCAATAATTGTG.
They amplified a 411bp internal fragment of the coding sequence. PCR
reaction was performed in a 25ul. volume containing 0.2uM primers, 0.2mM
dNTPs, ImM MgCl12 and 0.5U of Taq DNA polymerase with the following
cycling conditions : 95 °C 307, 54 °C 30”7, 72 °C 60” (33 cycles).

4.6 dN/dS calculation

The coding sequences of "universal arthropod” BUSCO genes identified
in the three Leptopilina species were extracted and, using the msa and
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seqinr R package, were reverse-aligned using the protein alignments as a
guide (reverse.align function of the seqinr package). dN/dS ratios were then
estimated using the kaks function of the seqinr R package. The method
implemented in this package is noted LWL85 in [64]. A similar procedure was
performed for the 13 virally-derived genes found in the genomes of the three
Leptopilina species.

4.7 Expression in the venom gland and other tissues

We studied the expression of genes during the pupal stage of L. boulards,
at days 11, 14, 16, 18 and 21. The wasp strain used is not infected by the
behaviour-manipulating virus LbF'V. 11 days corresponds to the beginining of
the pupal stage, whereas 21 days corresponds to the emergence time. Wasps
were gently extirpated from the Drosophila puparium, and venom gland,
ovaries, rest of the body of L. boulardi females was dissected in a droplet of
PBS + 0.01% tween and deposited in the RLT+B-mercaptoethanol buffer of
the Qiagen RNAeasy extraction kit. Males were also prepared as a control, in
a similar way. The tissues extracted from twenty individuals were then pooled
together and tissues were disrupted in a Qiagen homogenizer (3 minutes
25Hz). Two biological replicates were performed for each condition, except
for day 11 where only one sample was obtained. ¢cDNAs were synthetized
using the SuperscriptIIl kit (ThermoFisher). Real-time PCR assays were then
performed with SYBR green (ssoadvanced universal sybr green supermix,
Biorad) using standard procedures on a Biorad CFX-96 machine. We
quantified the number of copies of each target cDNA using a serial dilution
standards. Because we obtained only tiny quantities of RNA from this
experiment (because of the very small size of the tissues dissected), we were
not able to test numerous genes. We thus choose to use only one control gene
(actin gene). As a counterpart, we were able to test all thirteen virally-derived
genes and the RhoGAP gene. The primer sequences are given in table S5.

4.8 Genomic Amplification

Using a similar assay, we extracted the DNA of L. boulardi, at days 11, 14, 16,
18 and 21, using an uninfected strain (no LbFV present). The genomic DNA
of 15 pooled individuals was extracted using the Nucleospin tissue Macherey-
Nagel kit following provider’s instructions. Three biological replicates per
condition was done. Real-time PCR assays were then performed with SYBR
green using standard procedures on a Biorad CFX-96 machine. We quantified
the number of copies of each target genes using a serial dilution standards.
The primer sequences are given in table S1. For an unknown reason, the
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amplification with DNA extracted from ovaries was particularly difficult, in
particular when the ovaries were mature (at day 21). We thus had to remove
this tissue from the statistical analysis because Cqs were too high to be
reliable. For the same reason, most data for ovaries at day 21 were removed
from figure 8. The primer sequences are given in table S5. Shake and actin
genes were chosen as single copy genes. This was checked by looking at the
blast results using each primer set (a single 100% match was observed for both
pairs of primers). Accordingly, a single band of the expected size was observed
on a gel and the expected sequence was obtained after Sanger-sequencing for
both loci.

4.9 Statistical analysis

For both the transcriptomic and genomic analysis, we calculated the absolute
copy number of each gene of interest and divided it by the absolute copy
number of the actin control gene. This ratio was then analyzed in an anova
framework with time, tissue and time:tissue interation as factors. The effects
were tested by likelihood ratio tests (LRT) of full model versus reduced
one. Contrasts between tissues were also calculated at each time point
(corresponding to the star in figures 7 and 8). Residuals of the models were
judged as unstructured and had an overall normal distribution.

4.10 Morphogenesis and electron microscopy of the
venom gland

To follow the morphogenesis of the venom gland, we dissected L. boulard:
pupae at days 11, 14, 16, 18 and 21, in a similar design used for transcriptomics.
Wasps were gently extirpated from the Drosophila puparium, and the venom
gland of females was dissected in a droplet of PBS + 0.01% tween. Venom
glands were either directly mounted on a glass slide for further examination
under a light microscope or transfered into a solution of 2% glutaraldehyde
in PBS for further examination under the Transmission Electron Microscope
(TEM). For TEM, the tissues were then post fixed 1 hour in 2% osmium
tetroxide in the same buffer, thoroughly rinced in distilled water, stained ”en
bloc” with a 5% aqueous uranyl acetate solution, dehydrated in a series of
graded ethanol and embedded in Epon’s medium. Ultrathin sections were
cut on a LKB ultratome and double stained in Uranyless and lead citrate.
Samples were examined with a Jeol 1200 Ex transmission microscope at 80kV.
Images were taken with an Quemesa 11 megapixel Olympus camera and
analyzed with ImageJ software (https://imagej.nih.gov/ij/).
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4.11 Annotation of viral genes

We searched for the presence of conserved domains in the 13 LbFV proteins
horizontally transfered to Leptopilina species using the hmmer webserver
(https://www.ebi.ac.uk/Tools/hmmer/) accessed the 5 of may 2018.
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7 Supplementary tables and figures

blast output corresponding ORF on scaffold scaffold statistics

query len_subject id identity aln length qstart qend  sstart  send evalue  bitscore  start  end length strand scaflength cov.depth GC

T d_T59 31d 366 337 GA0T 5337 5.5e-41 164.00 760T 5337 755 + 135056 0. 36
2 d_159 31.8 57.40 249 - 435056
3 1593 d_159 1058 583 1690 - 5
4 62" d_159 322 320 624 +

5 82 d_159 176 247 -

6 d_159 646 29 656 -

7 d_159 377 5 5 389 +

8 159 225 1 212 227 +

9 6 scaffold_2. \(1' 162 8 15 207 +

10 308 scaffold-250; 932 3904 1214 -

11 6 IDBA scaffnhl 13958 40.1 670 43 670 1.2 585 -

12 433 scaffold_23 24.8 435 14 407 ' 1 8(52 59 466 -

13 048 IDBAJL&HUI(L?IS{ 41.9 1024 48 1041 3609 6512 4 Un-le 3564 6545 994 -

Table S1: Blast hits for the 13 viral genes against L. boulardi genome.

blast output corresponding ORF on scaffold scaffold statistics
query id query len subject_id identity aln length qstart qend sstart  send evalue bitscore start  end length strand scaf length cov.depth GC
696 (8257 29.7 370 333 696 6b82 7061 3e- T57.00 5424 7661 746 - 998 59 2
106 6 7 1541 1750 do 36.60 12 56: - 2607 58 0.2:
1593 501 1109 5437 8 1714 + 10934 53 0.2
625 171 455 2550 629 - 1 53
182 174 1 2671 246 + 53
645 660 29 7459 339.1 670 + 52
362 S 381 5 4186 131.00 405 + 50
215 52 219 1 375 109.00 226 - 50
176 1D 162 8 5879 49.70 208 - 53
1308 IDB! 1378 19 5204 558.00 1319+ 53
67 IDB/ 0 646 70 ¢ 3914 443.00 567 + 52
433 1D. 0! 429 14 407 7018 82.00 460 - 52
1048 IDBA _scaffold_ 1043 48 1041 16775 580.00 1016 + 53
Table S2: Blast hits for the 13 viral genes against L. heterotoma genome.
blast output corresponding ORF on scaffold scaffold statis
query_id querylen subject_id identity aln length qstart qend sstart send evalue bitscore  start end length strand scaflength cov (lopth GC
T TOFV.ORFG 600 SCITTS0005 150507 ¢ 366 337 096 1730 003 (R RC —— 53T 7
2 LbFV_.ORF72 106 x( f718[)(][)01(‘6751 107 2 6537 6217 6199 249 + 8832 81
3 LbFV_ORF92 1593 998 579 21309 18403 18370 1669 + 23961 75
4 LbFV_ORF107 625 378 265 1897 309 803 624 + 5122 96
5  LbFV_ORF94 2 7 ; i 174 1 2763 7! 2260 252 + 62
6 LbEV.ORFGS 615 7180005174277 674 29 5118 7037 674 - 213
7 LbFV_ORF60 362 7180005174113 384 406 - 57
8 LbFV_.ORF85 215 7180005171671 218 1 3670 225 - 83
9 LbFV.ORFS7T 176 A I 856, 165 8570 210 - 85
10 LbFV_ORF58 1308 1042 317 13723 1038 + 70
11 LbFV_ORFET8 7 675 39 13268 600 - 86
12 LbFV_ORF83 436 9 5005 4 L 461 - 85
13 LbFV_.ORF96 1048 1013 48 6782 ‘J/ll 6686 1009 + 74
Table S3: Blast hits for the 13 viral genes against L. clavipes genome.
Locus species GI Figure
T ORF5 Lb PQAT00000000 3
2 ORF5 Lh RICB00000000 3
3 ORF5 Lc JUFY01000000 3
4 ORF5 LbFV 1148998810 3
5 ORF58 Lb PQAT00000000 3
6 ORF58 Lh RICB00000000 3
7 ORF58 Lc JUFY01000000 3
8 ORF58 LbFV 1148998708 3
9 ORF60 Lb PQAT00000000 3
10 ORF60 Lh RICB00000000 3
11 ORF60 Lc JUFY01000000 3
12 ORF60 Lymphocystis_disease_virus_-_isolate_China 51870153 3
13 ORF60 Organic_Lake_phycodnavirus_1 322510829 3
14 ORF60 Invertebrate_iridovirus_25 589287870 3
15 ORF60 Lymphocystis_disease_virus_1 611962711 3
16 ORF60 Lgm hocystis_disease_virus_Sa 1135106808 3
17 ORF60 8 1148998761 3
18 ORF68 Acyrthosiphon_pisum 328698707 3
19 ORF68 Adoxophyes_honmai_entomopoxvirus_L 506498063 3
20 ORF68 Apis_cerana_cerana 1241837182 3
21 ORF68 Apis_dorsata 572314547 3
22 ORF68 Apis_florea 820863019 3
23 ORF68 Apis_mellifera 571506210 3
24 ORF68 Bombus_terrestris 340708910 3
25 ORF68 Camponotus floridanus 752871224 3
26 ORF68 hus_cinctus 1000753753 3
27 ORF68 hlamydotis_macqueenii 677160893 3
28 ORF68 Cra%qoitrea -gigas 1139814932 3
29 ORF68 Cuculus_canorus 676590237 3
30 ORF68 Dendroctonus_ponderosae 546685733 3
31 ORF68 Diaphorina_citri 662192917 3
32 ORF68 Diuraphis_noxia 985403395 3
33 ORF68 Dufourea_novaeangliae 987914045 3
34 ORF68 Eufriesea_mexicana 1059214553 3
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39

35 ORF68 Glossina_morsitans_morsitans 83595237 3
36 ORF68 Gb, RJVVOOOOOOOO 3
37 ORF68 Habropoda-laboriosa 1059 3
38 ORF68 Harpegnathos_saltator 749795708 3
39 ORF68 Helicoverpa_armigera 304423112 3
40 ORF68 Lasius_niger 861651735 3
41 ORF68 Lb PQAT00000000 3
42 ORF68 LbFV 1148998769 3
43 ORF68 Lc JUFY01000000 3
44 ORF68 Lh RICB00000000 3
45 ORF68 Myzus_persicae 12301932 3
46 ORF68 Nasonia_vitripennis 1032757220 3
47 ORF68 Opisthocomus_hoazin 677549512 3
48 ORF68 Papilio-machaon 930680047 3
49 ORF68 Papilio_xuthus 910339325 3
50 ORF68 Parasteatoda_tepidariorum 1009572498 3
51 ORF68 Pogonomyrmex_barbatus 769838565 3
52 ORF68 Polistes_canadensis 954577453 3
53 ORF68 Trichomalopsis_sarcophagae 1227108847 3
54 ORF68 Trichoplusia_ni 6635437 3
55 ORF68 Vollenhovia_emeryi 795079157 3
56 ORFET72 Lb PQATOOOOOOOO 3
57 ORF72 Lh RICB00000000 3
58 ORF72 Lc JUFY(01000000 3
59 ORF72 Glossina_pallidipes_salivary_gland_hypertrophy_virus 168804090 3
60 ORF72 LbFV 1148998771 3
61 ORF78 PQAT00000000 3
62 ORF78 Lh RICB00000000 3
63 ORF78 Lc JUFY01000000 3
64 ORF78 LbFV 1148998775 3
65 ORF83 Lb PQAT00000000 3
66 ORF83 Lh RICB00000000 3
67 ORF83 Lc JUFYOlOOOOOO 3
68 ORF83 Musca_-domestica_salivary_gland_hypertrophy_virus 1879031 3
69 ORF83 Glossina-pallidipes_salivary_gland_hypertrophy_virus 984290647 3
70 ORF83 Glossina_pallidipes_salivary_gland_hypertrophy_virus 984290648 3
71 ORF83 LbFV 1148998781 3
72 ORF85 PQAT00000000 3
73 ORF85 Lh RICB00000000 3
74 ORF85 Lc JUFY01000000 3
75 ORF85 LbFV 1148998786 3
76 ORF87 Lb PQAT00000000 3
7 ORF87 Lh RICB00000000 3
78 ORF87 Lc JUFY01000000 3
79 ORF87 Phthorimaea_operculella_granulovirus 21686761 3
80 ORF87 Agrotls segetum_granulovirus 46309360 3
81 ORF87 odoptera_litura_granulovirus 148368915 3
82 ORF87 Gposslna pallidipes_salivary_gland_-hypertrophy_virus 168804094 3
83 ORF87 Musca_domestica_salivary_gland_hypertrophy_virus 187903145 3
84 ORF87 Hemileuca.: s? -nucleopolyhedrovirus 529218126 3
85 ORF87 Spodoptera_frugiperda_granulovirus 761719624 3
86 ORF87 Sucra_jujuba_nucleopolyhedrovirus 960494866 3
87 ORF87 Glossina_pallidipes_salivary_gland_hypertrophy_virus 984290700 3
88 ORF87 1148998788 3
89 ORF92 Lb PQAT00000000 3
90 ORF92 Lh RICB00000000 3
91 ORF92 Lc JUFY01000000 3
92 ORF92 LbFV 1148998790 3
93 ORF94 Lb PQAT00000000 3
94 ORF94 Lh RICB00000000 3
95 ORF94 Lc JUFY01000000 3
96 ORF94 Glossina_pallidipes_salivary_gland_hypertrophy_virus 168804177 3
97 ORF94 LbFV 1148998795 3
98 ORF96 Lb PQAT00000000 3
99 ORF96 Lh RICB00000000 3
100 ORF96 Lc JUFY01000000 3
101 ORF96 LbFV 1148998797 3
102 ORF107 Lb PQAT00000000 3
103 ORF107 Lh RICB00000000 3
104 ORF107 Lc¢ JUFY01000000 3
105 ORF107 Glossina_pallidipes_salivary_gland_hypertrophy_virus 168804057 3
106 ORF107 Musca_domestica_salivary_gland_hypertrophy_virus 187903107 3
107 ORF107 LbFV 1148998799 3
108 ITS2 L.longipes AF015893.1 S18
109 ITS2 L.guineaensis AY124559.1 S18
110 ITS2 L.victoriae AY124553.1 S18
111 ITS2 L.heterotoma AB546896.1 S18
112 ITS2 L.orientalis AY124563.1 S18
113 ITS2 L.boulardi AY124568.1 S18
114 ITS2 L.freyae AY124561.1 S18
115 ITS2 L.fimbriata AF015894.1 S18
116 ITS2 L.clavipes JQ808416.1 S18
117 ITS2 L.australis AF015897.1 S18
118 ITS2 G.brasiliensis AB678777.1 S18
1 ORF27 Papilio xuthus XP_013173302.1 S1A
2 ORF27 Bicyclus anynana XP_023937808.1 S1A
3 ORF27 Pieris rapae XP_022114989.1 S1A
4 ORF27 Spodoptera litura XP_022828254.1 S1A
5 ORF27 Bombyx mori NP_001037024.1 S1A
6 ORF27 Drosophila busckii XP_017843635.1 S1A
7 ORF27 Musca domestica XP_005178734.1 S1A
8 ORF27 Zeugodacus cucurbitae XP_011180685.1 S1A
9 ORF27 Ceratitis capitata XP_004519914.1 S1A
10 ORF27 Dendroctonus ponderosae XP_019755885.1 S1A
11 ORF27 Anoplophora glabripennis XP_018566786.1 S1A
12 ORF27 Leptinotarsa gecem ineata XP_023022306.1 S1A
13 ORF27 Polistes dominula, XP_015178412.1 S1A
14 ORF27 Linepithema humile XP_012229104.1 S1A
15 ORF27 Camponotus floridanus XP_011252805.1 S1A
16 ORF27 Pogonomyrmex barbatus XP_011630441.1 S1A
17 ORF27 Megachile rotundata XP_012151451.1 S1A
18 ORF27 Microplitis demolitor XP_008554575.1 S1A
19 ORF27 Fopius arisanus XP_011298329.1 S1A
20 ORF27 Diachasma alloeum XP_015109162.1 S1A
21 ORF27 Cephus cinctus XP_015599785.1 S1A
22 ORF27 Ganaspis brasiliensis RJVV00000000 S1A
23 ORF27 Leptopilina boulardi PQAT00000000.1 S1A
24 ORF27 Leptopilina heterotoma RICB00000000 S1A
25 ORF27 Leptopilina clavipes JUFY00000000.1 S1A
26 ORF27 Orussus abietinus XP.012276925.1 S1A
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27 ORF27 Nasonia vitripennis XP_016838993.1 S1A
28 ORF27 bEV 1148 730 S1A
29 ORF27 Dufourea novaeangliae P_015432901.1 S1A
30 ORF27 Apis florea XP_012348205.1 S1A
31 ORF27 Apis mellifera XP_006570777.1 S1A
32 ORF27 Habropoda laboriosa XP_017799036.1 S1A
33 ORF27 Bombus terrestris XP_012163415.1 S1A
34 ORF66 Harpegnathos saltator 749795708 S1B
35 ORF66 Camponotus floridanus 752871224 S1B
36 ORF66 %onomyrmex barbatus 769838565 S1B
37 ORF66 enhovia emeryi 795079157 S1B
38 ORF66 Ndsonla vitripennis 1032757220 S1B
39 ORF66 Trichomalopsis sarcophagae 1227108847 S1B
40 ORF66 Cephus cinctus 1000753753 S1B
41 ORF66 Ganaspis brasiliensis RJVV00000000 S1B
42 ORF66 Leptopilina heterotoma RICB00000000 S1B
43 ORF66 Leptopilina clavipes JUFY00000000.1 S1B
44 ORF66 Leptopilina boulardi PQAT00000000.1 S1B
45 ORF66 Dufourea novaeangliae 987914045 S1B
46 ORF66 Habropoda laboriosa 1059864473 S1B
47 ORF66 Apis florea 820863019 S1B
48 ORF66 Apis dorsata 572314547 S1B
49 ORF66 Apis mellifera 571506210 S1B
50 ORF66 Apis _cerana cerana 1241837182 S1B
51 ORF66 Eufriesea mexicana 1059214553 S1B
52 ORF66 Bombus terrestris 340708910 S1B
53 ORF66 Agrilus planipennis XP_018331076.1 S1B
54 ORF66 Tribolium castaneum NP_001280519.1 S1B
55 ORF66 Nicrophorus vespilloides XP_017784576.1 S1B
56 ORF66 Paplllo machaon 930680047 S1B
57 ORF66 ilio xuthus 910339325 S1B
58 ORF66 He icoverpa armigera 304423112 S1B
59 ORF66 Trichoplusia ni 6635437 S1B
60 ORF66 Acyrthosiphon pisum 328698707 S1B
61 ORF66 Diuraphis noxia 985403395 S1B
62 ORF66 Myzus persicae 1230193237 S1B
63 ORF66 1148998769 S1B
64 ORF66 Adoxophyes honmai EPV 506498063 S1B
65 ORF11-13 LbFVorffl 009345615 S1C
66 ORF11-13 Ganaspis brasiliensis RJVV00000000 S1C
67 ORF11-13 LbFVorfl3 009345617.1 S1C
68 ORF11-13 Leptopilina boulardi PQAT00000000.1 S1C
69 ORF11-13 Leptopilina heterotoma RICB00000000 S1C
70 ORF11-13 Leptopilina clavipes JUFY00000000.1 S1C
71 ORF11-13 Exserohilum turcica XP_008030043.1 S1C
72 ORF11-13 Alternaria alternata XP 018379425.1 S1C
73 ORF11-13 Frankliniella occidentalis P_026288761.1 S1C
74 ORF11-13 Rhizopus microsporus XP 023462188.1 S1C
75 ORF11-13 Melampsora larici-populina XP_007414376.1 S1C
76 ORF11-13 Debaryomyces hansenii XP_459998.2 S1C
e ORF11-13 Debaryomyces fabryi XP_ 015465751 1 S1C
78 ORF11-13 Eremothecium gossypii NP_986783.2 S1C
79 ORF11-13 Eremothecium ¢ mgalariae XP_003645815.1 S1C
Table S4: Accession numbers of sequences used in the phylogenies
rimer_name Orientation tm GC Se Prod.Size
1 _.b_ORF96_F FORWARD 59.99 55 AAT (;GXGGA(?TKUUGA(fA(ff% 259
2 Lb_ORF96_R REVERSE 59.62 47 TGCACTGTGGTCCATAAACAG
3 Lb_ORF92_F FORWARD 9.94 4 TGACCAAGACATGGTGGAAA 248
4 Lb_ORF92_R REVERSE 60.07 45 CGAATTGAATGACATGCTG
5 Lb_ORF58_F FORWARD 59.65 50 TACCAAATGGTGGAGGGAAC 250
6 Lb_ORF58R REVERSE 59.60 40 CCATTTAAAACGTCGCAACA
7 Lb_-ORF68F FORWARD 59.79 50 TGTCTGGAGATTGCCATCAG 239
8 Lb_ORF68R REVERSE 60.04 45 CAATTTTCGGAAGTGAGGA
9 Lb_ORF5F FORWARD 60.41 40 GATTCGCCAAATTTGATTGC 243
10 Lb_-ORF5R REVERSE 60.08 45 ATCATCATTGTCAGCGTCCA

ACGTACGATTGGCGTAAACC 235

GACGTT C A
CAGCTTTAGAACCTTGGGAAAA 249

GCCAACG

CGATTTTGATGGTGATGgéG 251
FORWARD 60.22 45 TGCCGTCGAAGATACAT(ECA 252
. CGACGCTATTGCAGTCAGTC 251
TTGCAATAT%CCAGCAA/%AA 260
CTTTTTGCGGATCTTTCAGC 236
CATTCgAATGGTTGGCG’IAATA 84
AATTCGGAAGCAATGGAAGA 325
GATGCCCCGAGGCTCTCTTC 294

TGGTGCC G

CGAGTTATCGGTGCGCTTCC 182
GCGAGGGACATCGCTTGATT

27 Lb_RhoGapF
28 Lb_RhoGapR
29 Lb_actinF
30 Lb_actinR
31 Lb_shakeF

32 Lb_shakeR REVERSE 62.00 55

Table S5: Primers used in the paper.
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Figure S1: Four loci in the LbF'V genfime probably derive from insect genes.
ORFs 27 (A) and 66 (B) are putative inhibitors of apoptosis and ORF 11
and 13 (C) contain a putative histone demethylase domain [66]. Sequences
were aligned using muscle, and conserved blocks were identified using gblocks

to construct a PhyML phylogeny (parameters: -d aa -m LG -b -4 -v e -¢c 4
-a e -f m). Only aLLRT values > 0.7 are shown. Accession numbers of the

corresponding sequences are available in table S4.
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Figure S2: Alignment of LbFV ORF5 and their homologs in Leptopilina. Plot
obtained using the msa R packagel6].
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Figure S3: Alignment of LbFV ORF58 and their homologs in Leptopilina.
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Figure S4: Alignment of LbFV ORF60 and their homologs in Leptopilina.
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Figure S5: Alignment of LbFV ORF68 and their homologs in Leptopilina.
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Figure S6: Alignment of LbFV ORF72 and their homologs in Leptopilina.
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Figure S7: Alignment of LbFV ORF78 and their homologs in Leptopilina.
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Figure S8: Alignment of LbFV ORF83 and their homologs in Leptopilina.
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Figure S9: Alignment of LbFV ORF85 and their homologs in Leptopilina.
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Figure S10: Alignment of LbFV ORF87 and their homologs in Leptopilina.
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Figure S11: Alignment of LbFV ORF92 and their homologs in Leptopilina.
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Figure S12: Alignment of LbFV ORF94 and their homologs in Leptopilina.
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Figure S13: Alignment of LbFV ORF96 and their homologs in Leptopilina.
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Figure S14: Alignment of LbFV ORF107 and their homologs in Leptopilina.
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Figure S15: General features of scaffolds containing single copy universal
arthropod genes (BUSCO gene set, in grey), scaffolds containing virally-
derived loci (in red), scaffolds belonging to the virus LbEV (in green, only in
L. boulardi) and of scaffolds belonging to Wolbachia endosymbiont (in blue,
only in L. heterotoma). The heterogeneity in coverage depth for the Wolbachia
scaffolds in L. heterotoma is probably the consequence of multi-infection with
three Wolbachia strains having different densities[51]. (A) L. boulardi; (B) L.
heterotoma, (C) L. clavipes.
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Divergence (LbFV-Lepto) / Divergence (Lepto—Lepto)
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Figure S16: Divergence of LbFV with Leptopilina species relative to the
divergence among Leptopilina species. This relative divergence was calculated
both for the seven loci for which additional viral sequences were found (in
addition to the LbFV sequence, ”with_outgroup”) and for the six loci for which
no additional viral sequences were found (”without_outgroup”). The relative
divergence is not statistically different between phylogeny types (F(1,1)=0.9,
p-value=0.37). This further suggests that the all 13 genes have the same
evolutionary history.
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Figure S17: Flanking regions of virally-derived genes show similarities between
Leptopilina species. Amino-acid sequences were predicted from the wasps
scaffolds containing the virally-derived genes (but masked for the viral genes
themselves) using getorf (-minsize 50 -find 1). They were clustered using
CD-hit (-c 0.7), and aligned using muscle.
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(A) PCR amplification (B) Phylogeny from the sequences of PCR products
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Figure S18: Amplification, sequencing and phylogeny of orthologs of
LbEVORF96 in Leptopilina species. (A) Phylogeny of Leptopilina genus
and Ganaspis brasiliensis based on internal transcribed spacer 2 (ITS2). (B)
Phylogeny obtained after sequencing the corresponding PCR products. The
strain used is indicated between brackets. Only aLRT > 0.70 are shown.
Accession numbers of the corresponding sequences are available in table S4.
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Figure S19: Ac81 homologs in LbFV and in Leptopilina genomes (ORF85)
share a conserved hydrophobic, probably transmembrane domain.
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