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Abstract

Drosophila melanogaster are known to live in a social but cryptic world of touch and
odours, but the extent to which they can perceive and integrate visual information is a
hotly debated topic. Some researchers fixate on the limited resolution of D.
melanogaster ’s optics, other’s on their seemingly identical appearance; yet there is
evidence of individual recognition and surprising visual learning in flies. Here, we apply
machine learning and show that individual D. melanogaster are visually distinct. We
also use the striking similarity of Drosophila’s visual system to current convolutional
neural networks to theoretically investigate D. melanogaster ’s capacity for visual
understanding. We find that, despite their limited optical resolution, D. melanogaster ’s
neuronal architecture has the capability to extract and encode a rich feature set that
allows flies to re-identify individual conspecifics with surprising accuracy. These
experiments provide a proof of principle that Drosophila inhabit in a much more
complex visual world than previously appreciated.

Author summary

In this paper, we determine a proof of principle for inter-individual recognition in two
parts; is there enough information contained in low resolution pictures for inter-fly
discrimination, and if so does Drosophila’s visual system have enough capacity to use it.
We show that the information contained in a 29×29 pixel image (number of ommatidia
in a fly eye) is sufficient to achieve 94% accuracy in fly re-identification. Further, we
show that the fly eye has the theoretical capacity to identify another fly with about 75%
accuracy. Although it is unlikely that flies use the exact algorithm we tested, our results
show that, in principle, flies may be using visual perception in ways that are not usually
appreciated.

Introduction 1

There is an increasing body of evidence that Drosophila melanogaster lives in a 2

surprisingly rich and complex world, including group behaviour [1], communal 3

learning [2], and recognition during aggressive behaviours [3]. This repertoire of social 4

behaviour has often been assumed to be independent of vision, as Drosophila’s 5

compound eye was thought to have insufficient visual acuity to play a serious role. With 6

only ˜850 lens units (ommatidia), each capturing a single point in space, Drosophila’s 7
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compound eye resolution is certainly low. And the level of detail, traditionally 8

determined by the inter-ommatidial angle, renders anything but movement or regular 9

patterns seemingly impossible to discern (Fig. 1B). 10

Fig 1. Theoretical visual acuity of Drosophila melanogaster. Image of
Drosophila melanogaster represented after various theoretical bottlenecks. A: Image of a
female D. melanogaster re-sized through a 32×32 bottleneck. B: The same image, but
adjusted using AcuityView [4] for a viewing distance of ˜3 body lengths using the
inter-ommatidial angle of 4.8° [5]. C: The same image and distance, but using a
conservative estimate of the effective acuity determined by Juusola et al. [6] of ˜1.5°
.

However, recent physiological experiments [6] reveal that D. melanogaster can 11

respond to details as fine as 1.16°as long as they are presented (to a tethered fly) at 12

specific speeds. These speeds happen to coincide with D. melanogaster ’s natural 13

saccadic gait [7], which strongly suggests that naturally behaving D. melanogaster have 14

much finer than the inter-ommatidial angle of 4.8° [5]. This hyper-acuity is found at the 15

photoreceptor level (due to rhabdomere movement changing the angle of light 16

reception), allowing most of the capacity of the visual network to be devoted to 17

information processing. At this effective hyper-acuity, and at socially relevant distances, 18

the number of ommatidia and not the inter-ommatidial angle becomes the limiting 19

factor (Fig. 1). This acuity potentially puts them in the same visual league (albeit with 20

lower resolution) as Apis mellifera [8], which has been able to, among other visual feats, 21

identify individual human faces [9]. 22

This spatio-temporal coding and increased visual acuity potentially explains recent 23

studies which have shown that D. melanogaster can not only resolve other flies, but can 24

also decode social meaning using vision (e.g. female choice of male phenotypes [10] and 25

exposure to parasitoids [11]). Combined, these results open up the possibility that 26

Drosophila uses vision to a much greater extent in object recognition, perhaps even 27

using it to discriminate between species or sex (supplementing other olfactory cues that 28

are known to convey this information [12]). 29

Even with D. melanogaster ’s photoreceptor hyper-acuity [6], the image that is 30

received is only around 29×29 units (or pixels; Fig. 1). We wanted to know if there is 31

enough absolute information contained in this low-resolution image to identify 32

individuals from each other. One approach is to task Deep Convolutional Networks 33

(DCNs) to differentiate individual D. melanogaster, as DCNs are engineered to 34

learn/extract/use any useful features found in the images. If there is enough 35

individual-level variation for highly engineered DCNs, we would want to investigate the 36

possibility that D. melanogaster also take this low resolution image and extract 37

meaningful information out of it. Should individual flies prove visually unique and D. 38

melanogaster ’s visual network have enough capacity, vision could potentially play a role 39

in identifying beyond species or sex, perhaps aiding in determining familiar or 40

non-familiar conspecifics in social situations [3]. 41

How a fly’s visual system could extract meaning out of low resolution images is 42

suggested by the highly structured and layered organization of Drosophila’s visual 43

system (Fig. 2C). At the input the ommatidia are packed one by one, but their 44

individually-tuned photoreceptors are arranged spatially to essentially convolve a 6-unit 45

filter across the receptive field. The output of this photoreceptor filter is, in turn, the 46

input for downstream medulla neurons that connect to several ‘columns’ of 47

photoreceptor outputs. This filter-convolution and using the output of one filter as a 48

‘feature map’ for another layer is a hallmark of the engineered architectures of DCNs 49

that dominate computer vision today (one such DCN is illustrated in Fig. 2A). Just as 50

DCNs can take low level image representations and encode them into a semantic 51
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representation, D. melanogaster ’s visual system seems well-suited to similarly build up 52

semantic meaning in images. 53

Fig 2. Our fly-eye merges engineered and biological architectures.
Schematics of a ‘standard’ convolutional network, our fly-eye model, and a simplified
visual connectome of Drosophila. A: Architecture of Zeiler and Fergus [13], receiving the
original 181×181 pixel image of an individual Drosophila melanogaster. B: Our fly-eye
model, receiving a 29×29 scaled-down image of an individual Drosophila, and showing
connections between feature maps. Besides the first custom 6-pixel convolutional filter
and the 1×1 convolutional filters (‘R7’ and ‘R8’), all other convolutions are locally
connected filters. C: A simplified map of the fly visual circuit receiving the same
scaled-down image of another D. melanogaster. The connections among the neurons
implemented in our model are displayed, illustrating the connections and links within
and between layers (adapted from [14] and [15]). See S2 Table for performance of these
models on a traditional image-classification dataset.

We investigate whether D. melanogaster could theoretically categorize and recognize 54

its complex visual environment. To determine how much absolute underlying visual 55

variation is available for social behaviour in D. melanogaster, we examine the ability of 56

humans and human-inspired deep convolutional models to re-identify individual D. 57

melanogaster across days. To see whether D. melanogaster is capable of using this 58

individual-level visual variation between flies, we investigate a model of Drosophila’s 59

visual system in a conspecific re-identification paradigm. This study builds upon the 60

behavioural results of conspecific information and physiological evidence of hyper-acute 61

vision, and provides a proof of principle to dispel the oft-touted argument that D. 62

melanogaster ’s visual ability is limited to low-level object- and pattern-detection. Here 63

we present evidence that D. melanogaster may likely see and live in a much richer social 64

environment than is appreciated. 65

Materials and methods 66

Simplified Drosophila model eye 67

We implemented a virtual fly visual system using standard deep learning libraries 68

(Keras; code available at github). Our implementation uses ˜25,000 artificial neurons 69

whereas Drosophila has ˜60,000 neurons in each visual hemisphere [16]. We purposefully 70

did not model neurons that are structurally suggestive to respond to movement, and 71

therefore we were specifically limited to ‘modular’ neurons (with 1 neuron/column) 72

throughout the medulla [17]. The connections between neuronal types was extracted 73

from published connectomes [18]. We imposed artificial hierarchy on our model 74

eliminating self connections between neuron ‘subtypes’ (i.e. no connections between L1 75

and L1, or L1 and L2), and while we allowed initial layers to feed into multiple 76

downstream layers, we eliminated ‘upstream’ connections. The final lobula-like artificial 77

neurons were modelled after [15]. The layers were ordered according to their axon 78

penetration deeper into the system. The model is illustrated in Fig. 2B, beside the 79

biological inspiration (Fig. 2C). See S1 Table for complete connection map and 80

hierarchy, and S2 Table for comparative performance of this models on a traditional 81

image-classification dataset. 82

Fly Data Acquisition 83

D. melanogaster were housed at 25C°on a 12-12 Light-Dark cycle. 10 males and 10 84

females were collected 1-4 hours after eclosion and housed separately. On the third day 85
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post-eclosion flies were individually mouth pipetted into a circular acrylic arena (60mm 86

diameter, 2mm high). These flies were illuminated with standard overhead LED bulbs 87

and filmed in grayscale with a GRAS-20S4M for 15 minutes, with 16 frames/second. 88

This was repeated for three consecutive days in total, which resulted in 14,400 ×3 89

images per fly. Each filming session was within 2 hours of ZT 8. Three independent 90

datasets were acquired of 20 flies each. 91

Fly Data Processing 92

Each video was tracked using CTRAX [19], and the tracked position and orientation 93

was used to localize the flies and orient the images so that the flies were always centred 94

and facing ‘up’. The training set for each week was constructed from days 1 and 2 95

equally, and consisted of the first 75% of the each fly’s recording (12240 frames). The 96

validation set was the final 15% of the recording (2160 frames). The test dataset was 97

the entire recording on day 3. Images were standardized by subtracting the mean and 98

dividing by the standard deviation of the training set. For ResNet18 [20] and the Zeiler 99

and Fergus [13] models, the original 181×181 image was either: reduced to 33×33 then 100

centre-cropped to 29×29 and then re-sized to 224×224 or re-sized to 256×256 and 101

centre-cropped to 224×224 (effectively using the centre 158×158 pixels). 102

Human Performance 103

A GUI program was written in MATLAB which presented a human observer with 3 104

viewpoints of an exemplar fly: dorsal, ventral, and sideways obtained from the first two 105

days of filming. The observer was then asked to choose among 20 images (of the 20 flies) 106

obtained from day 3, of which one belong to the exemplar (S3 Fig-S4 Fig). Note that 107

this is a compare/match setup rather than a learn/recall. The pictures were randomly 108

re-sized through a 29×29 bottleneck. 109

Results 110

We also wanted to see whether various architectures, both biologically rooted and not, 111

could detect visual differences between flies across days (a notably non-human task). 112

We acquired three rounds of images, each round having 10 males and 10 females, filmed 113

for 3 consecutive days. Knowing that age/experience may slightly affect the morphology 114

of flies, we experimented with training these networks on days 1 and 2, and testing their 115

ability to re-identify the flies on day 3. We evaluated the efficient and high-capacity 116

model (ResNet18 [20]), a model that rivals human representation (Zeiler and 117

Fergus [13]), our fly-eye model, and human performance. These results are summarized 118

in Table 1. 119

As a benchmark, we applied an ResNet18 architecture (see S1 Fig). This was our 120

highest performing network architecture, achieving an F1-score of 0.94 (with high 121

resolution over the three datasets). While the average performance is good, we note 122

certain problematic individual flies that become difficult to accurately re-identify across 123

days (e.g. in week 2, fly 10’s accuracy on day 3 was 37% with equal confusion between 124

two other flies S2 Table). Forcing the images through a bottleneck (which ensures that 125

the information content is similar to the reduced-resolution fly-eye model) decreased the 126

F1-score by 0.11 for ResNet18. The Zeiler and Fergus [13] architecture was the most 127

robust in terms of the bottleneck, only decreasing the F1-score by 0.08, but did not 128

achieve as high a performance as ResNet18. 129

The fly-eye model achieves a relatively high F1 score of 0.75, which is not that much 130

lower than the highly engineered ResNet18 (at low resolution). To eliminate the fly-eye 131
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Table 1. Performance On D. melanogaster Re-Identification

Model Name Resolution1 Accuracy
(pixels) (F1 Score)2

ResNet18 [20] 158×158 0.9426 ±0.0358
Zeiler and Fergus [13] 158×158 0.9373 ±0.0365
Human Performance 158×158 0.1309
Zeiler and Fergus [13] 29×29 0.8549 ±0.0778
ResNet18 [20] 29×29 0.8357 ±0.0909
Our fly-eye 29×29 0.7548 ±0.1141
Our fly-eye

29×29 0.5486 ±0.1316
w/ random zoom3

Human Performance 29×29 0.0829
Random Chance 0.05

Mean and standard deviation shown (n=3 independent datasets)
1 For Zeiler and Fergus and ResNet18, the “resolution” was a bottleneck (see methods).
2An example of high precision / low recall can be seen in S2 Table as ID 10 is assigned
to the right fly 94% of the time, but fly 10 is only correctly identified 37% of the time.
3 The zoom was applied randomly without preserving aspect ratio (see S2 Fig).

model’s ability to measure absolute size/shape and force relative feature extraction, we 132

randomly re-sized the images (both training and testing) by up to 25% without 133

preserving proportion (see S2 Fig for examples). Our virtual fly-eye outperformed 134

humans, even without absolute size measures, achieving an F1-score of ˜0.55 135

re-identifying conspecifics. We also note that the fly-eye model almost never mistakes a 136

male for a female (F1-score exceeding 0.99 when the re-identification IDs were collapsed 137

by sex). 138

To establish a human-performance baseline we used volunteers to attempt the 139

re-identification of flies (S3 Fig-S4 Fig). This is an especially challenging task given the 140

range of motion and viewpoints that an individual fly has in an unconstrained arena. 141

As this task falls outside normal visual object recognition, we restricted volunteers to be 142

very experienced “fly-pushing” scientists. Human performance was predictably low, but 143

varied, with an average F1-score of 0.11 (.08 when the images were reduced to 29×29 144

pixels, 0.13 when given the full resolution 181×181 images). 145

Discussion 146

Our results suggest that Drosophila have the innate capacity to extract semantic 147

meaning from their visual surrounding, and even if we are still discovering how 148

Drosophila could encode its world, we should not disregard its visual understanding. 149

We note that our fly-eye model performs poorly on a standard image classification 150

task (F1 Score of ˜0.40 on CIFAR10; see S2 Table) which has built in ranges of zoom 151

and positional variance of the objects. One possible explanation of the inability to cope 152

with different object sizes is that, unlike other architectures, D. melanogaster ’s visual 153

system maintains the input dimensions (the columnar medulla neurons). DCN’s 154

dimension reduction (and other ‘tricks’ like pooling layers) convey a larger 155

position-invariance to low level feature detectors. Without them, our fly-eye model only 156

does well when the distance to the object is fixed. It is tempting to posit that an 157

individual can therefore have an innate and/or experience-dependent distance at which 158

visual information is preferentially understood, and that this could be one of the 159
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determinants for social spacing and interaction distances [21,22]. 160

One prediction that arises from this model and its apparent ability to encode more 161

than simple “looming” and “movement” visual cues is that the highest (furthest from 162

input) level feature maps may correspond to semantically rich meaning in the visual 163

system. These lobula neurons should then encode (among other information) complex 164

object recognition categories and stimulating them should produce more than simple 165

object-avoidance behaviours in Drosophila. While some lobula columnar neurons (like 166

LC11) seem specialized for high-acuity small object motion detection [23], others appear 167

to encode more complex information. These other LC neurons (like LC17), when 168

stimulated, seem to provoke social-context dependent behaviours [15]. 169

We are aware of other investigations using DCNs to classify insect species [24]. 170

However the most relevant study which involve organism re-identification only does so 171

over short (<1 min) time frames (IDTracker2.0 [25]). Prior to this study, DCNs have 172

only been effective on images that are temporally very close [25]. We observe a 173

non-general loss of accuracy for specific flies, with some flies having an accuracy lower 174

than 40% (S2 Table). This ability to re-identify flies across days opens experimental 175

possibilities, especially considering that this performance was achieved with static 176

images (16fps yields around a thousand estimates of ID per minute, allowing high 177

confidence in the parsimonious correct identification). This is in contrast to the human 178

ability to re-identify flies, which at low resolutions is barely better than chance. 179

Clearly, all models can learn to re-identify flies to some extent, underscoring the 180

individual-level variation in D. melanogaster. Re-identifying flies is in fact easier for 181

DCNs than CIFAR10 (at least with centred images of flies acquired at the same 182

distance). Even the model that rivals, in some sense, the representational performance 183

of humans [26] does ten times better than humans. Why humans can’t tell one fly from 184

another is not clear, regardless of whether it was evolutionarily beneficial to 185

discriminate individual flies, humans do have incredible pattern detection abilities. It 186

may simply be a lack of experience (although we attempted to address this by only 187

using experienced Drosophila researchers as volunteers) or a more cryptic 188

pattern-recognition ‘blind-spot’ of humans. In either case, these findings should spur 189

new experiments to further understand the mechanisms of human vision and experience 190

and how they fail in this case. 191

Machine learning practitioners are pushing for deep networks to use more 192

biologically-inspired design choices and training algorithms [27–29]. Neurobiologists 193

could use these models to generate hypotheses in how information is processed in the 194

visual system. We think D. melanogaster is well-suited to link these two fields to 195

continue unravelling evolution’s solution to visual processing. This new area offers a 196

simple, genetically- and experimentally-tractable organism to peer into the workings of 197

the visual system which will no doubt uncover not just how Drosophila, but all of us, 198

see the world. 199

Conclusion 200

These results help explain recent, traditionally controversial, findings that Drosophila 201

melanogaster can resolve relatively detailed visual semantic meaning (e.g. female choice 202

of males [2] and parasitoids exposure [11]). We show here that each D. melanogaster 203

has visually distinguishable features that persist across days. This fact, combined with 204

their hyper acuity [6] and theoretical capacity of their visual network, provides a proof 205

of principle against the traditional belief that Drosophila only see blurry motion. In 206

fact, Drosophila could have the ability to see and discriminate a surprisingly diverse 207

visual world, in some cases possibly better than we can. 208
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Supporting information 209

S1 Fig. ResNet18 Architecture. Residual Networks with 18 ‘layers’ [20] were 210

constructed as depicted, using the improved block scheme proposed by [20] (top left 211

inset). 212

S2 Fig. Examples of fly pictures. On the left are examples of the various 213

viewpoints of the fly. The pictures indicated were run through the random 214

non-proportion-preserving zoom to generate three examples of each. 215

S3 Fig. Human Query: High resolution example. Participants were asked to 216

re-identify the exemplar fly (top left) which exhibited three viewpoints: ventral, dorsal, 217

and angled. They could request new pictures of said fly as many times as needed. The 218

exemplar pictures were manually sorted into viewpoint categories and then randomly 219

selected from Days 1 and 2. The other fly pictures (queries) were selected from Day 3. 220

S4 Fig. Human Query: Low resolution example. Participants were asked to 221

re-identify the exemplar fly (top left) which exhibited three viewpoints: ventral, dorsal, 222

and angled. They could request new pictures of said fly as many times as needed. The 223

exemplar pictures were manually sorted into viewpoint categories and then randomly 224

selected from Days 1 and 2. The other fly pictures (queries) were selected from Day 3. 225

S1 Appendix. Connectome of the model fly-eye 226

Constructed from the published connectome [18]. We imposed a hierarchy (see text), 227

but otherwise allowed links between ‘lower’ layers as long as at the links were reported 228

at least once (orange). Links between layers and connecting ‘higher’ levels were not 229

used (blue). In brief, a 6-pixel filter is convolved through the image (representing 230

photoreceptors R1-R6; whether or not the image is grayscale, the filter is fixed in all 231

channels) and two additional colour-sensing filters are convolved (representing R7/R8; 232

1×1 pixel filter). The output of R1-R6 are then used as the feature map for lamina 233

neurons L1-L5, which are locally connected 1×1 filters (i.e. different filters are learned 234

at each spatial position). The outputs of these L1-L5s locally convolved and are fed into 235

the medulla intrinsic (Mi) neurons and/or the centrifugal (C) neurons, and/or the 236

transmedullary (Tm) neurons. The C neurons feed into the Mi, Tm, T neurons. The Mi 237

neurons feed into the Tm, and T neurons. The Tm neurons apply a filter and send their 238

outputs to the T neurons. Sizes of the filters were determined from Takemura et al. [18], 239

who traced connections through a single focal column (labelled Home) and up to two 240

columns in any direction (in a hex grid they are labelled A-R). If a previous column had 241

only connections to its respective column (i.e. Home→Home, A→A), it was modelled 242

with a 1×1 locally-connected filter. If a previous column had more than 3 connections 243

to its immediate surrounding columns (i.e. Home→A, C→D) then it was modelled with 244

a 3×3 locally-connected filter. Finally, if it had more than 3 connections to more distant 245

neighbours (i.e. Home→J, P→A), then it was modelled with a 5×5 locally-connected 246

filter. Unfortunately the connections between the medulla, lobula and brain are not as 247

documented as those between and within the lamella and medulla but we implement a 248

lobula neuron-like LC17 that concatenates Tm and T neurons with a 3×3 filter, while 249

another neuron (LC4-like) concatenates Tm and T neurons with a 5×5 filter [15]. The 250

output feature maps are then flattened and fed into two densely connected layers with 251

256 neurons each before a soft-max layer. 252
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S1 Table Model fly-eye connectome.

R1-6 R7 R8 L1 L2 L3 L4 L5 C2 C3 Mi1 Mi4 Mi9 Mi15 Tm20 Tm1 Tm2 Tm3 Tm4 Tm6 Tm9 TmY5a T2a T2 T3

R1-6 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R7 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

R8 0 1 0 1 0 1 0 1 0 0 1 1 1 3 1 0 0 0 0 0 0 0 0 0 0

L1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 5 0 0 0 0 0 0 0

L2 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 5 0 0 0 1 0 3

L3 0 0 0 0 0 0 0 0 0 1 1 1 3 0 0 0 0 3 0 0 1 0 0 0 0

L4 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 0 3 0 3 0 0 0 3

L5 0 0 0 1 1 0 0 3 5 3 3 3 0 3 0 1 0 5 0 5 0 3 1 0 3

C2 0 0 0 1 1 1 3 1 0 1 1 1 0 0 0 1 0 3 0 0 1 0 1 0 3

C3 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 5 0 1 0 1 0 3

Mi1 0 0 0 1 0 0 0 0 5 1 1 3 1 3 1 1 0 5 0 3 0 0 0 3 3

Mi4 0 0 0 0 1 0 0 0 0 0 1 3 1 0 3 1 1 3 3 0 3 3 1 0 0

Mi9 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 3 3 5 0 3 0 0 3

Mi15 0 0 0 0 0 0 0 0 0 3 0 3 0 5 0 0 0 0 0 3 0 0 0 0 0

Tm20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0

Tm1 0 0 0 0 1 0 0 1 0 3 0 1 1 0 1 0 1 0 3 5 1 0 1 3 3

Tm2 0 0 0 0 1 0 0 1 0 3 1 1 3 0 0 1 0 0 3 5 0 0 1 0 3

Tm3 0 0 0 3 0 0 0 0 0 3 3 3 3 0 0 0 0 5 0 0 0 5 0 3 3

Tm4 0 0 0 0 0 0 0 0 0 3 0 3 0 0 0 0 0 0 3 3 0 3 0 3 0

Tm6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 5 0 0 3

Tm9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0

TmY5a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 3 3

T2a 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

T2 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 3 0 0 0

T3 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 0 3 0 0 3

The table indicates the filter size for the locally-connected layers. No self connections were allowed (grey), or connections with ‘higher’ layers (blue).
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CIFAR10 254

CIFAR10 Data Processing 255

Images were standardized by subtracting the mean and dividing by the standard 256

deviation of the training set for each colour channel. In all cases, to be comparable, the 257

images were processed to trim a row and column from the top and left, and two rows 258

and columns from the bottom and right (trimming to 29×29 pixels resulted in higher 259

accuracy than resizing from 32×32) and were minimally augmented (random vertical 260

flips and each image randomly offset by 3 pixels). For ResNet18 [20] and the Zeiler and 261

Fergus [13] models, images were re-sized to 224×224. 262

CIFAR10 Results 263

The CIFAR-10 dataset consists of colour images (32×32 pixels) in 10 classes (airplane, 264

automobile, bird, cat, deer, dog, frog, horse, ship and truck) [30]. The current state of 265

the art models can achieve 97.44% accuracy (with clever data augmentations [31]), 266

while human performance has been estimated at around 94% accuracy [32]. Our 267

re-implementation of ResNet18 [20] achieves 0.91 (F1 score). The Zeiler-Fergus 268

model [13], that has been shown to rival the representational performance of the human 269

inferior temporal cortex [26] (Illustrated in Fig. 2A), achieves a lower F1 score of 0.85, 270

revealing the gap between the ability to represent mid-level complexity and highest 271

order syntactic information. Our simplified implementation of the fly visual system 272

achieves 0.40. The CIFAR10 results are summarized in S1 Table. 273

S2 Table Results of a simple vision task (CIFAR10).

Table 2. Performance On CIFAR10

Model Name ‘Neurons’ Parameters Accuracy
(#) (#) (F1 Score)1

Human Performance Billions 0.942

ResNet18 [20] ˜2 million ˜11 million 0.91483

Zeiler and Fergus [13] ˜1.6 million ˜72 million 0.84883

Our fly-eye 25,742 1,350,316 0.5364
Random Chance 0.10

1 The F1 score combines precision (probability of assigning the right ID to the right
class) and recall (probability that the ID assigned is to the right class).
2 Human performance is given in overall accuracy (%).
3 Images were re-sized from 29×29 to 224×224. Their results presented here are not for
state-of-the-art benchmarking, but for comparison.
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S2 Table Confusion Matrix for ResNet18 Week 2.

1 2 7 3 10 9 6 8 4 5 13 14 20 18 16 17 15 11 19 12

1 93 0 1 0 0 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

2 0 98 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 8 89 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 29 27 1 37 1 0 1 2 1 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 1 0 0 0 0 98 0 1 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0 0 0 0

5 1 1 2 0 0 3 2 3 4 82 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 95 1 1 2 0 2 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 1 98 0 1 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 1 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 1 0 0 0 2

16 0 0 0 0 0 0 0 0 0 0 0 0 0 2 70 0 0 4 0 24

17 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 96 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 93 0 0 1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 99 0 1

19 0 0 0 0 0 0 0 0 0 0 1 6 0 1 1 7 0 1 82 2

12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 98
Note that fly 10 has a recall accuracy of 37%, and is almost equally confused for flies 2 and 7. Flies
are ordered by sex (Purple = male, Yellow = Female), then by ascending size. Predictions are colour
coded and weighted by percentage (correct predictions are indicated in orange, incorrect predictions are
coloured cyan).
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