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Abstract

Motivation: The computational tools used for
genomic analyses are becoming increasingly so-
phisticated and complex. While these applications
provide more accurate results, a new problem is
emerging in that these pieces of software have a
large number of tunable parameters. The default
parameter choices are designed to work well on
average across all inputs, but the most interesting
experiments are often not “average”. Choosing the
wrong parameter values for an application can lead
to significant results being overlooked, or false results
being reported. This problem is exacerbated when
these applications are chained together in analysis
pipelines where each step introduces errors due to
parameter choices.
Results: We take some first steps towards gener-
ating a truly automated genomic analysis pipeline
by developing a method for automatically choosing
input-specific parameter values for reference-based
transcript assembly. We apply the parameter
advising framework, first developed for multiple
sequence alignment, to optimize parameter choices
for the Scallop transcript assembler. In doing
so, we provide the first method for finding advisor
sets for applications with large numbers of tunable
parameters. This procedure can be parallelized,
meaning it does not add any additional wall time.
By choosing parameter values for each input, the
area under the curve is increased by 28.9% over
using only the default parameter choices on 1595
RNA-Seq samples in the Sequence Read Archive.
This approach is general, and when applied to
StringTie it increases AUC by 13.1% on a set of 65
RNA-Seq experiments from ENCODE.
Availability: A parameter advisor for Scallop is
available on Github (https://github.com/Kingsford-
Group/scallopadvising).

1 Introduction

As the field of computational biology has matured,
there has been a significant increase in the amount of
data that needs to be processed and the reliance of
users without computational expertise on the highly
complicated programs that perform the analyses. At
the same time, the number and sophistication of such
tools has also increased. While the accuracy of such
applications is constantly improving, a new problem
has emerged: the sometimes overwhelming number of
tunable parameters that each of these sophisticated
pieces of software brings with them. Changing an
application’s parameter settings can have a large im-
pact on the quality of the results produced. When
incorrect or non-ideal parameter choices are used, sig-
nificant results can be overlooked or false conclusions
can be reported. This is exacerbated when these pro-
grams are linked together to create analysis pipelines,
as errors can propagate and be amplified at each
stage.

The default parameter choices that most users rely on
for these complex programs are typically optimized
by the the algorithm designer to maximize perfor-
mance on the average case. This can be a problem
since the most interesting experiments are often not
“average.”

Manually tuning the parameter settings of an appli-
cation often produces more accurate results, but it
is very time consuming. The tuning process can be
accelerated for users with domain and/or algorithmic
knowledge, as these experts can make more informed
decisions about the correct direction to proceed when
altering parameter values. But tuning the parameter
choices to increase accuracy for one input does not
imply that the results will be improved for all inputs.
This means that, for optimum performance, tuning
must be repeated for each new piece of data.
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In the case of high-throughput genomic analysis
pipelines, this manual procedure is utterly infeasi-
ble. For these applications, without some sort of au-
tomatic parameter choice system, the defaults must
be used. As these pipelines get longer and more so-
phisticated, the errors being introduced by the use
of non-tuned parameter choices are compounded fur-
ther.

To address the automated parameter choice problem
for multiple sequence alignment (MSA), DeBlasio and
Kececioglu [2017a; DeBlasio et al., 2012, Kececioglu
and DeBlasio, 2013] have defined a framework to au-
tomatically select the parameter values for an input.
This process, called “parameter advising,” has been
shown to greatly increase accuracy of MSA without
sacrificing wall-clock running time in most cases, and
it can readily be applied to new domains. A param-
eter advisor, depicted in Figure 1, has two compo-
nents: (1) a set of parameter choices – assignments
of a value to each of the tunable parameters for the
application, called an “advisor set”; and (2) an assess-
ment criteria – a method to rank the quality of mul-
tiple solutions, called an “advisor estimator”. The
advisor selects the appropriate parameter choice by
first running the application on the input using each
parameter choice in the set, and selecting the param-
eter choice that produces the best result according
to the accuracy estimator. Parameter advising for a
given application is fast in practice. The instantia-
tions of the application being tuned are independent
processes that can be executed in parallel. Assum-
ing that the number of processors available is at least
matches the number of parameter choices in the advi-
sor set, the only additional wall time is the assessment
of the results using the accuracy estimator (which can
also be performed in parallel) and the comparison of
these values, both of which are negligible compared
to the running time of the application in most cases.

Parameter advising is an example of a posteriori pa-
rameter selection — it examines an application’s out-
put to select a parameter setting. In contrast, sep-
arate work has been done in other fields on a pri-
ori selection, where the parameters are chosen in ad-
vance by looking at the raw input. This includes
work such as SATZilla [Xu et al., 2008] for choosing
from a collection of SAT solvers, or ParamILS [Hutter
et al., 2009] which finds optimal settings for the CPLEX
computational optimization tool. More information
is available when performing a posteriori assessment
since the full final solution can be examined, but a
priori prediction is necessary in cases when it is not
feasible to apply multiple configurations.
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Figure 1: The parameter advising process. An ad-
visor takes as input an RNA-Seq sample that has
already been aligned to the reference genome, this
mirrors the input to Scallop. Using the advisor set
a collection of candidate transcriptomes is generated,
one for each parameter choice (assignment of a value
to each of the tunable parameters of Scallop) in the
set. An AUC value is assigned to each candidate tran-
scriptome by comparing it to the reference using a a
combination of GFFCompare and GTFCuff. The advi-
sor then returns the transcriptome with the highest
AUC value.

We focus this work on improving the performance
of reference-based transcriptome assembly by ap-
plying parameter advising. Common tools for this
task include Scallop [Shao and Kingsford, 2017],
Cufflinks [Trapnell et al., 2010], StringTie [Pertea
et al., 2015], and TranscComb [Liu et al., 2016]. Tran-
scriptome assembly is an essential step in many ge-
nomic analysis pipelines. It takes an RNA-Seq sam-
ple and reference genome as input and reconstructs
the set of transcripts that are present. The assembler
first aligns reads to the reference genome using a tool
such as HISAT [Kim et al., 2015], STAR [Dobin et al.,
2013], TopHat [Kim et al., 2013], or SpliceMap [Au
et al., 2010]. Using the read splice locations (the po-
sitions where a read maps to non-neighboring loca-
tions on a genome) the assembler constructs the ex-
ons of each transcript. The produced transcriptome
consists of a combination of transcripts that can be
mapped to ones we already know and transcripts that
are unique to the sample that was provided. These
transcriptomes are used to perform analyses such as
gene quantification [Patro et al., 2017] and differen-
tial expression [Love et al., 2014].

Figure 2 shows an example of just how much impact
using non-optimal parameter choices can have on a
transcriptome assembly. This example shows a re-
gion of Chromosome 2 with transcriptomes found us-
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ing Scallop with different parameter choices. If the
default parameters had been used, two transcripts
at this location alone would not have been identi-
fied; both of these transcripts are present in the refer-
ence transcriptome and supported by the sequencing
reads.

For transcriptome assembly, a natural choice for the
estimator is the sensitivity and precision of recovering
known transcripts. These measures can be combined
in the area under the curve (AUC) metric, which is
commonly used to benchmark reference-based tran-
script assembly tools. AUC measures the area un-
der the receiver operating characteristic (ROC) curve
which plots the sensitivity and precision of the com-
puted transcriptome compared to the reference as the
minimum transcript coverage threshold is changed.
The average coverage of a transcript is the aver-
age number of reads that are aligned to each posi-
tion along the transcript’s length. As the threshold
on this value increases, the induced subset of tran-
scripts that are above this threshold is reduced in
size. These subsets each have an associated sen-
sitivity and precision with respect to the reference
transcriptome and represent a point in a two dimen-
sional space, together these points form the ROC
curve. Tools such as GFFCompare (https://github.
com/gpertea/gffcompare) and GTFCuff (https://
github.com/Kingsford-Group/rnaseqtools) are de-
signed specifically to calculate these measures.

Contributions

The major contributions of this work are twofold:
first, we show for the first time that sets of alter-
nate parameter choices in certain domains can be
found using methods other than exhaustive enumer-
ation; and second, we take some of the first steps
towards producing a fully automated genomic analy-
sis pipeline by automating sample-specific parameter
selection.

There are certain properties of the interaction be-
tween parameter choices and accuracy that can be
exploited for some applications. When these interac-
tions are generally continuous, iterative optimization
techniques can be used to find an advising set. We de-
scribe the requirements an application domain must
meet in order for these optimization techniques to
be used, and show that transcriptome assembly with
Scallop meets this threshold.

We will show that by then applying the parameter ad-
vising framework, we can greatly increase the quality
of the transcriptomes produced using the Scallop

assembly tool. Using our new tool to construct
reference-based transcriptomes, the area under the
curve shows a median increased of 8.7% over using
only the default parameter choice on a set of 10 RNA-
Seq experiments contained in the ENCODE database
that are commonly used for benchmarking. The me-
dian improvement is even larger, 28.9% higher AUC
than the default parameter choice, in a simulated
high-throughput pipeline that uses over 1500 samples
from the Sequence Read Archive.

We go on to confirm that this method can increase
AUC for other applications by applying parameter
advising to StringTie. For a set of 65 examples from
the ENCODE database we are able to increase accu-
racy by 13.1% over using only the default parameter
choices.

2 Methods

Transcriptome assembly using Scallop presents an
interesting problem for parameter advising. Even
though AUC, the standard metric for transcriptome
assembly, is able to be used as the “advisor estima-
tor,” finding an advisor set is especially challenging.
The set of tunable parameters that need to be set is
much larger than in previous applications: 18 com-
pared to the 5 for multiple sequence alignment. This
means the previously developed method of enumerat-
ing a parameter choice universe then using combina-
torial optimization to find an advisor set is infeasible.
However, we have an advantage in that in this appli-
cation almost all 18 of the tunable parameters are
continuous rather than discrete values, the remain-
ing parameters are binary and thus have only two
possible values.

In this work, we are finding new values for the 18
tunable parameters based on the input, and while we
do not interpret the specific meaning of Scallop pa-
rameters and the optimal values that we will find, it
is helpful to have a sense of what parts of the appli-
cation are impacted. The Scallop transcript assem-
bler generates a transcriptome from a set of reads
that have been aligned to a reference genome. It
first splits the genome into regions of non-overlapping
reads, which are called bundles. These bundles can
be thought of as genes or groups of overlapping genes.
Then, within each bundle a splice graph is con-
structed based on the split reads that define possi-
ble exon boundaries. Paths through the splice graph
define potential transcripts, and the final set of tran-
scripts is formed by decomposing the splice graphs
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Sequencing Reads

Reference Transcriptome

Optimized Parameter Choice

Default Parameter Choice

Figure 2: Impact of parameter choice on the produced transcriptome. The four panels show the raw RNA-
Seq reads aligned to a region of the human genome, the transcript predictions found using the Scallop

default parameter choice, the predictions using the parameter choice found using coordinate ascent, and the
human reference transcriptome. In the first panel, reads are shown as black boxes, and the gaps within split
reads are shown in grey. The input and predicted transcripts are from SRR543291 which was aligned to
the genome using HISAT and the region shown are positions 30231125 to 30260786 on Chromosome 2. The
optimized parameter choice identifies two transcripts that are both supported by the read data and match
with transcripts that are present in the reference. The supporting read information and corresponding exons
for the two new transcripts (red arrows) is highlighted in the first and third panels respectively with red and
green boxes.

into paths while trying to respect as many of the read
mappings as possible. The 18 tunable parameters of
Scallop govern various stages of this process and are
listed below:

• maximum dynamic programming table size (DP)

• maximum edit distance (ED)

• maximum intron contamination coverage (ICC)

• maximum number of exons (NE)

• minimum bundle gap (BG)

• minimum exon length (EL)

• minimum flank length (FL)

• minimum mapping quality (MQ)

• minimum number or hits in a bundle (NH)

• minimum router count (RC)

• minimum splice boundary hits (SBH)

• minimum subregion gap (SG)

• minimum subregion length (SL)

• minimum subregion overlap (SO)

• minimum transcript length base (TLB)

• minimum transcript length increase (TLI)

• uniquely mapped reads only (UM)

• use the secondary alignment (US)

In this work, as opposed to Shao and Kingsford
[2017], we choose to not only focus on multi-exon
transcripts but include single-exon transcripts in our
calculation of AUC as well. In order to produce the
AUC value, we first calculate the transcriptome us-
ing Scallop with the minimum transcript coverage
values set to 0 and 20 for multi-exon and single-
exon transcripts respectively. The ROC is then cal-
culated by thresholding the computed coverage of
the resulting transcripts. In later sections when we
use StringTie, we perform the same procedure by
setting the corresponding minimum coverage set to
0.001 (the smallest value allowed).

One possible solution to finding advisor sets for an
application with a large number of tunable parame-
ters such as Scallop would be to identify a subset
of these parameters then, as with MSA, exhaustively
enumerate the universe of all parameter choices. This
would necessitate eliminating some tunable parame-
ters, but it is not trivial to identify the parameters
that can be ignored without a loss of accuracy. An-
other option, and the one we will use here, is to in-
telligently explore the parameter landscape to find
a subset of parameter choices that can be used for
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advising.

2.1 Analyzing parameter behavior

Iterative optimization strategies such as gradient as-
cent [Cauchy, 1847], simulated annealing [Kirkpatrick
et al., 1983], and coordinate ascent [Zangwill, 1969,
sec. 5.4.3], work by systematically searching high-
dimensional spaces based on a specific optimization
criteria. They do so by repeatedly examining the
local accuracy landscape, either by calculating a gra-
dient or exploring neighboring points, and updating
the current location in the direction of maximum in-
crease. But, these methods do not perform well when
the space has a large number of similar local optima
or when there are discontinuities in the optimization
landscape. Therefore, there are several features that
differentiate application domains that can use itera-
tive optimization techniques to find more accurate
parameter choices from those that require the use
of exhaustive enumeration. First, in order to find
optimal parameters using iterative optimization, the
performance as the parameter is varied should only
have a single maxima. Second, exhaustive enumera-
tion must be used for parameters that have tunable
parameters that take discrete, non-ordered values.

To determine the behavior of each parameter, we cal-
culate the AUC of the transcriptomes produced us-
ing a large list of possible settings of one parameter
while keeping the remaining parameters at their de-
fault values. Figure 3 shows the effect of varying the
“minimum subregion gap” and “minimum transcript
length base” parameters. Note that throughout this
work, we multiply area under the curve values by 104

for ease of comparison, AUC is a value in the range
[0, 1], but generally for transcript assembly the value
is very small, typically < 0.1.

After examining these curves for several experiments
from the ENCODE database, we found that the
shape of the curves for all 16 continuous parameters
contained only one visible local maximum. This sug-
gests that the parameter space is free from too many
local optima.

It is not possible to confirm that the entire landscape
of parameter values has a low number of local max-
ima, but we can go beyond looking at one parame-
ter in isolation. To determine if the full parameter
landscape has only one maxima, we examine pairs of
parameters in the same manner as above. While not
all pairs were visualized, the ones tested all showed
single maximal points in two dimensions (an example
is shown in Figure 4). These tests show that there is
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Figure 3: Area under the curve for various values of
the “minimum subregion gap” and “minimum tran-
script length base” parameters. The points in the
plot show the area under the curve (vertical axis) for
the transcriptome produced by changing the value
each of the parameters (horizontal axis) while as-
signing all other parameters their default values on
SRR534291/HISAT from ENCODE10.

strong evidence that there is likely to be very few lo-
cal maxima in the high dimensional parameter space.

2.2 Finding an advisor set using coor-
dinate ascent

Because the parameter landscape does not have a
large number of local maxima, parameter choices
can be found in practice using iterative optimiza-
tion. The greedy coordinate-ascent-based procedure
we use here starts from the point on the AUC land-
scape where all of the parameters are set to their
default values. Then for one dimension (parameter)
at a time we examine the AUC of the points that
are one step in both directions. If one of the new
values leads to a point with higher AUC, we update
the position in that dimension. We continue to move
in that dimension until doing so no longer increases
AUC. In our procedure, we always choose to move to
the maximum AUC point, meaning that there is no
probability of taking a step that would allow AUC
to stay the same or decrease. The step size for each
dimension has a time-versus-granularity tradeoff: the
larger the step size, the less time spent in low AUC re-
gions of the landscape; but when the size is too large,
the maximum may be repeatedly stepped over with-
out ever being found. Rather than use a computed
step size for every coordinate in each iteration like
many implementations of coordinate ascent we over-
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Figure 4: Area under the curve for various values of
the “minimum subregion gap” and “minimum tran-
script length base” parameters. The points in the
plot show the area under the curve (z-axis) for the
transcriptome produced by changing the value of the
“minimum subregion gap” (x-axis) and “minimum
transcript length base” (y-axis) parameters while as-
signing all other parameters their default values on
SRR534291/HISAT from ENCODE10.

come this issue using predetermined, but decreasing,
step sizes. We start with large step sizes in each di-
mension, and any time we interrogate the whole set of
parameters without making any change we decrease
all of the step sizes by a factor of 1

4 and repeat the
process. This continues until all of the step sizes are
small (1 for integer parameters and 0.01 for real num-
bers) and no more changes to the location are made.
For the tunable parameters in Scallop that accept
only binary input (namely UM and US), the same
rules as integer parameters are applied but with an
initial step size to 1 and limiting the range to 0 and
1 (‘false’ and ‘true’).

Figure 5 shows the trajectory of three such coordi-
nate ascent training sessions. The large increases in
AUC in the initial iterations are likely the procedure
moving away from the multi-exon optimized param-
eter choice. As the sessions continue, the increase in
AUC becomes smaller because the procedure is nar-
rowing in on the apparent true maximum.

Coordinate ascent will find higher-AUC parameter
choices for an input, but it is slow so it is not a viable
candidate for this task if the results are needed in a
reasonable amount of time. Instead, we can exploit
the power of iterative optimization to explore the pa-
rameter landscape in order to develop the advisor sets
we need. Because the advising set can be computed
in advance, the high time commitment of iterative op-
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Figure 5: Area under the curve for each step
of the coordinate ascent procedure for SRR534291
from ENCODE10 using all 3 aligners. Each curve in
the plot shows the progress of the coordinate ascent
landscape exploration for one of HISAT, STAR, and
TopHat. Across the horizontal axis is the number of
exploratory steps taken in the search and the vertical
shows the area under the curve for the current best
parameter choice.

timization does not impact the running time of ad-
vising. To find an advising set, we use a collection
of training experiments. For each of these training
points, we find their optimal parameter choices using
coordinate ascent and use the produced collection as
the advising set for other inputs. For the advising
set to be generalizable, the set of training examples
needs to be representative of the range of possible in-
puts. In Section 3, we use a carefully constructed,
highly diverse set of existing RNA-Seq samples (de-
scribed next) in order to ensure that our advising set
will perform well on new inputs.

2.3 Data

We use 3 sets of available data to train and validate
our new method:

• ENCODE10 contains a collection of 10 RNA-seq
experiments from the ENCODE database [The
ENCODE Project Consortium, 2012] that were
used to benchmark Scallop and have been ex-
tensively used to evaluate transcriptome assem-
bly tools [Pertea et al., 2015, Liu et al., 2016].
Each sample was aligned to the human reference
genome (GRCh38) using three tools: HISAT,
STAR, and TopHat, producing a set of 30 exam-
ples. A subset of these samples was used to man-
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ually find the Scallop default parameter choice.

• ENCODE65 contains a collection of 65 RNA-seq
experiments, also from ENCODE, that were not
included in ENCODE10 and had preexisting align-
ments in the database. These alignments are
produced using an aligner selected by the group
that submitted the sample and are mapped to
either GRCh37 or GRCh38.

• SRA contains a collection of 1595 RNA-
seq experiments from the Sequence Read
Archive [Leinonen et al., 2010] that have been fil-
tered for quality. We limit the set to only those
samples that contained enough data to be in-
formative — in this case we ensure that there
are at least 1GB of raw reads in each selected
sample. We also eliminate any sample that con-
tained no or very few reads that mapped to the
human genome — we threshold the alignment
files that are below 1GB. All of the remaining
samples were aligned using STAR to GRCh38.

3 Validating the AUC increase
using Scallop

To demonstrate the increase in AUC that can be
gained from using parameter advising for transcrip-
tome assembly, we first construct an advisor set us-
ing ENCODE10 and coordinate ascent. We then use
this advisor set to perform advising on samples from
ENCODE65 and SRA.

3.1 Finding a Scallop advisor set

To find a generalizable advising set for Scallop, we
need to start with a highly diverse set of training ex-
amples. The ENCODE10 dataset is good for this pur-
pose because it contains samples that are widely ac-
cepted as benchmarks and has examples that have
been generated using a diverse set of aligners. We
then use the coordinate ascent procedure described
in Section 2.2 to find improved parameters for each
sample. The final settings found for each of these
30 coordinate ascent runs are shown in Table 1 and
the improvement in AUC is shown in Table 2. Most
of the parameters values deviate quite far from each
other, meaning this set of parameter choices is input-
specific. The deviation of the parameter choices from
the default is not surprising given that in this work
we are optimizing AUC on all transcripts, rather than
only multi-exon ones as was done previously. This

means that the original parameter settings, which
worked very well when examining only multi-exon
reads, are not ideal for examining all transcripts. In
the case when all transcripts are considered a new
default parameter setting could be recommended for
some single parameters, such as in the case of “mini-
mum mapping quality” where almost all samples used
a value of 11 rather then the default of 1, and “min-
imum transcript length increase” where most sam-
ples found improvement by selecting values that are
much smaller than the default. In fact, we will show
later that a new full default parameter choice that
is more accurate on all examples can be found using
this method; that is, one of the parameter choices had
higher average AUC on all of the training samples
than the predefined default parameter choice. Only
15 rather than 18 parameters are shown because we
found that changing the other 3 (DP, ED, and RC)
never have a positive impact on the AUC. While these
parameters were examined in coordinate ascent they
are not shown because all instances use the default.

In a server environment, being able to run 31 in-
stances of the Scallop application (30 parameter
choices found using coordinate ascent and the default
parameter choice) in parallel often is not a problem,
and thus parameter advising provides a method that
takes only as much wall time as using the default pa-
rameter, although with 31 times the CPU cycles. In
reduced resource environments, it may be desirable
to run fewer parameter settings to keep the number
of parallel processes smaller than the number of avail-
able threads. We use the oracle set-finding method
described by DeBlasio and Kececioglu [2017a,b] to
find a subset of parameter choices that maximizes
the average AUC for advising. This set is calculated
using an integer linear program that has two sets
of binary variables: one variable for each parameter
choice, and one for each example. Where an exam-
ple is a parameter choice used to assemble a sample.
Constraints are used to ensure that only one example
for each sample is chosen, and that the associated pa-
rameter setting is also chosen. The objective is then
to maximize the sum of the accuracies of the chosen
examples while only selecting a predefined number of
parameter choices. Using the samples in ENCODE10,
we found advising subsets of 1, 2, 4, and 8 parameter
vectors. The subsets induce an assembly tool that
can be run in reduced resource environments, such as
on an individual desktop. The advising subset choices
are shown in the right most columns of Table 1. Note
that an advising set of size 1 is equivalent to finding a
new default parameter choice since it maximizes the
average accuracy across the training examples.
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3.2 Testing advised Scallop

Using the set of 30 parameter choices provided by co-
ordinate ascent, we can evaluate the improvement in
AUC gained by using parameter advising to choose
higher AUC parameter choices for the Scallop appli-
cation. Each of the datasets provides unique insight
into why the improved version of Scallop will pro-
duce more accurate assemblies in practice.

3.2.1 ENCODE10

Table 2 shows the AUC for all of the samples from
ENCODE10. Because each sample was aligned using
three different aligners, these results cover many of
the possible input scenarios that may be used. For
each example (a sample combined with an aligner)
there are three values shown. The area-under the
curve for the transcriptome using the default param-
eter choice, the trained parameter choice, and the
“leave-one-out” (LOO) parameter choice. For the
leave-one-out experiment, advising was limited to the
18 parameter choices that were learned on examples
produced using the 2 aligners and 9 samples that were
different from the example being tested. This test is
used to show the robustness of the advising set.

One interesting point is that the most accurate
parameter choice for the training samples is not
always the one found using coordinate ascent.
This occurs once in ENCODE10, for the experiment
SRR534319/HISAT the parameter choice found for
SRR545695/HISAT has a slightly higher area under
the curve, 313.419 versus 315.670, respectively. This
is likely due to the fact that while we do not see mul-
tiple local maxima when examining one or two pa-
rameters, they may exist in the higher dimensional
parameter space, so we are not actually finding the
optimal parameter choices. In addition to the run-
ning time benefits that come from using decreasing
step sizes in coordinate ascent, starting with larger
steps heuristically attempts to avoid local maxima by
first finding regions of high AUC but local maxima
cannot be avoided altogether if they exist. The AUC
difference here is quite small, so we think the param-
eter space has small local maxima when examined at
a very fine-grained scale. This phenomenon also sug-
gests that some of the parameter settings that were
changed may only have very minor impacts on area
under the curve, these two parameter choices result
in a similar final AUC but several tunable parameters
have values that are quite different between them.
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Figure 6: AUC improvement for the ENCODE65 as-
semblies. Each point in the plot is a single experi-
ment in the data set, its position on the horizontal
axis is the area under the curve for the transcriptome
produced using the default parameter settings and its
point on the vertical is the ratio of the maximum area
under the curve for any parameter in the advising set
over the default. A value above 1.0 indicates an im-
provement over the default parameters. For this test
the default was excluded from the advising set.

3.2.2 ENCODE65

The ENCODE65 dataset is used to show that on a large
number of samples from a range of aligners (possi-
bly using non-default parameter settings) advising
for Scallop provides a higher AUC transcriptome.
Figure 6 shows the increase in AUC for all 65 exam-
ples in ENCODE65. The advising ratio shown on the
vertical axis is the area under the curve for the ad-
vised transcriptome normalized by the AUC for the
transcriptome produced using the default parameter
choice. A value above 1.0 means the transcriptome
produced using advising is more accurate. The fig-
ure indicates, as expected, that the higher the default
area under the curve, the less room there is for im-
provement and thus, the smaller the advising ratio.
Using advising on this highly diverse set of samples
increases the AUC of each transcriptome by a median
of 31.2%. When using the resource limited sets, the
median increase remains 18.2%, 19.0% and 24.4% for
sets of 2, 4, and 8 parameter settings respectively.
Even with a small commitment in resources, there is
a large increase in AUC.

Figure 7 shows the frequency with which each of the
31, 8, 4, and 2 parameter choices provides the maxi-
mum AUC when running parameter advising on the
ENCODE65 set. Not all 31 parameter choices are used,
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Table 2: Increase in AUC for examples in ENCODE10. Percentages in alternating rows show the increase over
the default.

HISAT STAR TopHat

Experiment Default Learned LOO Default Learned LOO Default Learned LOO

SRR307903 589.271 612.017 604.268 528.307 556.867 548.746 448.498 496.242 483.381
3.86% 2.54% 5.4% 3.86% 10.64% 7.77%

SRR307911 503.460 549.553 544.157 477.174 519.346 514.035 387.947 446.299 438.225
9.15% 8.08% 8.83% 7.72% 15.04% 12.96%

SRR315323 389.409 409.204 408.548 340.764 351.396 349.285 283.773 308.121 305.539
5.08% 4.91% 3.12% 2.5% 8.58% 7.67%

SRR315334 549.081 579.641 573.181 501.790 532.407 525.885 413.393 472.124 466.392
5.56% 4.38% 6.1% 4.8% 14.2% 12.82%

SRR387661 199.230 299.722 277.117 464.403 493.931 487.166 168.373 458.468 453.251
50.44% 39.09% 6.35% 4.9% 172.29% 169.19%

SRR534291 469.952 533.842 522.227 432.317 496.602 481.104 388.038 460.242 440.755
13.59% 11.12% 14.86% 11.28% 18.6% 13.58%

SRR534307 293.485 734.992 710.496 639.449 716.494 659.162 638.106 692.815 678.095
150.43% 142.08% 12.04% 3.08% 8.57% 6.26%

SRR534319 303.001 313.419 308.410 257.493 267.573 260.004 244.602 267.438 257.182
3.43% 1.78% 3.91% 0.97% 9.33% 5.14%

SRR545695 370.929 393.646 385.311 338.668 349.860 344.742 152.441 346.034 337.442
6.12% 3.87% 3.3% 1.79% 126.99% 121.35%

SRR545723 537.776 551.086 548.686 525.978 533.369 524.506 458.757 492.322 485.531
2.47% 2.02% 1.4% -0.27% 7.31% 5.83%

but more parameter settings are used when they are
available. Because the reduced size advisor sets are
trained on ENCODE10 and used on ENCODE65 only 4 of
the set of 8 are used, as well as only 2 of the 4.

3.2.3 SRA

The SRA set gives some insight into the improvement
that can be gained in a high-throughput environment.
It contains a large number of samples that have all
been preprocessed in the same way with respect to
the aligner. In this scenario, using advising greatly
increases AUC without any manual adjustment. The
advising ratio for the 1595 samples in SRA is shown
in Figure 8 compared with the area under the curve
for the transcriptome produced using the Scallop

default parameter settings. Because, in general, the
samples in SRA have a smaller initial area under the
curve than those in Figure 6 (AUC values of 241.3
and 325.0 respectively), the median improvement is
higher at 28.9%. For several samples in the set the
AUC increases by more than a factor of 3. These
improvements are also seen for the resource-limited
advisor sets where the median improvement is 25.6%,
24.1% and 24.3% with 2, 4, and 8 parameter choices,
respectively. Notice that the increase in AUC actu-
ally goes down slightly when increasing the size from
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Figure 7: Parameter choice use within the ENCODE65
set. The horizontal axis shows labels of the param-
eter choices from Table 1 that produced the highest
AUC transcriptome for any sample in ENCODE65. The
vertical axis is the fraction of samples that have that
parameter choice as the maximum. The four groups
of bars show the use in the full set of 30 parameter
choices and the reduced sets of 2, 4, and 8 parameter
choices.
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Figure 8: AUC improvement the SRA assemblies.
Each point in the plot is a single experiment in the
data set, its position on the horizontal axis is the area
under the curve for the transcriptome produced us-
ing the default parameter settings and its point on
the vertical is the ratio of the maximum area under
the curve for any parameter in the advising set over
the default. A value above 1.0 indicates an improve-
ment over the default parameters. For this test the
default was excluded from the advising set, but can
be included in practice to ensure the AUC is never
reduced.

2 to 4, this is likely an artifact of the advisor sets
not being subsets of each other, this means that the
parameter choices and sets may be slightly overfit to
the training data.

Figure 9 shows the frequency with which each of the
31, 8, 4, and 2 parameter choices provides the maxi-
mum AUC when running parameter advising on the
SRA set. More parameter choices are used than were
for ENCODE65, which is expected because the set of
samples is larger, but because SRA is somewhat ho-
mogeneous many of the choices are maximal more
frequently. Surprisingly, even-though all of the ex-
amples are aligned using STAR, many of the higher-
frequency parameter choices were optimized for ex-
amples that were aligned using TopHat (IDs 1–10).

3.3 Running time

As alluded to earlier, the wall time of running coor-
dinate ascent is much larger than the running time
of any single instance of Scallop. For the 30 exam-
ples from ENCODE10, running coordinate ascent took
between about 40 hours and over 22 days. Since run-
ning Scallop using the default parameter choice for
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Figure 9: Parameter choice use within the SRA set.
The horizontal axis shows labels of the parameter
choices from Table 1 that produced the highest AUC
transcriptome for any sample in SRA. The vertical axis
is the fraction of samples that have that parameter
choice as the maximum. The four groups of bars show
the use in the full set of 31 parameter choices and the
reduced sets of 2, 4, and 8 parameter choices.

the same input takes between about 7 minutes and
1 hour, even if no parallelization was possible param-
eter advising would be able to run in a fraction of the
time of running coordinate ascent.

3.4 Advising for other applications

In order to show the generalizability of the method,
we also applied it to the StringTie transcript assem-
bler. Just as before, we ran coordinate ascent on the
10 experiments in ENCODE10, then show the utility of
using the 30 parameter choices to perform parameter
advising on ENCODE65. Since StringTie has only 9
tunable parameters the coordinate ascent time was
much shorter, but the increase in accuracy was still
measurable. For the 30 coordinate ascent runs, we
saw a median increase in AUC of 12.2%. We also
saw 10.0% increase in AUC on the similar leave-one-
out experiments as those performed above.

Figure 10 shows the advising ratio for the 65 RNA-
Seq samples from ENCODE65. For these examples the
median gain in AUC is 13.1% over using only the
default parameter choices. For the StringTie as-
sembler, samples with lower AUC using the default
parameter choices still generally have higher advising
ratios but this correlation is not as strong as with
Scallop.
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Figure 10: AUC improvement the ENCODE65 assem-
blies using StringTie. Each point in the plot is a
single experiment in the data set, its position on the
horizontal axis is the area under the curve for the
transcriptome produced using the default parameter
settings and its point on the vertical is the ratio of the
maximum area under the curve for any parameter in
the advising set over the default. A value above 1.0
indicates an improvement over the default parame-
ters. For this test the default was excluded from the
advising set.

4 Discussion

Our results show that sample-specific parameter
choices are essential to developing any strong genomic
pipeline that includes transcriptome assembly as a
step. In this work, we begin to answer the ques-
tion of how to produce transcriptome assemblies ef-
fectively for any input without sacrificing quality or
manpower. This is done using a combination of pa-
rameter tuning though exploration using coordinate
ascent and the established method of parameter ad-
vising. Two key points that made this merger viable
and distinguish transcriptome assembly from other
domains are: (1) the insight that because the pa-
rameter landscape likely has few maxima, finding a
suitable parameter set can be achieved by coordinate
ascent rather than exhaustive enumeration, and (2)
that a small number of training examples is sufficient
to provide a large increase in AUC over the default
parameter setting.

The coordinate ascent procedure used is a very useful
means for finding parameter settings that increase the
AUC of predicted transcriptomes. The best results
can generally be achieved by simply following this
procedure for each new input. Because of the inter-
dependence between multiple parameters, our imple-

mentation of coordinate ascent does not allow steps
to be taken in multiple directions at once. It is thus
difficult to efficiently parallelize this process. In other
words, coordinate ascent finds more accurate param-
eter choices at the cost of large computational time.
Instead, we have developed a method, which can be
reapplied to any domain that has the same parameter
behavior we observed, to find an advising set that is
as diverse as the training examples used.

One drawback of using coordinate ascent as a way
to find advisor sets is that the individual parameter
choices are likely to be overfit to the training exam-
ples. We have shown that even with this potential is-
sue, we are able to greatly improve the quality of the
transcripts produced according to the AUC measure.
One extension to this method that could possibly im-
prove the generalizability would be to perform coordi-
nate ascent simultaneously on more than one sample;
we have not explored the parameter landscape in this
case but, if the samples are similar enough, it could
also have one or a small number of local maxima.

The method we have described automates the task
of parameter selection for Scallop (and other assem-
blers) and greatly improves the quality of produced
transcriptomes according to the area under the curve
measure, which compares the output to the refer-
ence transcriptome database. But, in the context of
reference-based transcript assembly any metric that
only measures accuracy with respect to some refer-
ence transcriptome is fundamentally flawed. The un-
known transcripts are likely to be the most interest-
ing, and this measure of accuracy penalizes novelty
by definition. For instance, an assembler that has the
reference transcriptome embedded in the source code
and throws away any novel transcript would have
very high precision with regard to the reference, but
is clearly degrading its result to do so.

In contrast, the metrics used to assess quality for de
novo transcriptome assembly do not penalize nov-
elty [Li et al., 2014, Bushmanova et al., 2016]. One
of the most accurate tools to perform this kind of
assessment is TransRate [Smith-Unna et al., 2016]
which measures the quality of a de novo assembly by
mapping the provided sequencing reads to the pro-
duced transcriptome and calculating a score that is
the sum of four quality metrics: nucleotide differ-
ences of the mapped reads, base coverage agreement
between positions on a transcript, read-pair mapping
agreement, and proportion of bases with no read sup-
port. All four of these metrics are still valid when
assessing a reference-based transcriptome assembly,
but using reference-free assessment tools for this task

12

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342865doi: bioRxiv preprint 

https://doi.org/10.1101/342865
http://creativecommons.org/licenses/by-nc/4.0/


suffers from the opposite problem: it completely ig-
nores the large swath of knowledge contained in the
reference transcriptome.

We emphasize that this is an area of research that is
begging to be explored. While we think measuring
the accuracy of a transcript assembly by only com-
paring it to a reference is flawed, it is the current
standard. The framework we have described stands
on its own as a method to improve the quality of the
results produced by Scallop, and can be adapted as
new, better methods are developed.
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