
Automatically eliminating errors

induced by suboptimal parameter choices in transcript assembly

Dan DeBlasio and Carl Kingsford
Computational Biology Department

Carnegie Mellon University
Pittsburgh, PA USA 15213.
{deblasio,carlk}@cs.cmu.edu

Abstract

Motivation: Computational tools used for genomic
analyses are becoming increasingly sophisticated
and complex. While these applications often provide
more accurate results than their predecessors, a new
problem is emerging in that these pieces of software
have a large number of tunable parameters. Choos-
ing the wrong parameter values for an application
may lead to significant results being overlooked or
false results being reported.
Results: We take some first steps towards gener-
ating a truly automated genomic analysis pipeline
by developing a method for automatically choosing
input-specific parameter values for reference-based
transcript assembly. We apply the parameter advis-
ing framework, first developed for multiple sequence
alignment, to optimize parameter choices for the
Scallop transcript assembler. In doing so, we
provide the first method for finding advisor sets for
applications with large numbers of tunable parame-
ters. By choosing parameter values for each input,
the area under the curve (AUC) when comparing
assembled transcripts to a reference transcriptome
is increased by 28.9% over using only the default
parameter choices on 1595 RNA-Seq samples in the
Sequence Read Archive. This approach is general,
and when applied to StringTie it increases AUC
by 13.1% on a set of 65 RNA-Seq experiments from
ENCODE.
Availability: Parameter advisors for
both Scallop and StringTie are available
on Github (https://github.com/Kingsford-
Group/scallopadvising). Tools to perform the
the coordinate ascent procedure are also available in
the repository, though this step is not necessary in
order to apply advising to a new dataset.

1 Introduction

As the field of computational biology has matured,
there has been a significant increase in the amount of
data that needs to be processed and the reliance of
users without computational expertise on the highly
complicated programs that perform the analyses. At
the same time, the number and sophistication of such
tools has also increased. While the accuracy of such
applications is constantly improving, a new problem
has emerged: the sometimes overwhelming number of
tunable parameters that each of these sophisticated
pieces of software brings with them. Changing an ap-
plication’s parameter settings can have a large impact
on the quality of the results produced. When incor-
rect or non-ideal parameter choices are used, signif-
icant results may be overlooked or false conclusions
may be reported.

The default parameter choices that most users rely on
for these programs are typically optimized by the the
algorithm designer to maximize performance on the
average case. This can be a problem since the most
interesting experiments are often not “average.”

Manually tuning the parameter settings of an appli-
cation often produces more accurate results, but it
is very time consuming. The tuning process can be
accelerated for users with domain and/or algorithmic
knowledge, as these experts can make more informed
decisions about the correct direction to proceed when
altering parameter values. But tuning the parameter
choices to increase accuracy for one input does not
imply that the results will be improved for all in-
puts. This means that, for optimum performance,
tuning must be repeated for each new piece of data.
In the case of high-throughput genomic analysis, this
manual procedure is utterly infeasible. For these ap-
plications, without some sort of automatic parameter
choice system, the defaults must be used.
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To address the automated parameter choice problem
for multiple sequence alignment (MSA), DeBlasio and
Kececioglu [2017a; DeBlasio et al., 2012, Kececioglu
and DeBlasio, 2013] have defined a framework to au-
tomatically select the parameter values for an input.
This process, called “parameter advising,” has been
shown to greatly increase accuracy of MSA without
sacrificing wall-clock running time in most cases, and
it can readily be applied to new domains. A param-
eter advisor, depicted in Figure 1, has two compo-
nents: (1) a set of parameter vectors – assignments
of a value to each of the tunable parameters for the
application, called an “advisor set”; and (2) an assess-
ment criteria – a method to rank the quality of mul-
tiple solutions, called an “advisor estimator”. The
advisor selects the appropriate parameter vector by
first running the application on the input using each
parameter vector in the set, and selecting the param-
eter vector that produces the best result according
to the accuracy estimator. Parameter advising for a
given application is fast in practice. The instantia-
tions of the application being tuned are independent
processes that can be executed in parallel. Assuming
that the number of processors available is at least the
number of parameter vectors in the advisor set, the
only additional wall time is the assessment of the re-
sults using the accuracy estimator (which can also be
performed in parallel) and the comparison of these
values, both of which are negligible compared to the
running time of the application in most cases.

Parameter advising is an example of a posteriori pa-
rameter selection — it examines an application’s out-
put to select a parameter setting. In contrast, sep-
arate work has been done in other fields on a pri-
ori selection, where the parameters are chosen in ad-
vance by looking at the raw input. This includes
work such as SATZilla [Xu et al., 2008] for choosing
from a collection of SAT solvers, or ParamILS [Hutter
et al., 2009] which finds optimal settings for the CPLEX
computational optimization tool. More information
is available when performing a posteriori assessment
since the full final solution can be examined, but a
priori prediction is necessary in cases when it is not
feasible to apply multiple configurations.

We focus this work on improving the performance
of reference-based transcriptome assembly by ap-
plying parameter advising. Common tools for this
task include Scallop [Shao and Kingsford, 2017],
Cufflinks [Trapnell et al., 2010], StringTie [Pertea
et al., 2015], and TranscComb [Liu et al., 2016]. Tran-
scriptome assembly takes an RNA-Seq sample and
reference genome as input and reconstructs the set
of transcripts that are present. The assembler first
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Figure 1: The parameter advising process. An ad-
visor takes as input an RNA-Seq sample that has
already been aligned to the reference genome, this
mirrors the input to Scallop. Using the advisor set
a collection of candidate transcriptomes is generated,
one for each parameter vector (assignment of a value
to each of the tunable parameters of Scallop) in the
set. An AUC value is assigned to each candidate tran-
scriptome by comparing it to the reference using a a
combination of GFFCompare and GTFCuff. The advi-
sor then returns the transcriptome with the highest
AUC value.

aligns reads to the reference genome using a tool
such as HISAT [Kim et al., 2015], STAR [Dobin et al.,
2013], TopHat [Kim et al., 2013], or SpliceMap [Au
et al., 2010]. Using the read splice locations (the po-
sitions where a read maps to non-neighboring loca-
tions on a genome) the assembler constructs the ex-
ons of each transcript. The produced transcriptome
consists of a combination of transcripts that can be
mapped to ones we already know and transcripts that
are unique to the sample that was provided. These
transcriptomes are used to perform analyses such as
gene quantification [Patro et al., 2017] and differen-
tial expression [Love et al., 2014].

Figure 2 shows an example of just how much impact
using non-optimal parameter vectors can have on a
transcriptome assembly. This example shows a re-
gion of Chromosome 2 with transcripts found using
Scallop and different parameter vectors. If the de-
fault parameters had been used, two transcripts at
this location alone would not have been identified;
both of these transcripts are present in the refer-
ence transcriptome and supported by the sequencing
reads. The figure also contains an example of how
Scallop, with the appropriate parameter choice, can
recover from zero-coverage exon regions that may oc-
cur as a result of either mapping or sequencing issues.
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Optimized Parameter Choice

Default Parameter Choice

Figure 2: Impact of parameter choice on the produced transcriptome. The four panels show the raw RNA-
Seq reads aligned to a region of the human genome, the transcript predictions found using the Scallop

default parameter vector, the predictions using the parameter vector found using coordinate ascent, and the
human reference transcriptome. In the first panel, reads are shown as black boxes, and the gaps within split
reads are shown in grey. The input and predicted transcripts are from SRR543291 which was aligned to
the genome using HISAT and the region shown are positions 30231125 to 30260786 on Chromosome 2. The
optimized parameter vector identifies two transcripts that are both supported by the read data and match
with transcripts that are present in the reference. The supporting read information and corresponding exons
for the two new transcripts (red arrows) is highlighted in the first and third panels respectively with red and
green boxes.

For transcriptome assembly, a natural choice for the
estimator is the sensitivity and precision of recov-
ering known transcripts. These measures can be
combined in the area under the curve (AUC) met-
ric, which is commonly used to benchmark reference-
based transcript assembly tools. AUC measures
the area under the receiver operating characteristic
(ROC) curve which plots the sensitivity and pre-
cision of the computed transcriptome as the mini-
mum transcript coverage threshold is changed, us-
ing the set of assembled transcripts that match with
the reference as positives and all others as nega-
tives. The average coverage of a transcript is the
average number of reads that are aligned to each po-
sition along the transcript’s length. As the threshold
on this value increases, the induced subset of tran-
scripts that are above this threshold is reduced in
size. These subsets each have an associated sensitiv-
ity and precision with respect to the reference tran-
scriptome and represent a point in a two-dimensional
space. Together these points form the ROC
curve. Tools such as GFFCompare (https://github.
com/gpertea/gffcompare) and GTFCuff (https://
github.com/Kingsford-Group/rnaseqtools) are de-
signed specifically to calculate these measures.

A problem that arises in transcript assembly is the
large number of tunable parameters that can impact

output quality. Because of the high-dimensionality of
the parameter space, the existing methods for find-
ing advisor sets are not viable. However, there are
certain properties of the interaction between param-
eter choices and accuracy that can be exploited for
some applications. If the accuracy landscape when
adjusting these parameters does not contain many
non-global local maxima, iterative optimization tech-
niques can be used to find an advising set. We de-
scribe the requirements an application domain must
meet in order for these optimization techniques to be
used, and we show that transcriptome assembly with
Scallop meets this threshold.

Contributions

The major contributions of this work are twofold:
first, we show for the first time that sets of alter-
native parameter vectors in certain domains can be
found using methods other than exhaustive enumer-
ation; and second, we take some of the first steps
towards producing a fully automated genomic analy-
sis pipeline by automating sample-specific parameter
selection.

We will show that by then applying the parameter ad-
vising framework, we can greatly increase the quality
of the transcriptomes produced using the Scallop
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assembly tool. Using our new tool to construct
reference-based transcriptomes, the area under the
curve shows a median increased of 8.7% over us-
ing only the default parameter vector on a set of
10 RNA-Seq experiments contained in the ENCODE
database that are commonly used for benchmark-
ing. The median improvement is even larger, 28.9%
higher AUC than the default parameter vector, in a
high-throughput pipeline applied to over 1500 sam-
ples from the Sequence Read Archive.

We also confirm that this method can increase AUC
for other applications by applying it to StringTie.
For a set of 65 examples from the ENCODE database,
we are able to increase accuracy by 13.1% over using
only the default parameter vectors.

2 Developing a parameter advi-
sor for transcript assembly

Transcriptome assembly using Scallop presents an
interesting problem for parameter advising. Even
though AUC, the standard metric for transcriptome
assembly, is able to be used as the “advisor estima-
tor,” finding an advisor set is especially challenging.
The set of tunable parameters that need to be set is
much larger than in previous applications: 18 com-
pared to the 5 for multiple sequence alignment. This
means the previously developed method of enumerat-
ing a parameter vector universe then using combina-
torial optimization to find an advisor set is infeasible.
However, we have an advantage in that in this appli-
cation almost all 18 of the tunable parameters are
continuous rather than discrete values, the remain-
ing parameters are binary and thus have only two
possible values.

The Scallop transcript assembler generates a tran-
scriptome from a set of reads that have been aligned
to a reference genome. It first splits the genome into
regions of non-overlapping reads, which are called
bundles. These bundles can be thought of as genes or
groups of overlapping genes. Then, within each bun-
dle a splice graph is constructed based on the split
reads that define possible exon boundaries. Paths
through the splice graph define potential transcripts,
and the final set of transcripts is formed by decom-
posing the splice graphs into paths while trying to
respect as many of the read mappings as possible.
The 18 tunable parameters of Scallop govern vari-
ous stages of this process and are listed below:

• maximum dynamic programming table size (DP)

• maximum edit distance (ED)

• maximum intron contamination coverage (ICC)

• maximum number of exons (NE)

• minimum bundle gap (BG)

• minimum exon length (EL)

• minimum flank length (FL)

• minimum mapping quality (MQ)

• minimum number of hits in a bundle (NH)

• minimum router count (RC)

• minimum splice boundary hits (SBH)

• minimum subregion gap (SG)

• minimum subregion length (SL)

• minimum subregion overlap (SO)

• minimum transcript length, base (TLB)

• minimum transcript length, increase (TLI)

• uniquely mapped reads only (UM)

• use the secondary alignment (US)

In this work, as opposed to Shao and Kingsford
[2017], we choose to not separately evaluate multi-
exon transcripts and single-exon transcripts but
rather maximize a combined AUC. In order to pro-
duce the AUC value, we first assemble the transcrip-
tome using Scallop with the minimum transcript
coverage values set to 0 and 20 for multi-exon and
single-exon transcripts, respectively. The ROC is
then calculated by thresholding the computed cov-
erage of the resulting transcripts. In later sections
when we use StringTie, we perform the same proce-
dure by setting the corresponding minimum coverage
set to 0.001 (the smallest value allowed).

One possible solution to finding advisor sets for an
application with a large number of tunable parame-
ters such as Scallop would be to identify a subset
of these parameters then, as with MSA, exhaustively
enumerate the universe of all parameter vectors. This
would necessitate eliminating some tunable parame-
ters, but it is not trivial to identify the parameters
that can be ignored without a loss of accuracy. An-
other option, and the one we will use here, is to in-
telligently explore the parameter landscape to find
a subset of parameter vectors that can be used for
advising.
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2.1 Analyzing parameter behavior

Iterative optimization strategies such as gradient as-
cent [Cauchy, 1847], simulated annealing [Kirkpatrick
et al., 1983], and coordinate ascent [Zangwill, 1969,
sec. 5.4.3], work by systematically searching high-
dimensional spaces based on a specific optimization
criteria. They do so by repeatedly examining the
local accuracy landscape, either by calculating a gra-
dient or exploring neighboring points, and updating
the current location in the direction of maximum in-
crease. But, these methods do not perform well when
the space has a large number of similar local optima
or when there are discontinuities in the optimization
landscape. Therefore, there are several features that
differentiate application domains that can use iter-
ative optimization techniques to find more accurate
parameter vectors from those that require the use of
exhaustive enumeration. First, in order to find opti-
mal parameters using iterative optimization, the per-
formance as the parameter is varied should only have
a single maxima. Second, parameter values should
either be continuous or have some ordering of dis-
crete values, this second condition can be overcome
by enumerating non-ordered discrete parameters and
optimizing over the remaining.

To determine the behavior of each parameter, we cal-
culate the AUC of the transcriptomes produced us-
ing a large list of possible settings of one parameter
while keeping the remaining parameters at their de-
fault values. Figure 3 shows the effect of varying the
“minimum subregion gap” and “minimum transcript
length, base” parameters. Note that throughout this
work, we multiply area under the curve values by 104

for ease of comparison. AUC is a value in the range
[0, 1], but generally for transcript assembly the value
is very small, typically < 0.1.

After examining these curves for several experiments
from the ENCODE database, we found that the
shape of the curves for all 16 continuous parameters
contained only one visible local maximum. This sug-
gests that the parameter space is free from too many
local optima.

It is not possible to confirm that the entire landscape
of parameter values has a low number of local max-
ima, but we can go beyond looking at one parame-
ter in isolation. We examine pairs of parameters in
the same manner as above. While not all pairs were
visualized, the ones tested all showed single maximal
points in two dimensions (an example is shown in Fig-
ure 4). These tests suggest that there may be very
few local maxima in the high-dimensional parameter
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Figure 3: Area under the curve for various values of
the “minimum subregion gap” and “minimum tran-
script length base” parameters. The points in the
plot show the area under the curve (vertical axis) for
the transcriptome produced by changing the value
each of the parameters (horizontal axis) while as-
signing all other parameters their default values on
SRR534291/HISAT from ENCODE10.

space.

2.2 Finding an advisor set using coor-
dinate ascent

Because it appears that the parameter landscape does
not have a large number of local maxima, parameter
vectors can be found in practice using iterative op-
timization. The greedy coordinate-ascent-based pro-
cedure we use here starts from the point on the AUC
landscape where all of the parameters are set to their
default values. Then for one dimension (parameter)
at a time we examine the AUC of the points that
are one step in both directions. If one of the new
values leads to a point with higher AUC, we update
the position in that dimension. We continue to move
in that dimension until doing so no longer increases
AUC. In our procedure, we always choose to move to
the maximum AUC point, meaning that there is no
probability of taking a step that would allow AUC
to stay the same or decrease. The step size for each
dimension has a time-versus-granularity tradeoff: the
larger the step size, the less time spent in low AUC re-
gions of the landscape; but when the size is too large,
the maximum may be repeatedly stepped over with-
out ever being found. Rather than use a computed
step size for every coordinate in each iteration like
many implementations of coordinate ascent, we over-
come this issue using predetermined, but decreasing,
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Figure 4: Area under the curve for various values of
the “minimum subregion gap” and “minimum tran-
script length base” parameters. The points in the
plot show the area under the curve (z-axis) for the
transcriptome produced by changing the value of the
“minimum subregion gap” (x-axis) and “minimum
transcript length base” (y-axis) parameters while as-
signing all other parameters their default values on
SRR534291/HISAT from ENCODE10.

step sizes. We start with large step sizes in each di-
mension, and any time we interrogate the whole set of
parameters without making any change we decrease
all of the step sizes by a factor of 1

4 and repeat the
process. This continues until all of the step sizes are
small (1 for integer parameters and 0.01 for real num-
bers) and no more changes to the location are made.
For the tunable parameters in Scallop that accept
only binary input (namely UM and US), the same
rules as integer parameters are applied but with an
initial step size to 1 and limiting the range to 0 and
1 (‘false’ and ‘true’).

Figure 5 shows the trajectory of three such coordi-
nate ascent training sessions. The large increases in
AUC in the initial iterations are likely the procedure
moving away from the multi-exon optimized param-
eter vector. As the sessions continue, the increase in
AUC becomes smaller because the procedure is nar-
rowing in on the apparent true maximum and the
decreases in step size.

Coordinate ascent will find higher-AUC parameter
vectors for an input, but it is slow so it is not a vi-
able candidate for this task if the results are needed
in a reasonable amount of time. Instead, we can ex-
ploit the power of iterative optimization to explore
the parameter landscape in order to develop the ad-
visor sets we need. Because the advising set can be
computed in advance, the high-time commitment of
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Figure 5: Area under the curve for each step
of the coordinate ascent procedure for SRR534291
from ENCODE10 using all 3 aligners. Each curve in
the plot shows the progress of the coordinate ascent
landscape exploration for one of HISAT, STAR, and
TopHat. Across the horizontal axis is the number of
exploratory steps taken in the search and the vertical
shows the area under the curve for the current best
parameter vector.

iterative optimization does not impact the running
time of advising. To find an advising set, we use a
collection of training experiments. For each of these
training points, we find their optimal parameter vec-
tors using coordinate ascent and use the produced
collection as the advising set for other inputs. For
the advising set to be generalizable, the set of training
examples needs to be representative of the range of
possible inputs. In Section 3, we use a highly diverse
set of existing RNA-Seq samples (described next) in
order to ensure that our advising set will perform well
on new inputs.

2.3 Data

We use 3 sets to train and validate parameter advis-
ing:

• ENCODE10 contains a collection of 10 RNA-Seq
experiments from the ENCODE database [The
ENCODE Project Consortium, 2012] that were
used to benchmark Scallop and have been ex-
tensively used to evaluate transcriptome assem-
bly tools [Pertea et al., 2015, Liu et al., 2016].
Each sample was aligned to the human reference
genome (GRCh38) using three tools: HISAT,
STAR, and TopHat, producing a set of 30 exam-
ples. (Specific command line arguments used for
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each tool are listed in Supplemental Table 1.)
A subset of these samples was used to manually
find the Scallop default parameter vector. (Ex-
periment identifiers in Supplemental Table 2.)

• ENCODE65 contains a collection of 65 RNA-Seq
experiments, also from ENCODE, that were not
included in ENCODE10 and that had preexist-
ing alignments in the database. These align-
ments are produced using an aligner selected by
the group that submitted the sample and are
mapped to either GRCh37 or GRCh38. (Exper-
iment identifiers in Supplemental Table 3.)

• SRA contains a collection of 1595 RNA-
Seq experiments from the Sequence Read
Archive [Leinonen et al., 2010] that have been fil-
tered for quality. We limit the set to only those
samples that contained enough data to be in-
formative — in this case we ensure that there
are at least 1GB of raw reads in each selected
sample. We also eliminate any sample that con-
tained no or very few reads that mapped to the
human genome — we threshold the alignment
files that are below 1GB. All of the remaining
samples were aligned using STAR to GRCh38.
(Experiment identifiers in Supplemental Tables
4-10.)

3 Validating the transcript as-
sembly parameter advisor

To demonstrate the increase in AUC that can be
gained from using parameter advising for transcrip-
tome assembly, we first construct an advisor set us-
ing ENCODE10 and coordinate ascent. We then use
this advisor set to perform advising on samples from
ENCODE65 and SRA.

3.1 Finding a Scallop advisor set

To find a generalizable advising set for Scallop, we
need to start with a highly diverse set of training ex-
amples. The ENCODE10 dataset is good for this pur-
pose because it contains samples that are widely ac-
cepted as benchmarks and has examples that have
been generated using a diverse set of aligners. We
then use the coordinate ascent procedure described
in Section 2.2 to find improved parameters for each
sample. The final settings found for each of these 30
coordinate ascent runs are shown in Table 1 and the
improvement in AUC is shown in Table 2. Most of the

parameters values deviate quite far from each other,
meaning this set of parameter vectors is input spe-
cific. The deviation of the parameter vectors from the
default is not surprising given that in this work we are
optimizing AUC on all transcripts, rather than only
multi-exon ones as was done previously. This means
that the original parameter settings, which worked
very well when examining multi-exon reads, are not
ideal for examining all transcripts. When single-exon
transcripts are evaluated in concert with multi-exon
transcripts, a new default parameter setting could be
recommended for some single parameters, such as in
the case of “minimum mapping quality” where almost
all samples used a value of 11 rather then the default
of 1, and “minimum transcript length increase” where
most samples found improvement by selecting values
that are much smaller than the default. In fact, we
will show later that a new full default parameter vec-
tor that is more accurate on all examples can be found
using this method; that is, one of the parameter vec-
tors had higher average AUC on all of the training
samples than the predefined default parameter vec-
tor. Only 15 rather than 18 parameters are shown
in Table 1 because we found that changing the other
3 (DP, ED, and RC) never have a positive impact
on the AUC. While these parameters were examined
in coordinate ascent they are not shown because all
instances use the default.

In a server environment, being able to run 31 in-
stances of the Scallop application (30 parameter vec-
tors found using coordinate ascent and the default
parameter vector) in parallel often is not a problem,
and thus parameter advising provides a method that
takes only as much wall time as using the default pa-
rameter, although with 31 times the CPU cycles. In
reduced resource environments, it may be desirable
to run fewer parameter settings to keep the number
of parallel processes smaller than the number of avail-
able threads. We use the oracle set-finding method
described by DeBlasio and Kececioglu [2017a,b] to
find a subset of parameter vectors that maximizes
the average AUC for advising. This set is calculated
using an integer linear program that has two sets of
binary variables: one variable for each parameter vec-
tor, and one for each example. Where an example is
a parameter vector used to assemble a sample. Con-
straints are used to ensure that only one example for
each sample is chosen, and that the associated pa-
rameter setting is also chosen. The objective is then
to maximize the sum of the accuracies of the chosen
examples while only selecting a predefined number of
parameter vectors. Using the samples in ENCODE10,
we found advising subsets of 1, 2, 4, and 8 parameter
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vectors. The subsets induce an assembly tool that
can be run in reduced resource environments, such as
on an individual desktop. The advising subset choices
are shown in the right most columns of Table 1. Note
that an advising set of size 1 is equivalent to finding a
new default parameter vector since it maximizes the
average accuracy across the training examples.

3.1.1 Advising on the training set

Table 2 shows the AUC for all of the samples from
ENCODE10. Because each sample was aligned using
three different aligners, these results cover many of
the possible input scenarios that may be used. For
each example (a sample combined with an aligner)
there are three values shown. The area-under the
curve for the transcriptome using the default parame-
ter vector, the parameter vector produced as a result
of coordinate ascent (CA), and the “leave-one-out”
(LOO) advising parameter vector. For the leave-one-
out experiment, advising was limited to the 18 pa-
rameter vectors that were learned on examples pro-
duced using the 2 aligners and 9 samples that were
different from the example being tested. This test is
used to show the robustness of the advising set.

While we can see that the parameter vector found
using coordinate ascent improves the AUC for all
of the training examples, there is one case where
we know the procedure produces a parameter vector
that can be further improved. For the experiment
SRR534319/HISAT we find that the parameter vec-
tor found for SRR545695/HISAT has a slightly higher
area under the curve, 313.419 versus 315.670, respec-
tively. This means that there are some local max-
ima in the high-dimensional parameter space that are
not detectable when only examining the behaviors of
pairs of parameters as we did in Section 2.1. The
use of a decreasing step size in coordinate ascent at-
tempts to mitigate this problem since starting with
larger steps heuristically attempts to avoid local max-
ima by first finding regions of high AUC. The experi-
ment that was improved, SRR534319/HISAT, had one
of the smallest improvements in AUC after perform-
ing coordinate ascent. Because of this, and the fact
that the several of the parameter values are quite dif-
ferent, the parameter landscape for this input is likely
very flat with most reasonable parameter vectors pro-
ducing similar assemblies for this set of reads.

3.2 Testing advised Scallop

Using the set of 30 parameter vectors provided by co-
ordinate ascent, we can evaluate the improvement in
AUC gained by using parameter advising to choose
higher AUC parameter vectors for the Scallop ap-
plication. The two testing datasets provide unique
insight into why choosing input specific parameter
vectors for Scallop will produce more accurate as-
semblies in practice.

3.2.1 ENCODE65

The ENCODE65 dataset is used to show that on a large
number of samples from a range of aligners (possi-
bly using non-default parameter settings) advising
for Scallop provides a higher AUC transcriptome.
Figure 6 shows the increase in AUC for all 65 exam-
ples in ENCODE65. The advising ratio shown on the
vertical axis is the area under the curve for the ad-
vised transcriptome normalized by the AUC for the
transcriptome produced using the default parameter
vector. A value above 1.0 means the transcriptome
produced using advising is more accurate. The fig-
ure indicates, as expected, that the higher the default
area under the curve, the less room there is for im-
provement and thus, the smaller the advising ratio.
Using advising on this highly diverse set of samples
increases the AUC of each transcriptome by a median
of 31.2%. When using the resource limited sets, the
median increase remains 18.2%, 19.0% and 24.4% for
sets of 2, 4, and 8 parameter settings respectively.
Even with a small commitment in resources, there is
a large increase in AUC.

Figure 7 shows the frequency with which each of the
31, 8, 4, and 2 parameter vectors provides the maxi-
mum AUC when running parameter advising on the
ENCODE65 set. Not all 31 parameter vectors are used,
but more parameter settings are used when they are
available. Only 4 of the set of 8 are used, as well as
only 2 of the 4.

Random Advisor Sets. To confirm that the in-
crease in accuracy is due to our advisor set construc-
tion method and not an artifact of having multiple
choices of parameter vectors, a collection of random
parameter vectors were generated and used for pa-
rameter advising. A range was defined for each tun-
able parameter by examining all of the values that
provided an increase in AUC for any example at any
stage in coordinate ascent. Each of the values con-
sidered by definition should have a higher AUC than
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Table 2: Increase in AUC for examples in ENCODE10. Percentages in alternating rows show the increase over
the default.

HISAT STAR TopHat

Experiment Default CA LOO Default CA LOO Default CA LOO

SRR307903 589.271 612.017 604.268 528.307 556.867 548.746 448.498 496.242 483.381
3.86% 2.54% 5.4% 3.86% 10.64% 7.77%

SRR307911 503.460 549.553 544.157 477.174 519.346 514.035 387.947 446.299 438.225
9.15% 8.08% 8.83% 7.72% 15.04% 12.96%

SRR315323 389.409 409.204 408.548 340.764 351.396 349.285 283.773 308.121 305.539
5.08% 4.91% 3.12% 2.5% 8.58% 7.67%

SRR315334 549.081 579.641 573.181 501.790 532.407 525.885 413.393 472.124 466.392
5.56% 4.38% 6.1% 4.8% 14.2% 12.82%

SRR387661 199.230 299.722 277.117 464.403 493.931 487.166 168.373 458.468 453.251
50.44% 39.09% 6.35% 4.9% 172.29% 169.19%

SRR534291 469.952 533.842 522.227 432.317 496.602 481.104 388.038 460.242 440.755
13.59% 11.12% 14.86% 11.28% 18.6% 13.58%

SRR534307 293.485 734.992 710.496 639.449 716.494 659.162 638.106 692.815 678.095
150.43% 142.08% 12.04% 3.08% 8.57% 6.26%

SRR534319 303.001 313.419 308.410 257.493 267.573 260.004 244.602 267.438 257.182
3.43% 1.78% 3.91% 0.97% 9.33% 5.14%

SRR545695 370.929 393.646 385.311 338.668 349.860 344.742 152.441 346.034 337.442
6.12% 3.87% 3.3% 1.79% 126.99% 121.35%

SRR545723 537.776 551.086 548.686 525.978 533.369 524.506 458.757 492.322 485.531
2.47% 2.02% 1.4% -0.27% 7.31% 5.83%
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Figure 6: AUC improvement for the ENCODE65 as-
semblies. Each point in the plot is a single experi-
ment in the data set, its position on the horizontal
axis is the area under the curve for the transcriptome
produced using the default parameter settings, and
its point on the vertical is the ratio of the maximum
area under the curve for any parameter in the advis-
ing set over the default. A value above 1.0 indicates
an improvement over the default parameters. For this
test the default was excluded from the advising set.
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Figure 7: Parameter vector use within the ENCODE65
set. The horizontal axis shows labels of the param-
eter vectors from Table 1 that produced the highest
AUC transcriptome for any sample in ENCODE65. The
vertical axis is the fraction of samples that have that
parameter vector as the maximum. The four groups
of bars show the use in the full set of 30 parameter
vectors and the reduced sets of 2, 4, and 8 parameter
vectors.
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the default value for that parameter vector for some
training example. The advisor set was then con-
structed by selecting parameter values for each pa-
rameter uniformly at random. In total 30 such pa-
rameter vectors were generated to match the advisor
set size developed using coordinate ascent. This ran-
domization procedure was then replicated to ensure
stability of the average across runs.

Figure 8 shows the AUC achieved by parameter ad-
vising on Scallop using the the coordinate ascent
derived advising set versus the AUC of advising us-
ing the random advisor set. Each point in the plot
represents one of the examples in ENCODE65 and its
position on the vertical and horizontal axes show the
AUC, the dashed line represents both advisor sets
achieving equal AUC and if a point is above this
line the coordinate ascent derived advisor set shows
a larger increase in AUC. The AUC of the random
advisor set is the average of 100 replicates, each of
which was produced using the procedure above and
parameter advising performed independently. Note
that once again in this experiment the default param-
eter vector was left out of the advising set, because of
this for the randomly derived advisor set many of the
experiments (29 of 65) had a decrease in accuracy rel-
ative to the default. Even though on some examples
the performance is similar between the two sets, the
average increase in AUC is much higher for the co-
ordinate ascent advisor set (median AUC increase of
31.23 versus 5.59). In all of the 65 examples, our new
method of finding advisor sets improves over using
the random set.

3.2.2 SRA

The SRA set gives some insight into the improvement
that can be gained in a high-throughput environment.
It contains a large number of samples that have all
been preprocessed in the same way with respect to
the aligner. In this scenario, using advising greatly
increases AUC without any manual adjustment. The
advising ratio for the 1595 samples in SRA is shown
in Figure 9 compared with the area under the curve
for the transcriptome produced using the Scallop

default parameter settings. Because, in general, the
samples in SRA have a smaller initial area under the
curve than those in Figure 6 (AUC values of 241.3
and 325.0 respectively), the median improvement is
higher at 28.9%. For several samples in the set the
AUC increases by more than a factor of 3. These
improvements are also seen for the resource-limited
advisor sets where the median improvement is 25.6%,
24.1% and 24.3% with 2, 4, and 8 parameter vectors,
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Figure 8: Comparison to randomly generated ad-
visor sets. Each point in the chart represents one
example from ENCODE65. The vertical axes show the
AUC of the transcript assembly chosen by parame-
ter advising using the advisor set found using coor-
dinate ascent. The horizontal axis shows the AUC
of advising using an advisor set containing 30 ran-
domly generated parameter vectors, averaged over
100 repetitions. The dashed line represents the point
where both advisor sets have equal performance. For
this experiment, the default parameter vector was ex-
cluded from all advisor sets.

respectively. Notice that the increase in AUC actu-
ally goes down slightly when increasing the size from
2 to 4. This is likely an artifact of the advisor sets
not being subsets of each other. This means that the
parameter vectors and sets may be slightly overfit to
the training data.

Figure 10 shows the frequency with which each of the
31, 8, 4, and 2 parameter vectors provides the maxi-
mum AUC when running parameter advising on the
SRA set. More parameter vectors are used than were
for ENCODE65, which is expected because the set of
samples is larger, but because all of the examples in
SRA were aligned using the same aligner many of the
choices are maximal more frequently. Surprisingly,
even though all of the examples are aligned using
STAR, many of the higher-frequency parameter vec-
tors were optimized for examples that were aligned
using TopHat (IDs 1–10). Ties, if any existed, would
be resolved in alphabetical order of the experiment
name then aligner but no ties for the maximum AUC
were found in SRA or ENCODE65.
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Figure 9: AUC improvement the SRA assemblies.
Each point in the plot is a single experiment in the
data set, its position on the horizontal axis is the area
under the curve for the transcriptome produced us-
ing the default parameter settings and its point on
the vertical is the ratio of the maximum area under
the curve for any parameter in the advising set over
the default. A value above 1.0 indicates an improve-
ment over the default parameters. For this test the
default was excluded from the advising set, but can
be included in practice to ensure the AUC is never
reduced.
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Figure 10: Parameter choice use within the SRA

set. The horizontal axis shows labels of the param-
eter vectors from Table 1 that produced the highest
AUC transcriptome for any sample in SRA. The ver-
tical axis is the fraction of samples that have that
parameter vector as the maximum. The four groups
of bars show the use in the full set of 31 parameter
vectors and the reduced sets of 2, 4, and 8 parameter
vectors.

3.3 Running time

As alluded to earlier, the wall time of running coor-
dinate ascent is much larger than the running time
of any single instance of Scallop. For the 30 exam-
ples from ENCODE10, running coordinate ascent took
between about 40 hours and over 22 days. Since run-
ning Scallop using the default parameter vector for
the same input takes between about 7 minutes and
1 hour, even if no parallelization was possible param-
eter advising would be able to run in a fraction of the
time of running coordinate ascent.

3.4 Advising for StringTie

In order to show the generalizability of the method,
we also applied it to the StringTie transcript as-
sembler. As before, we ran coordinate ascent on the
10 experiments in ENCODE10, now using StringTie.
We then show the utility of using the 30 parameter
vectors to perform parameter advising on ENCODE65.
Since StringTie has only 9 tunable parameters, the
coordinate ascent time was much shorter, but the in-
crease in accuracy was still observed. For the 30 coor-
dinate ascent runs, we saw a median increase in AUC
of 12.2%. We also saw 10.0% increase in AUC on the
similar leave-one-out experiments as those performed
above. (StringTie parameter vectors and individual
ENCODE10 AUC values are shown in Supplemental Ta-
bles 11 and 12 respectively.)

Figure 11 shows the advising ratio for the 65 RNA-
Seq samples from ENCODE65. For these examples the
median gain in AUC is 13.1% over using only the
default parameter vectors. For the StringTie as-
sembler, samples with lower AUC using the default
parameter vectors still generally have higher advis-
ing ratios but this correlation is not as strong as with
Scallop.

4 Discussion

Our results show that sample-specific parameter vec-
tors are essential to developing any strong genomic
pipeline that includes transcriptome assembly as a
step. In this work, we begin to answer the ques-
tion of how to produce transcriptome assemblies ef-
fectively for any input without sacrificing quality or
manpower. This is done using a combination of pa-
rameter tuning though exploration using coordinate
ascent and the established method of parameter ad-
vising. Two key points that made this merger viable
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Figure 11: AUC improvement the ENCODE65 assem-
blies using StringTie. Each point in the plot is a
single experiment in the data set, its position on the
horizontal axis is the area under the curve for the
transcriptome produced using the default parameter
settings and its point on the vertical is the ratio of the
maximum area under the curve for any parameter in
the advising set over the default. A value above 1.0
indicates an improvement over the default parame-
ters. For this test the default was excluded from the
advising set.

and distinguish transcriptome assembly from other
domains are: (1) the insight that because the pa-
rameter landscape likely has few maxima, finding a
suitable parameter set can be achieved by coordinate
ascent rather than exhaustive enumeration, and (2)
that a small, but representative, number of training
examples is sufficient to provide a large increase in
AUC over the default parameter setting.

The coordinate ascent procedure used is a very useful
means for finding parameter settings that increase the
AUC of predicted transcriptomes. The best results
can generally be achieved by simply following this
procedure for each new input. Because of the inter-
dependence between multiple parameters, our imple-
mentation of coordinate ascent does not allow steps
to be taken in multiple directions at once. It is thus
difficult to efficiently parallelize this process. In other
words, coordinate ascent finds more accurate param-
eter vectors at the cost of large computational time.
Instead, we have developed a method, which can be
reapplied to any domain that has the same parameter
behavior we observed, to find an advising set that is
as diverse as the training examples used.

One drawback of using coordinate ascent as a way to
find advisor sets is that the individual parameter vec-
tors are likely to be overfit to the training examples.

We have shown that even with this potential issue, we
are able to greatly improve the quality of the tran-
scripts produced according to the AUC measure. One
extension to this method that could possibly improve
the generalizability would be to perform coordinate
ascent simultaneously on more than one sample; we
have not explored the parameter landscape in this
case but, if the samples are similar enough, it could
also have one or a small number of local maxima.

The method we have described automates the task
of parameter selection for Scallop (and other as-
semblers) and greatly improves the quality of pro-
duced transcriptomes according to the area under
the curve measure, which compares the output to
the reference transcriptome database. But, in the
context of reference-based transcript assembly any
metric that only measures accuracy with respect to
some reference transcriptome may be fundamentally
flawed. The unknown transcripts are likely to be the
most interesting, and this measure of accuracy pe-
nalizes novelty by definition. For instance, an assem-
bler that has the reference transcriptome embedded
in the source code and throws away any novel tran-
script would have very high precision with regard to
the reference, but is clearly degrading its result to do
so.

In contrast, the metrics used to assess quality for de
novo transcriptome assembly do not penalize nov-
elty [Li et al., 2014, Bushmanova et al., 2016]. One
of the most accurate tools to perform this kind of
assessment is TransRate [Smith-Unna et al., 2016]
which measures the quality of a de novo assembly by
mapping the provided sequencing reads to the pro-
duced transcriptome and calculating a score that is
the sum of four quality metrics: nucleotide differ-
ences of the mapped reads, base coverage agreement
between positions on a transcript, read-pair mapping
agreement, and proportion of bases with no read sup-
port. All four of these metrics are still valid when as-
sessing a reference-based transcriptome assembly, but
using reference-free assessment tools for this task suf-
fers from the opposite problem: it completely ignores
the knowledge contained in the reference transcrip-
tome. We emphasize that this is an area of research
that is important to explore.
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Marçais.

Funding

This research is funded in part by the Gordon and
Betty Moore Foundation’s Data-Driven Discovery
Initiative through Grant GBMF4554 to C.K., by
the US National Science Foundation (CCF-1256087
and CCF-1319998) and by the US National Insti-
tutes of Health (R01HG007104 and R01GM122935).
This work was partially funded by The Shurl and
Kay Curci Foundation and the The Eric and Wendy
Schmidt Fund for Strategic Innovation.

References

Dan DeBlasio, Travis Wheeler, and John Kececioglu.
Estimating the accuracy of multiple alignments
and its use in parameter advising. In Proceed-
ings 16th International Conference Computational
Molecular Biology (RECOMB’12), volume 7262 of
LNBI, pages 45–59. Springer-Verlag, 2012.

John Kececioglu and Dan DeBlasio. Accuracy esti-
mation and parameter advising for protein multiple
sequence alignment. J. Comp. Bio., 20(4):259–279,
April 2013.

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin
Leyton-Brown. SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intel. Res., 32:
565–606, 2008.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown,
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