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Abstract

Computational tools used for genomic analyses are becoming more accurate but also increas-
ingly sophisticated and complex. This introduces a new problem in that these pieces of software
have a large number of tunable parameters which often have a large influence on the results
that are reported. We quantify the impact of parameter choice on transcript assembly and take
some first steps towards generating a truly automated genomic analysis pipeline by developing a
method for automatically choosing input-specific parameter values for reference-based transcript
assembly. By choosing parameter values for each input, the area under the receiver operator
characteristic curve (AUC) when comparing assembled transcripts to a reference transcriptome
is increased by 28.9% over using only the default parameter choices on 1595 RNA-Seq samples
in the Sequence Read Archive. This approach is general, and when applied to StringTie it in-
creases AUC by 13.1% on a set of 65 RNA-Seq experiments from ENCODE. Parameter advisors
for both Scallop and StringTie are available on Github1.

1 Introduction

As the field of computational biology has matured, there has been a significant increase in the
amount of data that needs to be processed and a corresponding increase in the reliance of users
without computational expertise on the highly complicated programs that perform the analyses.
At the same time, the number and sophistication of such tools has also increased. While the
accuracy of such applications is constantly improving, a new problem has emerged: the sometimes
overwhelming number of tunable parameters that each of these pieces of software brings with them.
Changing an application’s parameter settings can have a large influence on the quality of the results
produced (see Figure 1). When incorrect or non-ideal parameter choices are used, poorer results
may be obtained or false conclusions may be reported.

The default parameter choices that most users rely on for these programs are typically optimized
by the algorithm designer to maximize performance on the average case. This can be a problem
since the most interesting experiments are often not “average.”

Manually tuning the parameter settings of an application often produces more accurate results,
but it is very time consuming. The tuning process can be accelerated for users with domain
and/or algorithmic knowledge, as these experts can make more informed decisions about the correct
direction to proceed when altering parameter values. But tuning the parameter choices to increase

1https://github.com/Kingsford-Group/scallopadvising
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Figure 1: Influence of parameter choice on the produced transcriptome. The 3 sections of
transcript assemblies are those assembled using Scallop’s default parameter vector, an optimized
parameter vector, and the reference transcriptome for positions 30231125 to 30260786 on Chromo-
some 2 in SRR543291/HISAT. The red arrows highlight the two transcripts from the reference that
are not recovered using the default parameter vector.
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Figure 2: The Scallop parameter advisor. The advisor’s input mirrors that of Scallop (an
RNA-Seq sample that has been aligned to the reference genome). A set of candidate assemblies is
created by running Scallop on each parameter vector in the advisor set. The advisor then returns
the assembly with the highest AUC value, obtained by running GFFCompare and GTFCuff.

accuracy for one input does not imply that the results will be improved for all inputs. This means
that, for optimum performance, tuning must be repeated for each new piece of data. In the case
of high-throughput genomic analysis, this manual procedure is infeasible. For these applications,
without some sort of automatic parameter choice system, the defaults must be used.

To address the automated parameter choice problem for multiple sequence alignment (MSA), (au-
thor?) [1] have defined a framework to automatically select the parameter values for an input. This
process, called “parameter advising,” has been shown to greatly increase accuracy of MSA without
sacrificing wall-clock running time in most cases, and it can readily be applied to new domains.
Our new parameter advisor for transcript assembly depicted in Figure 2, details are provided in
the next section.

In this work, we improve the quality of reference-based transcriptome assembly by extending param-
eter advising. Transcriptome assembly takes an RNA-Seq sample and a reference genome as input
and reconstructs the set of transcripts that are present. Common tools for reference-based tran-
script assembly include Cufflinks [2], StringTie [3], TranscComb [4], and Scallop [5], Reference-
based assemblers first align reads to the reference genome using a tool such as HISAT [6], STAR [7],
TopHat [8], or SpliceMap [9]. Using the read splice locations (the positions where a read maps to
non-neighboring locations on a genome), the assembler constructs the exons and splice-junctions of
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each transcript. The produced transcriptome consists of a combination of transcripts that can be
mapped to ones we already know and transcripts that are unique to the sample that was assembled.
These transcriptomes are used to perform analyses such as expression quantification [10, 11] and
differential expression [12, 13].

For transcriptome assembly, the quality of a program’s output is commonly measured using the area
under the receiver operator characteristic curve (AUC) when the produced transcripts are mapped
to a reference transcriptome. We will use this as our method for selecting parameter choices for a
given input.

Contributions The contributions of this work are threefold: first, we show for the first time
that advising sets of parameter vectors can be constructed for tools with large numbers of tunable
parameters; second, we take some of the first steps towards producing a fully automated transcript
analysis pipeline by automating sample-specific parameter selection for multiple applications; and
third, we show that AUC is a better measure to use for parameter optimization in reference-based
transcript assembly than existing other de novo metrics.

We show that by applying the parameter advising framework, we can greatly increase the quality
of the transcriptomes produced using the Scallop assembly tool. Using this approach, the area
under the curve shows a median increased of 8.7% over using only the default parameter vector on
a set of 10 RNA-Seq experiments contained in the ENCODE database that are commonly used for
benchmarking. In a high-throughput pipeline the median improvement is even larger, 28.9% higher
AUC than the default parameter vector on over 1500 samples from the Sequence Read Archive.

We also confirm that this method can increase AUC for other programs by applying it to StringTie,
another popular reference-based transcript assembler. For a set of 65 examples from the ENCODE
database, we are able to increase its AUC by 13.1% over using only the default parameter vectors.

2 Developing a parameter advisor for transcript assembly

A parameter advisor has two components: (1) a set of parameter vectors – assignments of a value to
each of the tunable parameters for the application – called an “advisor set”; and (2) an assessment
criteria – a method to rank the quality of multiple solutions – called an “advisor estimator”. The
advisor selects the appropriate parameter vector by first running the application on the input
using each parameter vector in the set, and selecting the parameter vector that produces the best
result according to the accuracy estimator. The instantiations of the application being tuned are
independent processes that can be executed in parallel. Assuming that the number of processors
available is at least the number of parameter vectors in the advisor set, the only additional wall
time is the assessment of the results using the accuracy estimator (which can also be performed in
parallel) and the comparison of these values, both of which are negligible compared to the running
time of the application in most cases.

Parameter advising is an example of a posteriori parameter selection — it examines an application’s
output to select a parameter setting. In contrast, separate work has been done in other fields on
a priori selection, where the parameters are chosen in advance by looking at the raw input alone,
or a subsample of the input along with its result. This includes work such as SATZilla [14] for
choosing from a collection of SAT solvers, ParamILS [15] which finds optimal settings for the CPLEX

computational optimization tool, KmerGenie [16] for finding appropriate k-mer sizes for genomic
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assembly, as well as many tools developed for tuning hyperparameters in machine learning such as
TPOT [17] which uses genetic algorithms and Spearmint [18] which uses bayesian optimization. A
priori prediction is necessary in cases when it is not feasible to apply multiple configurations, but
more information is available when performing a posteriori assessment since the full final solution
can be examined.

Advisor estimator. For transcriptome assembly, a natural choice for the estimator is the area
under the curve (AUC) of an assemblies prediction of known transcripts. The minimum transcript
coverage value is used to rank the transcripts, then label the set of assembled transcripts that match
with the reference as positives and all others as negatives. The minimum coverage of a transcript
is the minimum number of reads that are aligned to each position along the transcript’s length.

In the case of transcript assembly, the ground truth set (the reference transcriptome) is much larger
than we will ever see in any single sample since it contains all transcripts that have been identified
and verified. Therefore, the sensitivity of any transcript assembly will by definition be very low, in
most cases below 0.1%. This means that the AUC value will also be very low. But, since there are
close to 200,000 transcripts in the reference, even small differences in sensitivity are large in the
true number of transcripts recovered correctly.

Advisor set. Finding an advisor set is especially challenging because Scallop has 18 tunable
parameters compared to approximately 5 for multiple sequence alignment, the previous application
of parameter advising. This means the previously developed method of enumerating a parameter
vector universe and then using combinatorial optimization to find an advisor set is infeasible. The
Scallop transcript assembler generates a transcriptome from a set of reads that have been aligned
to a reference genome. It first splits the genome into regions of non-overlapping reads, which are
called bundles. These bundles can be thought of as genes or groups of overlapping genes. Then,
within each bundle a splice graph is constructed based on the split reads that define possible
exon boundaries. Paths through the splice graph define potential transcripts, and the final set of
transcripts is formed by decomposing the splice graphs into paths while trying to respect as many
of the read mappings as possible. The tunable parameters of Scallop govern various stages of this
process, but we treat the application as a black box and do not examine the actual function of each
parameter only how the manipulation of it’s value impacts transcript quality.

2.1 Analyzing parameter behavior

We calculate the AUC of a transcript assembly by allowing Scallop to output all predicted
transcripts rather than thresholding on on minimum transcript coverage (the average number of
reads that are aligned to each position along the transcript’s length), and then allowing the tools
GFFCompare2 and GTFCuff3 to calculate an AUC by thresholding the minimum transcript cover-
age value. Because the reference transcriptome contains a large number of very rare transcripts
the sensitivity is very low, and in turn so is AUC. Since we may not know ahead of time for any
given input which transcripts, or even how many, to expect in a sample we cannot use a reduced
reference to inflate the sensitivity. While the values are small, comparing them will still indicate
relative performance improvements with respect to number of true and false positives using various

2https://github.com/gpertea/gffcompare
3https://github.com/Kingsford-Group/rnaseqtools
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parameter choices. In this work, as opposed to (author?) [5], we choose to not separately evaluate
multi-exon transcripts and single-exon transcripts but rather maximize a combined AUC.

Iterative optimization strategies such as gradient ascent [19], simulated annealing [20], and coordi-
nate ascent [21, sec. 5.4.3], work by systematically searching high-dimensional spaces based on a
specific optimization criteria. For these methods to work well the parameter landscape should be
free from a large number of local maxima as well as large discontinuities.

To determine the relationship between AUC and the value of the Scallop parameters, we calculate
the AUC of the assemblies produced when varying a single parameter’s value while keeping the
remaining parameters at the default. Figure 3a shows the effect of varying the “minimum subregion
gap” and “minimum transcript length, base” parameters. Figure 3b shows the relationship between
the parameters and AUC when varying both at the same time. Note that throughout this work, we
multiply area under the curve values by 104 for ease of presentation. AUC is a value in the range
[0, 1], but generally for transcript assembly the value is very small, typically < 0.1.

We examined the parameter behavior curves for several experiments from the ENCODE database,
and found that the curves for all 16 continuous parameters and all of the pairs of parameters tested
contained only one visible local maximum. These tests suggest that there may be very few local
maxima in the high-dimensional parameter space which means iterative optimization procedures
are less likely to get stuck at poor local maxima.

2.2 Finding an advisor set using coordinate ascent

The greedy coordinate-ascent-based procedure that we use here starts at the default parameter
vector. One dimension (parameter) at a time, we examine the AUC of the parameter vector with
that parameter changed by one step in each direction and update our current vector if we see
an improvement. We continue tuning one dimension until no more improvements are made. Our
procedure is deterministic meaning we would never take a step that decreases (or maintains) AUC,
unlike many implementations of coordinate ascent which include some randomness in decision
making. The step size for each dimension has a time-versus-granularity tradeoff: the larger the
step size, the less time spent in low AUC regions of the landscape; but when the size is too large, the
maximum may be repeatedly stepped over without ever being found. Rather than use a computed
step size for every coordinate in each iteration like many implementations of coordinate ascent,
we use predetermined but decreasing step sizes, taking inspiration from simulated annealing. We
start with different step sizes in each dimension that are large relative to the default value for that
parameter, and any time we interrogate the whole set of parameters without making any change
we decrease all of the step sizes by a factor of 1

4 and repeat the process. We continue optimizing the
parameters in this manner until both: (1) all of the step sizes are small (1 for integer parameters
and 0.01 for real numbers) and (2) no more improvements can be made within one step from the
current parameter vector. For the tunable parameters in Scallop that accept only binary input,
we tested both options each time the parameter was explored.

Coordinate ascent will find parameter vectors with higher AUC for an input, but it is slow so it
is not a viable procedure for finding input-specific parameter choices in practice. Instead, we can
use coordinate ascent to find higher AUC parameter vectors for a set of examples, then use the
collection of optimal parameters as the advisor set. Since the advisor sets are computed in advance
so as long as the the set of examples we use is diverse, meaning it represents the range of possible
inputs, the advisor sets can be reused for any new input.
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2.3 Data

We use 3 sets of human RNA-Seq experiments to train and validate parameter advising:

• ENCODE10 contains a collection of 10 RNA-Seq experiments from the ENCODE database [22]
that were used to benchmark Scallop and have been extensively used to evaluate transcrip-
tome assembly tools [3, 4]. 30 examples were produced by aligning each sample to the human
reference genome (GRCh38) using three tools: HISAT, STAR, and TopHat. A subset of these
examples was used to find the Scallop default parameter vector.

• ENCODE65 contains a collection of 65 RNA-Seq experiments, also from ENCODE, that were not
included in ENCODE10 and that had preexisting alignments in the database. These alignments
are produced using an aligner selected by the group that submitted the sample and are
mapped to either GRCh37 or GRCh38.

• SRA contains a collection of 1595 RNA-Seq experiments from the Sequence Read Archive [23]
that have been filtered for quality. We eliminate any sample that contained very few reads
unaligned (< 1GB sequence file) or aligned (< 1GB alignment file) since this is an indication
that the experiment may be degraded in some way. All remaining samples were aligned using
STAR to GRCh38.

All of experimental identifiers and command line arguments are available at: https://github.com/
Kingsford-Group/scallopadvising

3 Validating the transcript assembly parameter advisor

3.1 Finding a Scallop advisor set

The ENCODE10 dataset is reasonable for training because it is highly diverse and is expected produce
parameter vectors that should generalize. It contains samples that are widely accepted as bench-
marks and has examples that have been generated using a collection of commonly used aligners.
The coordinate ascent procedure described in Section 2.2 was used to find improved parameters for
each sample. While all parameter were tuned when optimizing parameter choices, for some param-
eters the final parameter vectors never included non-default parameter values, namely “maximum
dynamic programming table size”, “maximum edit distance”, and “minimum router count.”

Most of the parameters values deviate quite far from each other between samples, meaning there
is unlikely to be one parameter choice that works well for all of the training examples. Given the
output of the optimization, a new default parameter setting could be recommended for some single
parameters, such as in the case of “minimum mapping quality” where almost all samples used a
value of 11 rather then the default of 1, and “minimum transcript length increase” where most
samples found improvement by selecting values that are much smaller than the default. In fact, we
find that the parameter vector found for SRR545723/TopHat had higher AUC for all of the samples
in the ENCODE10 and would be the best vector to use as the default, 533.2 on average versus 475.5.
The deviation of the parameter vectors from the default is not surprising given that in this work
we are optimizing AUC on all transcripts, rather than only multi-exon transcripts as was done
previously. When training we placed no restrictions on any of the ranges of values any particular
parameter can take on, so while the values may seem somewhat unintuitive to domain experts they
are the values that give the highest AUC value for the training example.
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Table 1: Parameter vector subsets
Experiment Aligner 1 2 4 8

SRR545723 TopHat X X X
SRR534291 TopHat X
SRR387661 TopHat X
SRR534307 TopHat X

SRR387661 HISAT X
SRR545695 HISAT X
SRR534307 HISAT X X

SRR307911 STAR X
SRR315334 STAR X
SRR534319 STAR X
SRR534307 STAR X X

In reduced resource environments (e.g., when 31 processors are not available), it may be desirable
to run fewer parameter settings to keep the number of parallel processes smaller than the number
of available threads. We used the oracle set-finding method described by (author?) [1, 24] to find
a subset of parameter vectors that maximizes the average AUC for advising.

Advisor subsets are found using an integer linear program that has two sets of binary variables:
one variable for each parameter vector, and one for each example/parameter pair. Where an
example/parameter pair is a parameter vector used to assemble an example. Constraints are used
to ensure that only one pair for each example is chosen and that the associated parameter setting
is also chosen. The objective is then to maximize the sum of the accuracies of the chosen pairs
while only selecting a predefined number of parameter vectors. Using the samples in ENCODE10, we
found advising subsets of 1, 2, 4, and 8 parameter vectors. The advising subset choices are shown
Table 1. Note that an advising set of size 1 is equivalent to finding a new default parameter vector
since it maximizes the average accuracy across the training examples.

3.1.1 Advising on the training set

Figure 4 shows the AUC for all of the samples from ENCODE10. For each example (a sample
combined with an aligner) there are two values shown: the AUC of the parameter vector produced
as a result of coordinate ascent, and the AUC of the leave-one-out advising parameter vector. For
the leave-one-out experiment, advising was limited to the 18 parameter vectors that were learned on
examples produced using the 2 aligners and 9 samples that were different from the example being
tested. This test shows that the parameter vectors learned on specific examples, can generalize and
improve the AUC for other unrelated examples.

3.2 Assessing the generality of learned parameter vectors

3.2.1 ENCODE65

The ENCODE65 dataset is used to show that on a large number of samples from a range of align-
ers (possibly using non-default parameter settings) advising for Scallop provides a higher AUC
transcriptome. Figure 5 shows the relative increase in AUC, the AUC of the transcript assembly
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produced by the advised parameter vector normalized by that of the default parameters, for all
65 examples in ENCODE65. Using advising on this highly diverse set of samples increases the AUC
of each transcriptome by a median of 31.2%. When the default parameter vector performs well
there is a smaller increase in AUC. This is reasonable since there is less room for improvement for
these samples. When using the resource limited sets, the median increase remains 18.2%, 19.0%
and 24.4% for sets of 2, 4, and 8 parameter settings respectively. Even with these small sets, there
is a large increase in AUC.

Figure 6 shows the frequency with which each of the 31 (the whole set of parameter vectors learned
on ENCODE10), 8, 4, and 2 parameter vectors provides the maximum AUC when running parameter
advising on the ENCODE65 set. Not all 31 parameter vectors provide the best AUC over the 65
samples, but more parameter settings are maximal across the samples as you increase the size of
the advisor set. Only 4 parameter vectors of the set of 8 provide an assembly with the maximum
AUC for all of the samples in ENCODE65, as well as only 2 of the 4.

Random Advisor Sets. To confirm that the increase in accuracy is due to our advisor set
construction method and not an artifact of having multiple choices of parameter vectors, a collection
of random parameter vectors were generated and used for parameter advising. A range was defined
for each tunable parameter by examining all of the values that provided an increase in AUC
for any example at any stage in coordinate ascent. A random vector was then constructed by
selecting parameter values for each parameter uniformly at random in these ranges. In total, 30
such parameter vectors were generated to match the advisor set size developed using coordinate
ascent. This randomization procedure was then replicated 100 times to ensure stability of the
average.

Figure 7 shows the AUC achieved by parameter advising on Scallop using the the coordinate-
ascent-derived advising set versus the AUC of advising using the random advisor sets. The default
parameter vector was left out of the all advising sets. Because of this, many of the randomly
generated advisor sets (29 of 65) led to a decrease in accuracy relative to the default. On some
examples the performance is similar between the two sets, but the average increase in AUC is much
higher for the coordinate ascent advisor set (median AUC increase of 31.23 versus 5.59). In all of
the 65 examples, the coordinate ascent sets outperform the random ones.

3.2.2 SRA

Our SRA dataset gives some insight into the improvement that can be gained in a high-throughput
environment. It contains a large number of samples that have all been preprocessed in the same way
with respect to the aligner. The advising ratio for the 1595 samples in SRA is shown in Figure 8
compared with the AUC for the transcriptome produced using the Scallop default parameter
settings. Because, in general, the samples in SRA have a smaller initial area under the curve than
those in Figure 5 (AUC values of 241.3 and 325.0 respectively), the median improvement is higher
at 28.9%. For several samples in the set the AUC increases by more than a factor of 3. These
improvements are also seen for the resource-limited advisor sets where the median improvement is
25.6%, 24.1% and 24.3% with 2, 4, and 8 parameter vectors, respectively. Notice that the increase
in AUC actually goes down slightly when increasing the size from 2 to 4. This is likely an artifact
of the reduced advisor sets not being subsets of each other. This means that the parameter vectors
and sets may be slightly overfit to the training data. Figure 9 shows the frequency with which

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 30, 2019. ; https://doi.org/10.1101/342865doi: bioRxiv preprint 

https://doi.org/10.1101/342865
http://creativecommons.org/licenses/by-nc/4.0/


each of the 31, 8, 4, and 2 parameter vectors provides the maximum AUC when running parameter
advising on the SRA set. Because all of the examples in SRA were aligned using the same aligner
many of the choices are maximal more frequently. Surprisingly, even though all of the examples
are aligned using STAR, many of the higher-frequency parameter vectors had been optimized for
examples that were aligned using TopHat (IDs 1–10). Ties, if any existed, would be resolved in
alphabetical order of the experiment name then aligner but no ties for the maximum AUC were
found in SRA or ENCODE65.

3.3 Running time

The wall time of running coordinate ascent is much larger than the running time of any single
instance of Scallop. For the 30 examples from ENCODE10, running coordinate ascent for any single
example took between about 40 hours and over 22 days.

Running an advisor would take only as much wall-time as running a single instance of Scallop

with appropriate available resources. Running Scallop using the default parameter vector for
these same samples takes between ∼7 minutes and 1 hour. Even if no parallelization was possible,
parameter advising would be able to run in a fraction of the time of running coordinate ascent.

3.4 Advising for StringTie

In order to show the generalizability of this method, we also applied it to the StringTie transcript
assembler. As before, we ran coordinate ascent on the 10 experiments in ENCODE10, now using
StringTie, to select the 30 non-default parameter vectors. Since StringTie has only 9 tunable
parameters, the coordinate ascent time was much shorter, but the increase in accuracy was still
observed. For the 30 coordinate ascent runs, we saw a median increase in AUC of 12.2% on
ENCODE10. We also saw 10.0% increase in AUC on the similar leave-one-out experiments as those
performed above.

Figure 10 shows the advising ratio for the 65 RNA-Seq samples from ENCODE65. For these examples
the median gain in AUC is 13.1% over using only the default parameter vectors. For the StringTie
assembler, samples with lower AUC using the default parameter vectors still generally have higher
advising ratios but this correlation is not as strong as with Scallop.

3.5 Justification for using AUC as the advising accuracy estimator in parameter
optimization

Comparison to the reference transcriptome is the commonly used metric to benchmark reference-
based assemblers. However, the performance of AUC is bounded by the completeness of the refer-
ence transcriptome. By definition, all transcripts in an assembly that do not map to the reference
provide a reduction of AUC, even those that represent “novel” transcripts. Here a novel transcript
is one that is present in the sample but has not been included in the reference yet.

We tested the ability to improve transcript assembly parameter choices of 3 alternatives to AUC
which do not rely on the reference transcriptome in simulation where we know the total ground
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truth. The metrics we compare to are Transrate [25], “number of reads” mapped to the transcrip-
tome using Salmon, and a linear combination of the features from Transrate, number of reads,
and other novel features combined as a weighted sum (labeled as “linear”).

Simulated datasets were constructed using the samples in ENCODE10. We restricted the reference
transcriptome for each experiment to be the collection of transcripts from the reference that map
to assembled transcripts in that experiment. We then limit the set of sequencing reads to those
that map to the transcripts in this reduced reference.

Since the reduced reference has all of the transcripts in the sample and nothing else, the AUC
using this reduced reference transcriptome in this case is the ground truth accuracy. We can then
compare just how well the other metrics are able to recover this known truth set.

A subset of this reduced reference set was used to test AUC in coordinate ascent. In this way, AUC
only has partial information about which transcripts are in the sample.

Figure 11 shows the improvement of the parameter vectors found using coordinate ascent when
optimizing AUC using the entire restricted reference (“whole AUC”) which represents the best
achievable optimization, AUC using the subset of restricted reference (“partial AUC”) which rep-
resents AUC as used in practice, and the 3 other metrics mentioned above. The transcript assem-
blies constructed using the parameter vectors optimized using partial AUC as the objective recover
more of the ground truth than those constructed using the default parameter vector. For the other
metrics, we see that the transcript assemblies constructed with the parameter vectors found though
optimization often showed a decrease in accuracy with respect to the transcripts constructed us-
ing the default parameter vector. These metrics are being lead astray by not incorporating the
knowledge contained in the reference transcriptome.

An ideal test for how much predictive power is lost by optimizing AUC as opposed to other metrics
would be to use a fully simulated RNA-seq sample where we know all of the transcripts that
are present We choose to use experiments that more closely resemble biological samples in that
they include extraneous sequencing reads that comes from amplification, sequencing, or assembly
errors.

4 Conclusions

Our results show that sample-specific parameter vectors are important for developing any genomic
pipeline that includes transcriptome assembly as a step. We begin to answer the question of
how to produce transcriptome assemblies effectively for any input without sacrificing quality or
expanding manpower. This is done using a combination of parameter tuning though exploration
using coordinate ascent and the established method of parameter advising. Two key insights
that made this merger viable and distinguish transcriptome assembly from other domains are:
(1) because the parameter landscape likely has few local maxima, coordinate ascent rather than
exhaustive enumeration can be used to find advisor sets, and (2) that a small, but representative,
number of training examples is sufficient to provide a large increase in AUC over the default
parameter setting.

The coordinate ascent procedure is a very useful means for finding parameter settings that increase
the AUC of predicted transcriptomes. The best results can generally be achieved by simply following
this procedure for each new input, although at a high running time. Our implementation of
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coordinate ascent does not allow steps to be taken in multiple directions at once. It is thus difficult to
efficiently parallelize this process. In other words, coordinate ascent finds more accurate parameter
vectors at the cost of large computational time. Instead, we have developed a method, which can
be reapplied to any domain that has the same parameter behavior we observed, to find an advising
set that is as diverse as the training examples used.

One drawback of using a single example to find each parameter vector in the set is that coordinate
ascent is likely to overfit to the training examples. We have shown that even with this potential
issue, we are able to improve the quality of the transcripts produced according to the AUC measure.

All of the results that we have shown assume that all transcripts in a sequencing sample can be
assembled with a single choice of parameter vector. While this is an assumption made by most
transcript assemblers, it may not be true in practice. One extension of this work is to provide
transcript-level parameter choices to help improve the assembly quality. This would require the
adaptation of AUC, or some other metric that could work well for parameter optimization, to
provide transcript-level assessment.

The method we have described automates the task of parameter selection for Scallop and StringTie,
and improves the quality of produced transcriptomes according to the area under the curve measure
comparing the output to the reference transcriptome database. As we have shown, this measure
works better at the task of parameter optimization than the existing de novo measures. But our
results also show that there is room to improve this measure since in Figure 11 partial AUC is
never able to recover all of the “novelty” present in the sample. The unknown transcripts can
sometimes be the most interesting, and this measure of accuracy penalizes novelty by definition,
and the assembler may not recover this unknown transcript if it is highly divergent from those we
already know.

An alternate explanation of the results in Section 3.5 are that the assemblies produced by the
parameter vectors found by optimizing the de novo metrics to be optimal are actually more realistic
than those found for AUC. For this to be true this would mean there is a large number of false
positives found when constructing a transcript assembly using the default parameter vector. Even
though there is some debate over the completeness of the reference transcriptome [26, 27], this
seems to be unlikely. In the future, it would be ideal to find some new measure that is some hybrid
between AUC and de novo assessment that could both use current knowledge but still be able to
detect novel transcripts. When this is available, it can replace AUC as the measure for constructing
and using advising for transcript assembly.
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the horizontal axis. Each bar’s height is the normalized difference between the default AUC and
that of the assembly produced using either coordinate ascent (blue) or leave-one-out (red).
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Figure 5: AUC improvement for ENCODE65. Each point is a single experiment positioned by
the AUC of the default Scallop parameters (horizontal axis) and the ratio of the advised AUC
over the default (vertical). A value above 1.0 indicates an improvement.
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Figure 6: Frequency of parameter vector use for advising the samples of ENCODE65. The
horizontal axis shows labels of the experiments from which the parameter vectors were trained that
produced the highest AUC transcriptome for any sample in the dataset. The vertical axis is the
fraction of samples that have that parameter vector as the maximum. The four groups of bars
show the use in the full set of 30 parameter vectors and the reduced sets of 2, 4, and 8 parameter
vectors.
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Figure 8: AUC improvement the SRA assemblies. Each point is a single experiment positioned
by the AUC of the default Scallop parameters (horizontal axis) and the ratio of the advised AUC
over the default (vertical). A value above 1.0 indicates an improvement. For this test the default
was excluded from the advising set, but it can be included in practice to ensure the AUC is never
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Figure 9: Frequency of parameter vector use for advising the samples of SRA. The
horizontal axis shows labels of the experiments from which the parameter vectors were trained that
produced the highest AUC transcriptome for any sample in the dataset. The vertical axis is the
fraction of samples that have that parameter vector as the maximum. The four groups of bars
show the use in the full set of 30 parameter vectors and the reduced sets of 2, 4, and 8 parameter
vectors.
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Figure 10: AUC improvement the ENCODE65 assemblies using StringTie. Each point is
a single experiment positioned by the AUC of the default Scallop parameters (horizontal axis)
and the ratio of the advised AUC over the default (vertical). A value above 1.0 indicates an
improvement.
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Figure 11: Relative increase in accuracy over default of using various transcript as-
sembly metrics for coordinate ascent. The bars represent the difference in accuracy between
the optimal parameter choice for each metric and the defaults, normalized by the default accuracy
for each of the examples from ENCODE10.
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