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Abbreviations:	18	

AGP	–	American	Gut	Project	19	

ANOSIM	–	Analysis	of	Similarity	20	

AUC	–	Area	Under	the	Curve		21	

BMI	–	Body	Mass	Index	22	

FST	–	Fixation	Index	23	

GWAS	-	Genome-Wide	Association	Studies	24	

HMP	–	Human	Microbiome	Project	25	

MAF	-	Minor	Allele	Frequency		26	

OTU	–	Operational	Taxonomic	Unit	27	

PERMANOVA	-	Permutational	Multivariate	Analysis	of	Variance	28	

RF	–	Random	Forest	29	

ROC	–	Receiver	Operating	Characteristic		30	

SMOTE	–	Synthetic	Minority	Over-sampling	Technique	 	31	
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Abstract:	32	

	 Composed	 of	 hundreds	 of	 microbial	 species,	 the	 composition	 of	 the	 human	 gut	33	

microbiota	 can	 vary	 with	 chronic	 diseases	 underlying	 health	 disparities	 that	34	

disproportionally	 affect	 ethnic	minorities.	However,	 the	 influence	 of	 ethnicity	 on	 the	 gut	35	

microbiota	 remains	 largely	 unexplored	 and	 lacks	 reproducible	 generalizations	 across	36	

studies.	 By	 distilling	 associations	 between	 ethnicity	 and	 gut	microbiota	 variation	 in	 two	37	

American	datasets	including	1,673	individuals,	we	report	12	microbial	genera	and	families	38	

that	 reproducibly	 vary	 by	 ethnicity.	 Interestingly,	 a	 majority	 of	 these	 microbial	 taxa,	39	

including	the	most	heritable	bacterial	family,	Christensenellaceae,	overlap	with	genetically-40	

associated	lineages	and	form	co-occurring	clusters	of	taxa	linked	by	similar	fermentative	and	41	

methanogenic	 metabolic	 processes.	 These	 results	 demonstrate	 recurrent	 associations	42	

between	 specific	 taxa	 in	 the	 gut	 microbiota	 and	 ethnicity,	 providing	 hypotheses	 for	43	

examining	specific	members	of	the	gut	microbiota	as	mediators	of	health	disparities.	 	44	
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Introduction:	45	

	 The	human	gut	microbiota	at	fine	resolution	varies	extensively	between	individuals	46	

(1-3),	and	this	variability	frequently	associates	with	diet(4-7),	age(6,	8,	9),	sex(6,	9,	10),	body	47	

mass	 index	 (BMI)	 (1,	 6),	 and	 diseases	 presenting	 as	 health	 disparities	 (11-14).	 The	48	

overlapping	risk	factors	and	burden	of	many	chronic	diseases	disproportionally	affect	ethnic	49	

minorities	in	the	United	States,	yet	the	underlying	biological	mechanisms	mediating	these	50	

substantial	disparities	 largely	remain	unexplained.	Recent	evidence	is	consistent	with	the	51	

hypothesis	that	ethnicity	associates	with	microbial	abundance,	specifically	in	the	oral	cavity,	52	

gut,	and	vagina	(15-17).	Ethnicity	can	capture	many	facets	of	biological	variation	including	53	

social,	economic	and	cultural	variation	as	well	as	aspects	of	human	genetic	variation	and	54	

biogeographical	 ancestry	 (18,	 19).	 Despite	 the	 importance	 of	 understanding	 the	55	

interconnections	 between	 ethnicity,	 microbiota,	 and	 health	 disparities,	 there	 are	 no	56	

replicated	generalizations	about	the	influence	of	ethnicity	on	variation	in	the	gut	microbiota	57	

and	specific	microbial	taxa	in	diverse	American	populations,	even	for	healthy	individuals	(6).		58	

Here,	we	comprehensively	examine	connections	between	self-declared	ethnicity	and	59	

gut	microbiota	variation	in	more	than	a	thousand	individuals	sampled	by	the	American	Gut	60	

Project	(AGP,	N=1375)	(20)	and	the	Human	Microbiome	Project	(HMP,	N=298)	(6).	Human	61	

genetic	diversity	 in	 the	HMP	has	been	 shown	 to	 associate	with	differences	 in	microbiota	62	

composition,	and	it	has	been	demonstrated	that	genetic	population	structure	within	the	HMP	63	

partially	delineates	self-declared	ethnicity	(21).	Ethnicity	was	not	found	to	have	a	significant	64	

association	 with	 microbiota	 composition	 in	 a	 middle-eastern	 population,	 however	65	

microbiota	 influencing	 factors	 such	 as	 lifestyle	 and	 environment	 across	 participants	was	66	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342915doi: bioRxiv preprint 

https://doi.org/10.1101/342915
http://creativecommons.org/licenses/by/4.0/


	

	 5	

homogenous	compared	to	the	ethnic,	sociocultural,	economic,	and	dietary	diversity	found	67	

within	the	United	States	(22).		68	

	69	

Results:	70	

Ethnicity	subtly	demarcates	microbiota	71	

	 We	first	evaluate	gut	microbiota	distinguishability	between	AGP	ethnicities	(Fig	1A,	72	

family	 taxonomic	 level,	 Asians-Pacific	 Islanders	 (N=88),	 Caucasians	 (N=1237),	 Hispanics	73	

(N=37),	and	African	Americans	(N=13)),	sexes	(female	(N=657),	male	(N=718)),	age	groups	74	

(years	 grouped	 by	 decade),	 and	 categorical	 BMI	 (underweight	 (N=70),	 normal	 (N=873),	75	

overweight	 (N=318),	 and	 obese	 (N=114))	 (Demographic	 details	 in	 S1	 Table).	 97%	76	

Operational	Taxonomic	Units	(OTUs)	generated	for	each	dataset	are	utilized	throughout	to	77	

maintain	consistency	with	other	published	literature,	however	microbial	taxonomy	of	the	78	

HMP	 is	 reassigned	 using	 the	 Greengenes	 reference	 database	 (23).	 While	 interindividual	79	

microbiota	 heterogeneity	 dominates,	 Analyses	 of	 Similarity	 (ANOSIM)	 reveal	 subtle	 but	80	

significant	degrees	of	total	microbiota	distinguishability	for	ethnicity,	BMI,	and	sex,	but	not	81	

for	age	(Fig	1B,	Ethnicity;	Fig	1C,	BMI;	Fig	1D,	Sex;	Fig	1E,	Age)	(24).	Recognizing	that	subtle	82	

microbiota	 distinguishability	 between	 ethnicities	 may	 be	 spurious,	 we	 independently	83	

replicate	 the	 ANOSIM	 results	 from	 HMP	 African	 Americans	 (N=10),	 Asians	 (N=34),	84	

Caucasians	(N=211)	and	Hispanics	(N=43)	(S2A	Table,	R=0.065,	p=0.044),	and	observe	no	85	

significant	 distinguishability	 for	 BMI,	 sex,	 and	 age.	 Higher	 rarefaction	 depths	 increase	86	

microbiota	 distinguishability	 in	 the	 AGP	 across	 various	 beta	 diversity	 metrics	 and	87	

categorical	 factors	 (S2B	 Table),	 and	 significance	 increases	 when	 individuals	 from	88	

overrepresented	ethnicities	are	subsampled	from	the	average	beta	diversity	distance	matrix	89	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342915doi: bioRxiv preprint 

https://doi.org/10.1101/342915
http://creativecommons.org/licenses/by/4.0/


	

	 6	

(S2C	 Table).	 Supporting	 the	 ANOSIM	 results,	 Permutational	 Multivariate	 Analysis	 of	90	

Variance	(PERMANOVA)	models	with	four	different	beta	diversity	metrics	showed	that	while	91	

all	factors	had	subtle	but	significant	associations	with	microbiota	variation	when	combined	92	

in	a	single	model,	effect	sizes	were	highest	for	ethnicity	in	7	out	of	8	comparisons	across	beta	93	

diversity	metrics	and	rarefaction	depths	in	the	AGP	and	HMP	(S2D	Table).	We	additionally	94	

test	microbiota	distinguishability	by	measuring	the	correlation	between	beta	diversity	and	95	

ethnicity,	BMI,	sex,	and	age	with	an	adapted	BioEnv	test	(S2E	Table)	(25).	Similar	degrees	96	

of	microbiota	structuring	occur	when	all	factors	are	incorporated	(Spearman	Rho=0.055,	p-97	

values:	Ethnicity=0.057,	BMI<0.001,	Sex<0.001,	Age=0.564).	Firmicutes	and	Bacteroidetes	98	

dominated	the	relative	phylum	abundance,	with	each	representing	between	35%	and	54%	99	

of	the	total	microbiota	across	ethnicities	(S1	Fig).		100	
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	101	

Fig	 1.	 Gut	microbiota	 composition	 and	distinguishability	 by	 ethnicity,	 sex,	 age	 and	102	

BMI.	(A)	The	average	relative	abundance	of	dominant	microbial	families	for	each	ethnicity.	103	

(B-E)	 Principle	 coordinates	 analysis	 plots	 of	 microbiota	 Bray-Curtis	 beta	 diversity	 and	104	

ANOSIM	distinguishability	 for:	 (B)	Ethnicity,	 (C)	Sex,	 (D)	Age,	 (E)	BMI.	 In	B-E,	each	point	105	

represents	the	microbiota	of	a	single	sample,	and	colors	reflect	metadata	of	that	individual.	106	

Caucasian	points	are	reduced	in	size	to	allow	clearer	visualization.	107	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2018. ; https://doi.org/10.1101/342915doi: bioRxiv preprint 

https://doi.org/10.1101/342915
http://creativecommons.org/licenses/by/4.0/


	

	 8	

	108	

	 We	next	test	for	ethnicity	signatures	in	the	gut	microbiota	by	analyzing	alpha	and	beta	109	

diversity,	 abundance	 and	 ubiquity	 distributions,	 distinguishability,	 and	 classification	110	

accuracy	 (26).	 Shannon’s	 Alpha	 Diversity	 Index	 (27),	 which	 weights	 both	 microbial	111	

community	 richness	 (Observed	 OTUs)	 and	 evenness	 (Equitability),	 significantly	 varies	112	

across	ethnicities	 in	 the	AGP	dataset	 (Kruskal	Wallis,	p=2.8e-8)	with	 the	 following	ranks:	113	

Hispanics	>	Caucasians	>	Asian-Pacific	Islanders	>	African	Americans	(Fig	2A).	Some	of	these	114	

results	replicate	in	the	HMP	dataset,	where	we	find	a	significantly	lower	Shannon	diversity	115	

for	Asian-Pacific	Islanders	relative	to	Caucasians,	and	a	trend	of	lower	Shannon	diversity	for	116	

Asian-Pacific	 Islanders	relative	 to	Hispanics.	Five	alpha	diversity	metrics,	 two	rarefaction	117	

depths,	 and	 separate	 analyses	 of	 Observed	 OTUs	 and	 Equitability	 generally	 confirm	 the	118	

results	(S3A	Table).		119	
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	120	

Fig	2.	Ethnicity	associates	with	diversity	and	composition	of	the	gut	microbiota.	 (A)	121	

Center	lines	of	each	boxplot	depict	the	median	by	which	ethnicities	were	ranked	from	low	122	

(left)	 to	 high	 (right);	 the	 lower	 and	 upper	 end	 of	 each	 box	 represent	 the	 25th	 and	 75th	123	

quartiles	respectively;	whiskers	denote	the	1.5	interquartile	range,	and	black	dots	represent	124	

individual	 samples.	 Lines	 in	 the	middle	 of	 violin	plots	depict	 the	mean,	 and	p-values	 are	125	

Bonferroni	 corrected	within	each	dataset.	 (B)	Left	 extending	violin	plots	 represent	 intra-126	

ethnic	distances	 for	each	ethnicity,	and	right	extending	violin	plots	depict	all	 inter-ethnic	127	

distances.	Center	lines	depict	the	mean	beta	diversity.	Significance	bars	above	violin	plots	128	
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depict	Bonferroni	corrected	pairwise	Mann-Whitney-U	comparisons	of	the	intra-intra-	and	129	

intra-inter-ethnic	 distances.	 (C)	 Within	 each	 ethnicity,	 OTUs	 shared	 by	 at	 least	 50%	 of	130	

samples.	Colored	lines	represent	a	robust	ordinary	least	squares	regression	within	OTUs	of	131	

each	 ethnicity,	 shaded	 regions	 represent	 the	 95%	 confidence	 interval,	 R2	 denotes	 the	132	

regression	correlation,	the	OTUs	column	indicates	the	number	of	OTUs	with	>50%	ubiquity	133	

for	 that	 ethnicity,	Mean	A/U	 is	 the	 average	 abundance/ubiquity	 ratio,	 and	 the	 padj	 is	 the	134	

regression	significance	adjusted	and	Bonferroni	corrected	for	the	number	of	ethnicities.	135	

	136	

	 If	 ethnicity	 impacts	 microbiota	 composition,	 pairwise	 beta	 diversity	 distances	137	

(ranging	 from	0/completely	dissimilar	 to	1/identical)	will	be	greater	between	ethnicities	138	

than	within	ethnicities.	While	average	gut	microbiota	beta	diversities	across	all	individuals	139	

are	 high	 (Fig	 2B,	 Bray-Curtis=0.808),	 beta	 diversities	 between	 individuals	 of	 the	 same	140	

ethnicity	 (intra-ethnic,	 Bray-Curtis=0.806)	 are	 subtly,	 but	 significantly,	 lower	 than	 those	141	

between	 ethnicities	 in	 both	 the	 AGP	 (inter-ethnic,	 Bray-Curtis=0.814)	 and	HMP	 datasets	142	

(intra-ethnic,	Bray-Curtis=0.870	versus	 inter-ethnic,	Bray-Curtis=0.877).	We	confirm	AGP	143	

results	by	subsampling	individuals	from	overrepresented	ethnicities	across	beta	metrics	and	144	

rarefaction	depths	 (S4A-4B	Tables).	 Finally,	we	 repeat	 analyses	across	beta	metrics	 and	145	

rarefaction	depths	using	only	the	average	distance	of	each	individual	to	all	individuals	from	146	

the	ethnicity	to	which	they	are	compared	(S4C-4D	Tables).		147	

	 Next,	we	explore	inter-ethnic	variation	in	the	number	of	OTUs	shared	in	at	least	50%	148	

of	individuals	within	an	ethnicity.	Out	of	5,591	OTUs	in	the	total	AGP	dataset,	101	(1.8%)	149	

meet	 this	 ubiquity	 cutoff	 in	 all	 ethnicities,	 and	 293	 (5.2%)	 unique	OTUs	meet	 the	 cutoff	150	

within	at	least	one	ethnicity.	Hispanics	share	the	most	ubiquitous	OTUs	and	have	the	lowest	151	
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average	 abundance/ubiquity	 (A/U)	 ratio	 (Fig	 2C),	 indicating	 higher	 stability	 of	 lower	152	

abundance	shared	OTUs	(28).	This	result	potentially	explains	their	significantly	lower	intra-153	

ethnic	beta	diversity	distance	and	thus	higher	microbial	community	overlap	relative	to	the	154	

other	ethnicities	(Fig	2B).	Comparisons	in	the	AGP	between	the	higher	sampled	Hispanic,	155	

Caucasian,	and	Asian-Pacific	 Islander	ethnicities	also	reveal	a	trend	wherein	higher	 intra-156	

ethnic	community	overlap	(Fig	2B)	parallels	higher	numbers	of	ubiquitous	OTUs	(Fig	2C),	157	

higher	 Shannon	 Alpha	 diversity	 (Fig	 2A),	 and	 higher	 stability	 of	 ubiquitous	 OTUs	 as	158	

measured	by	the	abundance/ubiquity	(A/U)	ratio	(Fig	2C).		159	

	 We	 next	 assess	 whether	 a	 single	 ethnicity	 disproportionately	 impacts	 total	 gut	160	

microbiota	distinguishability	in	the	AGP	by	comparing	ANOSIM	results	from	the	consensus	161	

beta	diversity	distance	matrix	when	each	ethnicity	is	sequentially	removed	from	the	analysis	162	

(Fig	 3A	 and	 S2E	 Table).	 Distinguishability	 remains	 unchanged	 when	 the	 few	 African	163	

Americans	are	removed,	but	is	lost	upon	removal	of	Asian-Pacific	Islanders	or	Caucasians	164	

(Fig	3A).	Notably,	removal	of	Hispanics	 increases	distinguishability	among	the	remaining	165	

ethnicities,	which	may	be	due	to	higher	degree	of	beta	diversity	overlap	observed	between	166	

Hispanics	and	other	ethnicities	(S4B	Table).	Results	conform	across	rarefaction	depths	and	167	

beta	 diversity	 metrics	 (S2F	 Table),	 and	 pairwise	 combinations	 show	 strong	168	

distinguishability	between	African	Americans	and	Hispanics	(ANOSIM,	R=0.234,	p=0.005),	169	

and	Asian-Pacific	Islanders	and	Caucasians	(ANOSIM,	R=0.157,	p<0.001).		170	

Finally,	 to	 complement	 evaluation	 with	 ecological	 alpha	 and	 beta	 diversity	 we	171	

implement	a	random	forest	supervised	learning	algorithm	to	classify	gut	microbiota	from	172	

genus	level	community	profiles	into	their	respective	ethnicity.	We	build	four	one-versus-all	173	

binary	classifiers	to	classify	samples	from	each	ethnicity	compared	to	the	rest,	and	use	two	174	
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different	 sampling	 approaches	 to	 train	 the	 models,	 Synthetic	 Minority	 Over-sampling	175	

Technique	 (SMOTE)	 (29)	 and	 down-sampling,	 for	 overcoming	 uneven	 representation	 of	176	

ethnicities	 in	 both	 the	 datasets	 (see	 Methods).	 Given	 that	 the	 area	 under	 the	 receiver	177	

operating	 characteristic	 (ROC)	 curve	 (or	AUC)	 of	 a	 random	guessing	 classifier	 is	 0.5,	 the	178	

models	 classify	 each	 ethnicity	 fairly	 well	 (Fig	 3B)	 with	 average	 AUCs	 across	 sampling	179	

techniques	and	datasets	of	0.78	for	Asian-Pacific	Islanders,	0.76	for	African	Americans,	0.69	180	

for	Hispanics,	and	0.70	for	Caucasians.	181	

	182	

Fig	 3.	Microbiota	 distinguishability	 and	 classification	 ability	 across	 ethnicities.	 (A)	183	

ANOSIM	distinguishability	between	all	combinations	of	ethnicities.	Symbols	depict	specific	184	

ethnicities	included	in	the	ANOSIM	tests,	and	boxes	denote	the	R-value	as	a	heatmap,	where	185	
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white	indicates	increasing	and	black	indicates	decreasing	distinguishability	relative	to	the	R-186	

value	 with	 all	 ethnicities.	 (B)	 Average	 ROC	 curves	 (for	 10-fold	 cross-validation)	 and	187	

prediction	 performance	 metrics	 for	 one-versus-all	 random	 forest	 classifiers	 for	 each	188	

ethnicity,	using	SMOTE	(29)	and	down	subsampling	approaches	for	training.		189	

 190	

Recurrent	taxa	associations	with	ethnicity	191	

Subtle	to	moderate	ethnicity-associated	variation	in	microbial	communities	may	in	192	

part	be	strongly	driven	by	differential	abundance	of	certain	microbial	lineages.	We	find	that	193	

16.2%	(130/802)	of	the	AGP	taxa	and	20.6%	(45/218)	of	HMP	taxa	across	all	classification	194	

levels	 (i.e.	 phylum	 to	 genus,	S5	Table)	 significantly	 vary	 in	 abundance	 across	 ethnicities	195	

(Kruskal-Wallis,	 pFDR<0.05).	 Between	 datasets,	 19.2%	 (25/130)	 of	 the	 AGP	 and	 55.6%	196	

(25/45)	 of	 the	 HMP	 varying	 lineages	 replicate	 in	 the	 other	 dataset,	 representing	 a	197	

significantly	greater	degree	of	overlap	than	would	be	expected	by	chance	(AGP	replicated,	198	

Fisher’s	exact	one-tailed	test,	expected	5%	overlap	(7	overlapping	vs.	123	not	overlapping)	199	

and	observed	(25	overlapping	vs.	105	not	overlapping),	p=5.26e-4;	HMP	replicated,	Fisher’s	200	

exact	test,	expected	5%	overlap	(2	overlapping	vs.	43	not	overlapping)	and	observed	(25	201	

overlapping	 vs.	 20	 not	 overlapping),	 p=4.72e-8;	 ethnic	 permutation	 analysis	 of	 overlap,	202	

p<0.001	each	taxonomic	level	and	all	taxonomic	levels	combined).	The	highest	replication	of	203	

taxonomic	 lineages	 varying	 by	 abundance	 occurs	 with	 22.0%	 (9/41)	 of	 families	 across	204	

datasets,	followed	by	genus	with	13.4%	(9/67).		205	

Among	18	reproducible	lineages,	we	categorize	12	as	unique	(Fig	4)	and	exclude	6	206	

where	 nearly	 identical	 abundance	 profiles	 between	 family/genus	 taxonomy	 overlap.	207	

Comparing	relative	abundance	differences	between	pairs	of	ethnicities	for	these	12	taxa	in	208	
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AGP	 and	 HMP	 reveals	 20	 out	 of	 30	 significant	 (p<0.05,	 Mann-Whitney-U)	 differences	209	

replicated.	 Intriguingly,	 all	 reproducible	 pairwise	 differences	 are	 a	 result	 of	 decreases	 in	210	

Asian-Pacific	Islanders	(Fig	4).		211	

We	 also	 test	 taxon	 abundance	 and	 presence/absence	 associations	 with	 ethnicity	212	

separately	in	the	AGP	using	linear	and	logistic	regression	models	respectively,	and	we	repeat	213	

the	analysis	while	incorporating	categorical	sex	and	continuous	age	and	BMI	as	covariates	214	

(S6	Table).	Clustering	microbial	families	based	on	their	abundance	correlation	reveals	two	215	

co-occurrence	clusters:	(i)	a	distinct	cluster	of	six	Firmicutes	and	Tenericutes	families	in	the	216	

HMP	and	(ii)	an	overlapping	but	more	diverse	cluster	of	20	families	in	the	AGP	(S2	Fig).	Nine	217	

of	the	12	taxa	found	to	recurrently	vary	in	abundance	across	ethnicities	are	represented	in	218	

these	clusters	(Fig	4),	with	four	appearing	within	both	clusters,	and	the	other	five	appearing	219	

either	within	or	closely	correlated	with	members	of	both	clusters	 (S2	Fig).	Further,	90%	220	

(18/20)	of	families	in	the	AGP	cluster	and	66%	(4/6)	of	taxa	in	the	HMP	cluster	significantly	221	

vary	in	abundance	across	ethnicities.	Taken	together,	these	results	establish	general	overlap	222	

of	 the	 most	 significantly	 ethnically-associated	 taxa	 between	 the	 three	 methods,	223	

reproducibility	of	microbial	abundances	that	vary	between	ethnicities	across	datasets,	and	224	

patterns	of	co-occurrence	among	these	taxa	which	could	suggest	they	are	functionally	linked.	225	
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	226	

Fig	4.	Ethnicity-associated	taxa	match	between	the	HMP	and	AGP.	Barplots	depict	the	227	

log10	transformed	relative	abundance	for	individuals	possessing	the	respective	taxon	within	228	

each	ethnicity,	ubiquity	appears	above	(AGP)	or	below	(HMP)	bars,	and	the	25th	and	75th	229	

percentiles	are	shown	with	extending	whiskers.	Mann-Whitney-U	tests	evaluate	differences	230	

in	abundance	and	ubiquity	for	all	individuals	between	pairs	of	ethnicities;	for	example,	the	231	

direction	 of	 change	 in	Victivallaceae	 is	 driven	 by	 ubiquity	while	 abundance	 is	 higher	 for	232	

those	possessing	 the	 taxon.	 Significance	 values	 are	Bonferroni	 corrected	 for	 the	 six	 tests	233	

within	 each	 taxon	 and	dataset,	 and	bold	 p-values	 indicate	 that	 significance	 (p<0.05)	 and	234	

direction	of	change	replicate	in	the	AGP	and	HMP.		235	

	236	

Most	heritable	taxon	varies	by	ethnicity	237	
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	 Identified	 as	 the	 most	 heritable	 human	 gut	 taxon	 (30,	 31),	 the	 family	238	

Christensenellaceae	 exhibits	 the	 second	 strongest	 significant	 differences	 in	 abundance	239	

across	ethnicities	 in	both	AGP	and	HMP	datasets	 (S5	Table,	Family:	AGP,	Kruskal-Wallis,	240	

pFDR=1.55e-9;	 HMP,	 Kruskal-Wallis,	 pFDR=0.0019).	 Additionally,	 Christensenellaceae	 is	241	

variable	 by	 sex	 and	 BMI	 (AGP:	 Sex,	 Kruskal-Wallis,	 pFDR=1.22e-12;	 BMI,	 Kruskal-Wallis,	242	

pFDR=0.0020),	and	represents	some	of	the	strongest	pairwise	correlations	with	other	taxa	in	243	

both	co-occurrence	clusters	(S2	Fig).	There	is	at	least	an	eight-fold	and	two-fold	reduction	244	

in	 average	Christensenellaceae	 abundance	 in	Asian-Pacific	 Islanders	 relative	 to	 the	other	245	

ethnicities	 in	 the	 AGP	 and	HMP	 respectively	 (S5	Table),	 and	 significance	 of	 all	 pairwise	246	

comparisons	 in	both	datasets	show	reduced	abundance	in	Asian-Pacific	 Islanders	(Fig	4).	247	

Abundance	in	individuals	possessing	Christensenellaceae	and	presence/absence	across	all	248	

individuals	significantly	associate	with	ethnicity	(S6	Table,	Abundance,	Linear	Regression,	249	

pBonferroni=0.006;	Presence/Absence,	Logistic	Regression,	pBonferroni=8.802e-6),	but	there	was	250	

only	 a	 slight	 correlation	 between	 the	 taxon’s	 relative	 abundance	 and	 BMI	 (S3	 Fig).	251	

Confirming	previous	associations	with	lower	BMI(32),	we	observe	that	AGP	individuals	with	252	

Christensenellaceae	 also	 have	 a	 significantly	 lower	 BMI	 (Mean	 BMI,	 23.7±4.3)	 than	253	

individuals	 without	 it	 (Mean	 BMI,	 25.0±5.9;	 Mann-Whitney-U,	 p<0.001).	 This	 pattern	 is	254	

separately	reflected	 in	African	Americans,	Asian-Pacific	 Islanders,	and	Caucasians	but	not	255	

Hispanics	(Fig	5),	suggesting	that	each	ethnicity	may	have	different	equilibria	between	the	256	

taxon’s	abundance	and	body	weight.		257	
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	258	

Fig	5.	Christensenellaceae	variably	associates	with	BMI	across	ethnicities.	Boxplots	of	259	

BMI	 for	 individuals	 without	 (unfilled	 boxplots)	 and	 with	 (filled	 boxplots)	260	

Christensenellaceae.	 Significance	was	determined	using	one-tailed	Mann-Whitney-U	 tests	261	

for	lower	continuous	BMI	values.	Black	lines	indicate	the	mean	relative	abundance;	the	lower	262	

and	upper	end	of	each	box	represent	the	25th	and	75th	quartiles	respectively;	and	whiskers	263	

denote	the	1.5	interquartile	range.		264	

	265	

Genetic-	and	ethnicity-associated	taxa	overlap	266	

	 Many	factors	associate	with	human	ethnicity,	including	a	small	subset	of	population	267	

specific	 genetic	 variants	 (estimated	 ~0.5%	 genome	 wide)	 that	 vary	 by	 biogeographical	268	

ancestry	(33,	34),	and	self-declared	ethnicity	in	the	HMP	is	delineated	by	population	genetic	269	

structure	(21).	Here	we	investigate	whether	ethnicity-associated	taxa	overlap	with	(i)	taxa	270	

that	have	a	significant	population	genetic	heritability	in	humans	(30,	31,	35,	36)	and	(ii)	taxa	271	

linked	with	human	genetic	variants	in	two	large	Genome-Wide	Association	Studies	(GWAS)-272	
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microbiota	analyses	(31,	36).	All	except	one	recurrent	ethnicity-associated	taxa	are	heritable	273	

in	at	 least	one	study,	with	seven	replicating	in	three	or	more	studies	(Table	1).	Likewise,	274	

abundance	variation	 in	 seven	 recurrent	 ethnicity-associated	 taxa	demonstrate	 significant	275	

GWAS	 associations	with	 at	 least	 one	 variant	 in	 the	 human	 genome,	 therefore	we	 assess	276	

whether	 any	 genetic	 variants	 associated	 with	 differences	 in	 microbial	 abundance	 show	277	

significant	rates	of	differentiation	(FST)	between	1,000	genomes	superpopulations	(34).	Out	278	

of	49	variants	associated	with	ethnically	varying	taxa,	21	have	higher	FST	values	between	at	279	

least	one	pair	of	populations	than	that	of	95%	of	other	variants	on	the	same	chromosome	280	

and	across	 the	genome,	and	 the	FST	values	of	 five	variants	associated	with	Clostridiaceae	281	

abundance	rank	above	the	top	99%	(S7	Table).	Since	taxa	that	vary	across	ethnicities	exhibit	282	

lower	abundance	 in	Asian-Pacific	 Islanders,	 it	 is	notable	 that	 the	FST	values	of	18	and	11	283	

variant	comparisons	for	East	Asian	and	South	Asian	populations,	respectively,	are	above	that	284	

of	 the	 95%	 rate	 of	 differentiation	 threshold	 from	 African,	 American,	 or	 European	285	

populations.	Critically,	the	microbiota	and	1,000	genomes	datasets	are	not	drawn	from	the	286	

same	individuals,	and	disentangling	the	role	of	genetic	from	social	and	environmental	factors	287	

will	still	require	more	controlled	studies.		288	

	289	

Recurrent	Ethnicity-Associated	Taxa	 Heritability	 Genetic	Associations	
Family:	Peptococcaceae	 0.1213	A,	0.2154C,	0.26E	 rs143179968E	
Family:	Dehalobacteriaceae	 0.6878B,	0.3087C	 	
Family:	Christensenellaceae	 0.3819	 A,	 0.6170B,	 0.4230C,	

0.3065D	

	
Order:	Clostridiales,	Family:	Unclassified	 0.2914	A,	0.4020B,	0.1330C	 *40	Genetic	VariantsC	
Genus:	Veillonella	 0.1370	A,	0.2168D	 rs347941C	
Order:	RF39,	Family:	Unclassified	 0.2341	A,	0.6618B,	0.3074C	 rs4883972C	
Family:	Verrucomicrobiaceae	 0.1257	A,	0.5973B,	0.1394C	 	
Family:	Victivallaceae	 	 	
Family	Odoribacteraceae	 0.1389	A,	0.1917D,	0.34E	 chr7:96414393E,	rs115795847E	
Genus:	Odoribacter	 0.1916D	 	
Family:	Rikenellaceae	 0.1299D,	0.29E	 rs17098734C,	 rs3909540C,	 rs147600757E,	

rs62171178E	
Family:	 Coriobacteraceae,	 Genus:	

Unclassified	

0.1364	A,	0.2822B,	0.1609C	 rs9357092E	

	290	
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Table	 1.	 Recurrent	 ethnicity-associated	 taxa	 overlap	 heritable	 and	 genetically-291	

associated	taxa.	The	table	shows	population	genetic	heritability	estimates	and	associated	292	

genetic	variants	for	the	12	recurrent	ethnically	varying	taxa.	The	minimum	heritability	cutoff	293	

was	 chosen	 as	 >0.1,	 and	 only	 exactly	 overlapping	 taxonomies	 were	 considered.	 Studies	294	

examined:	AUKTwins	(2014,	A	in	ACE	model)	(30),	BYatsunenko	(2014,	A	in	ACE	model)	(30),	295	

CUKTwins	(2016,	A	in	ACE	model)	(31),	DLim	(2016,	H2r	in	SOLAR	(37))	(35),	ETurpin	(2016,	296	

H2r	in	SOLAR	(37)).	*indicates	excessive	variants	were	excluded	from	table.	297	

	298	

Discussion:	299	

	 Many	common	diseases	associate	with	microbiota	composition	and	ethnicity,	raising	300	

the	central	hypothesis	that	microbiota	variation	between	ethnicities	can	occasionally	serve	301	

as	 a	 mediator	 of	 health	 disparities.	 American’s	 self-declared	 ethnicity	 can	 capture	302	

socioeconomic,	cultural,	geographic,	dietary	and	genetic	diversity,	and	a	similarly	complex	303	

array	of	interindividual	and	environmental	factors	influence	total	microbiota	composition,	304	

resulting	in	challenges	when	trying	to	consistently	recover	variation	in	total	gut	microbiota	305	

between	 ethnicities.	 These	 challenges	 inform	 the	 importance	 of	 reproducibility,	 both	306	

through	confirmation	across	analytical	methods	and	replication	across	study	populations.	In	307	

order	to	more	fully	evaluate	this	hypothesis,	baseline	generalizations	are	drawn	here	about	308	

the	impact	of	ethnicity	on	gut	microbiota	variation	in	healthy	individuals,	and	is	concordant	309	

with	 recent	 literature	 in	 single	 populations	 suggesting	 that	 ethnicity	 plays	 a	 subtle	 but	310	

reproducible	role	in	microbiota	assembly	(15-17,	21,	22).		311	

	 Whether	 shaped	 through	 socioeconomic,	 dietary,	 healthcare,	 genetic,	 or	 other	312	

ethnicity-related	factors,	the	replicated,	varying	taxa	represent	sources	for	novel	hypotheses	313	
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addressing	 health	 disparities.	 For	 instance,	 the	 family	 Odoribacteraceae	 and	 genus	314	

Odoribacter	are	primary	butyrate	producers	in	the	gut,	and	have	been	negatively	linked	to	315	

severe	forms	of	Crohn’s	disease	and	Ulcerative	Colitis	in	association	with	reduced	butyrate	316	

metabolism	(38-40).	Asian-Pacific	Islanders	possess	significantly	less	Odoribacteraceae	and	317	

Odoribacter	than	Hispanics	and	Caucasians	in	both	datasets,	and	severity	of	Ulcerative	Colitis	318	

upon	hospital	admission	has	been	shown	to	be	significantly	higher	in	Asian	Americans	(41).	319	

Considering	broader	physiological	roles,	several	ethnicity-associated	taxa	are	primary	gut	320	

anaerobic	fermenters	and	methanogens	(42,	43),	and	associate	with	lower	BMI	and	blood	321	

triglyceride	levels	(32,	44).	Indeed,	Christensenellaceae,	Odoribacteraceae,	Odoribacter,	and	322	

the	 class	 Mollicutes	 containing	 RF39	 negatively	 associate	 with	 metabolic	 syndrome	 and	323	

demonstrate	 significant	 population	 heritability	 in	 twins	 (35).	 Implications	 for	 health	324	

outcomes	warrant	 further	 investigation,	but	could	be	reflected	by	positive	correlations	of	325	

Odoribacteraceae,	Odoribacter,	 Coriobacteriaceae,	 Christensenellaceae,	 and	 the	 dominant	326	

Verrucomicrobiaceae	lineage	Akkermansia	with	old	age	(45,	46).	Moreover,	these	findings	327	

raise	the	 importance	of	controlling	for	ethnicity	 in	studies	 linking	microbiota	variation	to	328	

disease	because	associations	between	specific	microbes	and	a	disease	could	be	confounded	329	

by	ethnicity	of	the	study	subjects.	330	

Based	 on	 correlations	 in	 individual	 taxon’s	 abundance,	 a	 similar	 pattern	 of	 co-331	

occurrence	previously	identified	as	the	Christensenellaceae	‘consortium’	includes	11	of	the	332	

12	recurrent	ethnically	varying	taxa	(30),	and	members	of	this	consortium	associate	with	333	

genetic	variation	in	the	human	formate	oxidation	gene	ALDH1L1	which	is	a	genetic	risk	factor	334	

for	stroke	(31,	47,	48).	Formate	metabolism	is	a	key	step	in	the	pathway	reducing	carbon	335	

dioxide	to	methane	(49,	50),	and	increased	methane	associates	with	increased	Rikenellaceae,	336	
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Christensenellaceae,	 Odoribacteraceae	 and	 Odoribacter	 (51).	 Products	 of	 methanogenic	337	

fermentation	 pathways	 include	 short	 chain	 fatty	 acids	 such	 as	 butyrate,	 which	 through	338	

reduction	 of	 pro-inflammatory	 cytokines	 has	 been	 linked	 to	 cancer	 cell	 apoptosis	 and	339	

reduced	risk	of	colorectal	cancer	(52,	53).	Asian	Americans	are	the	only	ethnic	group	where	340	

cancer	 surpasses	 heart	 disease	 as	 the	 leading	 cause	 of	 death,	 and	 over	 70%	 of	 Asian	341	

Americans	were	born	overseas,	which	can	affect	assimilation	into	western	lifestyles,	leading	342	

to	reduced	access	to	healthcare	and	screening,	and	proper	medical	education	(52,	54-56).	343	

Indeed,	as	countries	in	Asia	shift	toward	a	more	western	lifestyle,	the	incidence	of	cancers,	344	

particularly	 gastrointestinal	 and	 colorectal	 cancers,	 are	 increasing	 rapidly,	 possibly	345	

indicating	 incompatibilities	 between	 traditionally	 harbored	 microbiota	 and	 western	346	

lifestyles	 (57-60).	 Asian	 Americans	 have	 higher	 rates	 of	 type	 2	 diabetes	 and	 pathogenic	347	

infections	than	Caucasians	(61),	and	two	metagenomic	functions	enriched	in	control	versus	348	

type	 2	 diabetes	 cases	 appear	 to	 be	 largely	 conferred	 by	 cluster-associated	 butyrate-349	

producing	 and	motility-inducing	Verrucomicrobiaceae	 and	Clostridia	 lineages	 reduced	 in	350	

abundance	among	AGP	and	HMP	Asian-Pacific	Islanders	(11).	Both	induction	of	cell	motility	351	

and	butyrate	promotion	of	mucin	integrity	can	protect	against	pathogenic	colonization	and	352	

associate	with	microbial	community	changes	(11,	53,	62).	Levels	of	cell	motility	and	butyrate	353	

are	key	factors	suspected	to	underlie	a	range	of	health	disparities	including	inflammatory	354	

bowel	disease,	arthritis,	and	type	2	diabetes	(11,	63-65).	Patterns	of	ethnically	varying	taxa	355	

across	 ethnicities	 could	 result	 from	many	 factors	 including	 varying	 diets,	 environmental	356	

exposures,	 sociocultural	 influences,	 human	 genetic	 variation	 and	 others.	 However,	357	

regardless	 of	 the	 mechanisms	 dictating	 assembly,	 these	 results	 suggest	 there	 is	 a	358	
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reproducible,	 co-occurring	group	of	 taxa	 linked	by	similar	metabolic	processes	known	 to	359	

promote	homeostasis.		360	

	 The	utility	of	this	work	is	establishing	a	framework	for	studying	ethnicity-associated	361	

taxa	and	hypotheses	of	how	changes	in	abundance	or	presence	of	these	taxa	may	or	may	not	362	

shape	health	disparities,	many	of	which	also	have	genetic	 components.	Differing	 in	allele	363	

frequency	 across	 three	 population	 comparisons	 and	 associated	 with	 the	 abundance	 of	364	

Clostridiales,	the	genetic	variant	rs7587067	has	a	significantly	higher	frequency	in	African	365	

(Minor	 Allele	 Frequency	 (MAF)=0.802)	 versus	 East	 Asian	 (MAF=0.190,	 FST=0.54,	366	

Chromosome=98.7%,	 Genome-Wide=98.9%),	 admixed	 American	 (MAF=0.278,	 FST=0.44,	367	

Chromosome=99.0%,	 Genome-Wide=99.1%),	 and	 European	 populations	 (MAF=0.267,	368	

FST=0.45,	Chromosome=98.7.3%,	Genome-Wide=98.7%).	This	intronic	variant	for	the	gene	369	

HECW2	 is	 a	 known	 eQTL	 (GTeX,	 eQTL	 Effect	 Size=-0.18,	 p=7.4e-5)	 (66,	 67),	 and	HECW2	370	

encodes	a	ubiquitin	ligase	linked	to	enteric	gastrointestinal	nervous	system	function	through	371	

maintenance	 of	 endothelial	 lining	 of	 blood	 vessels	 (68,	 69).	 Knockout	 of	HECW2	 in	mice	372	

reduced	enteric	neuron	networks	and	gut	motility,	and	patients	with	Hirschsprung’s	disease	373	

have	 diminished	 localization	 of	HECW2	 to	 regions	 affected	 by	 loss	 of	 neurons	 and	 colon	374	

blockage	when	compared	to	other	regions	of	their	own	colon	and	healthy	individuals	(70).	375	

Hirschsprung’s	 disease	 presenting	 as	 full	 colon	 blockage	 is	 rare	 and	 has	 not	 undergone	376	

targeted	 examination	 as	 a	 health	 disparity,	 however	 a	 possible	 hypothesis	 is	 that	 lower	377	

penetrance	 of	 the	 disease	 in	 individuals	 with	 the	 risk	 allele	 at	 rs7587067	 could	 lead	 to	378	

subtler	effects	on	gut	motility	resulting	in	Clostridiales	abundance	variation.		379	

Another	example	 is	 that	 the	abundance	of	Rikenellaceae	 in	 the	gut	 is	strongly	and	380	

reproducibly	associated	with	variant	rs62171178,	which	was	identified	as	an	eQTL	for	gene	381	
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PHOSPHO2	within	human	gut	tissue	(36,	67).	The	primary	substrate	of	the	protein	encoded	382	

by	PHOSPHO2	is	vitamin	B6	(71),	which	shows	increased	deficiencies	in	germ	free	compared	383	

to	 conventionally	 reared	 rats	 (72).	 Interestingly,	 microbial	 vitamin	 B6	 biosynthesis	 and	384	

salvage	was	the	best	predictor	of	chronic	 fatigue	and	irritable	bowel	syndromes	(73,	74).	385	

Despite	the	intrigue	of	connecting	the	human	genome,	microbiota	and	disease	phenotypes,	386	

evaluating	 these	hypotheses	will	 require	more	holistic	 approaches	 such	 as	 incorporating	387	

metagenomics	 and	 metabolomics	 to	 identify	 whether	 enzymes	 or	 metabolic	 functions	388	

reproducibly	vary	across	ethnicities,	as	well	as	direct	functional	studies	in	model	systems	to	389	

understand	if	correlation	is	truly	driven	by	causation.		390	

	 Further	limitations	should	also	be	considered,	 including	recruitment	biases	for	the	391	

AGP	versus	HMP,	variation	in	sample	processing	and	OTU	clustering,	and	uneven	sampling	392	

which	could	only	be	addressed	with	down	sampling	of	over-represented	ethnicities.	Still,	393	

despite	 these	 confounders	 care	 was	 taken	 to	 demonstrate	 the	 reproducibility	 of	 results	394	

across	 statistical	methods,	 ecological	metrics,	 rarefaction	 depths,	 and	 study	 populations.	395	

Summarily,	this	work	suggests	that	abundance	variation	of	specific	taxa,	rather	than	whole	396	

communities,	may	 represent	 the	most	 reliable	 ethnic	 signatures	 in	 the	 gut	microbiota.	 A	397	

reproducible	 co-occurring	 subset	of	 these	 taxa	 link	 to	 a	 variety	of	 overlapping	metabolic	398	

processes	 and	 health	 disparities,	 and	 contain	 the	 most	 heritable	 bacterial	 family,	399	

Christensenellaceae.	Moreover,	a	majority	of	the	microbial	taxa	associated	with	ethnicity	are	400	

also	heritable	and	genetically-associated	lineages,	suggesting	there	is	a	possible	connection	401	

between	ethnicity	and	genetic	patterns	of	biogeographical	ancestry	that	may	play	a	role	in	402	

shaping	 these	 taxa.	Our	 results	 emphasize	 the	 importance	of	 sampling	 ethnically	diverse	403	

populations	of	healthy	individuals	in	order	to	discover	and	replicate	ethnicity	signatures	in	404	
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the	human	gut	microbiota,	 and	 they	highlight	a	need	 to	account	 for	ethnic	variation	as	a	405	

potential	 confounding	 factor	 in	 studies	 linking	 microbiota	 variation	 to	 disease.	 Further	406	

reinforcement	of	these	results	may	lead	to	generalizations	about	microbiota	assembly	and	407	

even	consideration	of	specific	taxa	as	potential	mediators	or	treatments	of	health	disparities.	 	408	
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Materials	and	Methods:	409	

Data	Acquisition	410	

	 AGP	 data	 was	 obtained	 from	 the	 project	 FTP	 repository	 located	 at	411	

ftp://ftp.microbio.me/AmericanGut/.	AGP	data	generation	and	processing	prior	to	analysis	412	

can	 be	 found	 at:	 https://github.com/biocore/American-Gut/tree/master/ipynb/primary-413	

processing.	All	 analyses	utilized	 the	rounds-1-25	dataset	which	was	released	on	March	4,	414	

2016.	 Throughout	 all	 analyses,	 QIIME	 v1.9.0	 was	 used	 in	 an	 Anaconda	 environment	415	

[https://continuum.io]	 for	 all	 script	 calls,	 custom	 scripts	 and	 notebooks	 were	 run	 in	 the	416	

QIIME	2	Anaconda	environment	with	python	version	3.5.2,	and	plots	were	post-processed	417	

using	Inkscape	[https://inkscape.org/en/]	(75).	Ethnicity	used	in	this	study	was	self-declared	418	

by	AGP	study	participants	as	one	of	four	groups:	African	American,	Asian	or	Pacific	Islander	419	

(Asian-Pacific	Islander),	Caucasian,	or	Hispanic.	Sex	was	self-declared	as	either	male,	female,	420	

or	 other.	 Age	was	 self-declared	 as	 a	 continuous	 integer	 of	 years	 old,	 and	 age	 categories	421	

defined	by	the	AGP	by	decade	(i.e.	20’s,	30’s…)	were	used	in	this	study.	BMI	was	self-declared	422	

as	an	integer,	and	BMI	categories	defined	by	AGP	of	underweight,	healthy,	overweight,	and	423	

obese	 were	 utilized.	 Microbiota	 communities	 were	 characterized	 using	 16S	 rDNA	424	

sequencing	 of	 variable	 region	 four	 and	 OTU	 clustering	 at	 97%	 similarity,	 following	 an	425	

identical	 processing	 pipeline	 for	 all	 samples	 developed	 and	 optimized	 for	 the	 Earth	426	

Microbiome	Project	(76).	HMP	16S	rDNA	data	processed	using	QIIME	for	variable	regions	3-427	

5	was	 obtained	 from	http://hmpdacc.org/HMQCP/.	 Demographic	 info	 for	 individual	HMP	428	

participants	was	obtained	through	dbGaP	restricted	access	to	study	phs000228.v2.p1,	with	429	

dbGaP	approval	granted	to	SRB	and	non-human	subjects	determination	IRB161231	granted	430	

by	Vanderbilt	University.	Ethnicity	and	sex	were	assigned	to	subjects	based	on	self-declared	431	
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values,	with	individuals	selecting	multiple	ethnicities	being	removed	unless	they	primarily	432	

responded	 as	Hispanic,	while	 categorical	 age	 and	BMI	were	 established	 from	continuous	433	

values	using	the	same	criteria	for	assignment	as	in	AGP.	The	HMP	Amerindian	population	434	

was	 removed	 due	 to	 severe	 under-representation.	 This	 filtered	 HMP	 table	was	 used	 for	435	

community	 level	 analyses	 (ANOSIM,	 Alpha	 Diversity,	 beta	 intra-inter),	 however	 to	 allow	436	

comparison	with	the	AGP	dataset,	community	subset	analyses	(co-occurrence,	abundance	437	

correlation,	etc…)	were	performed	with	taxonomic	assignments	in	QIIME	using	the	UCLUST	438	

method	with	the	GreenGenes_13_5	reference.	439	

	440	

Quality	Control	441	

	 AGP	quality	 control	was	performed	 in	Stata	v12	 (StataCorp,	2011)	using	available	442	

metadata	to	remove	samples	(Raw	N=9,475):	with	BMI	more	than	60	(-988	[8,487])	or	less	443	

than	10	(-68	[8,419]),	missing	age	(-661	[7,758]),	with	age	greater	than	55	years	old	(-2,777	444	

[4,981])	or	less	than	18	years	old	(-582	[4,399]),	and	blank	samples	or	those	not	appearing	445	

in	 the	 mapping	 file	 (-482	 [3,917]),	 with	 unknown	 ethnicity	 or	 declared	 as	 other	 (-131	446	

[3786]),	not	declared	as	a	fecal	origin	(-2,002	[1784]),	with	unknown	sex	or	declared	as	other	447	

(-98	[1686]),	or	located	outside	of	the	United	States	(-209	[1477]).	No	HMP	individuals	were	448	

missing	key	metadata	or	had	other	reasons	for	exclusion	(-0[298]).	Final	community	quality	449	

control	for	both	AGP	and	HMP	was	performed	by	filtering	OTUs	with	less	than	10	sequences	450	

and	removing	samples	with	less	than	1,000	sequences	(AGP,	-102	[1375];	HMP,	-0	[298]).	All	451	

analyses	used	97%	OTUs	generated	by	the	AGP	or	HMP,	and	unless	otherwise	noted,	results	452	

represent	Bray-Curtis	beta	diversity	and	Shannon	alpha	diversity	at	a	rarefaction	depth	of	453	

1,000	counts	per	sample.		454	
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	455	

ANOSIM,	PERMANOVA,	and	BioEnv	Distinguishability	456	

	 The	ANOSIM	test	was	performed	with	9,999	repetitions	on	each	rarefied	table	within	457	

a	 respective	 rarefaction	depth	 and	beta	diversity	metric	 (Fig	1	&	S2A-B	Table),	with	R-458	

values	 and	 p-values	 averaged	 across	 the	 rarefactions.	 Consensus	 beta	 diversity	matrices	459	

were	 calculated	 as	 the	 average	 distances	 across	 the	 100	 rarefied	matrices	 for	 each	 beta	460	

diversity	metric	 and	depth.	Consensus	distance	matrices	were	 randomly	 subsampled	 ten	461	

times	for	subset	number	of	individuals	from	each	ethnic	group	with	more	than	that	subset	462	

number	prior	 to	ANOSIM	analysis	with	 9,999	 repetitions,	 and	 the	 results	were	 averaged	463	

evaluating	 the	 effects	 of	 more	 even	 representations	 for	 each	 ethnicity	 (S2C	 Table).	464	

Consensus	 distance	matrices	 had	 each	 ethnicity	 and	 pair	 of	 ethnicities	 removed	 prior	 to	465	

ANOSIM	 analysis	 with	 9,999	 repetitions,	 evaluating	 the	 distinguishability	 conferred	 by	466	

inclusion	 of	 each	 ethnicity	 (Fig	 3A,	 S2F	 Table).	 Significance	 was	 not	 corrected	 for	 the	467	

number	of	 tests	 to	allow	comparisons	between	results	of	different	analyses,	metrics,	 and	468	

depths.	PERMANOVA	analyses	were	run	using	the	R	language	implementation	in	the	Vegan	469	

package	 (77),	 with	 data	 handled	 in	 a	 custom	 R	 script	 using	 the	 Phyloseq	 package	 (78).	470	

Categorical	 variables	 were	 used	 to	 evaluate	 the	 PERMANOVA	 equation	 (Beta-Diversity	471	

Distance	 Matrix	 ~	 Ethnicity	 +	 Age	 +	 Sex	 +	 BMI)	 using	 999	 permutations	 to	 evaluate	472	

significance,	and	the	R	and	p	values	were	averaged	across	10	rarefactions	(S2D	Table).	The	473	

BioEnv	test,	or	BEST	test,	was	adapted	to	allow	evaluation	of	the	correlation	and	significance	474	

between	beta	diversity	distance	matrices	and	age,	 sex,	BMI,	and	ethnicity	simultaneously	475	

(S2E	Table)	(25).	At	each	rarefaction	depth	and	beta	diversity	metric	the	consensus	distance	476	

matrix	was	 evaluated	 for	 its	 correlation	with	 the	 centered	 and	 scaled	 Euclidian	 distance	477	
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matrix	of	 individuals	 continuous	age	and	BMI,	 and	 categorical	 ethnicity	 and	 sex	encoded	478	

using	patsy	(same	methodology	as	original	test)[https://patsy.readthedocs.io/en/latest/#].	479	

The	test	was	adapted	to	calculate	significance	for	a	variable	of	interest	by	comparing	how	480	

often	 the	degree	of	 correlation	with	 all	metadata	 variables	 (age,	 sex,	BMI,	 ethnicity)	was	481	

higher	than	the	correlation	when	the	variable	of	 interest	was	randomly	shuffled	between	482	

samples	1,000	times.		483	

	484	

Alpha	Diversity	485	

	 Alpha	 diversity	 metrics	 (Shannon,	 Simpson,	 Equitability,	 Chao1,	 Observed	 OTUs)	486	

were	computed	for	each	rarefied	table	(QIIME:	alpha_diversity.py),	and	results	were	collated	487	

and	 averaged	 for	 each	 sample	 across	 the	 tables	 (QIIME:	 collate_alpha.py).	 Pairwise	488	

nonparametric	t-tests	using	Monte	Carlo	permutations	evaluated	alpha	diversity	differences	489	

between	the	ethnicities	with	Bonferroni	correction	for	the	number	of	comparisons	(Fig	2A,	490	

S3	Table,	QIIME:	compare_alpha_diversity.py).	A	Kruskal-Wallis	test	implemented	in	python	491	

was	used	to	detect	significant	differences	across	all	ethnicities.		492	

	493	

Beta	Diversity	494	

	 Each	 consensus	 beta	 diversity	 distance	 matrix	 had	 distances	 organized	 based	 on	495	

whether	they	represented	individuals	of	the	same	ethnic	group,	or	were	between	individuals	496	

of	 different	 ethnic	 groups.	 All	 values	 indicate	 that	 all	 pairwise	 distances	 between	 all	497	

individuals	were	used	(Fig	2B,	S4A-B	Table),	mean	values	indicate	that	for	each	individual	498	

their	average	distance	to	all	individuals	in	the	comparison	group	was	used	as	a	single	point	499	

to	 assess	 pseudo-inflation	 (S4C-D	 Table).	 A	 Kruskal-Wallis	 test	 was	 used	 to	 calculate	500	
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significant	 differences	 in	 intra-ethnic	 distances	 across	 all	 ethnicities.	 Pairwise	 Mann-501	

Whitney-U	 tests	were	calculated	between	each	pair	of	 intra-ethnic	distance	comparisons,	502	

along	 with	 intra-versus-inter	 ethnic	 distance	 comparisons.	 Significance	 was	 Bonferroni	503	

corrected	within	 the	 number	 of	 intra-intra-ethnic	 and	 intra-inter-ethnic	 distance	 groups	504	

compared,	with	violin	plots	of	intra-	and	inter-ethnic	beta	diversity	distances	generated	for	505	

each	comparison.	506	

	507	

Random	Forest	508	

 RF	 models	 were	 implemented	 using	 taxa	 summarized	 at	 genus	 level,	 which	509	

performed	 better	 compared	 to	 RF	 models	 using	 OTUs	 as	 features,	 both	 in	 terms	 of	510	

classification	 accuracy	 and	 computational	 time.	We	 first	 rarefied	OTU	 tables	 at	 sequence	511	

depth	of	10,000	(using	R	v3.3.3	package	vegan’s	rrarefy()	function)	and	then	summarized	512	

rarefied	OTUs	at	genus-level	(or	lower	characterized	level	if	genus	was	uncharacterized	for	513	

an	OTU).	We	filtered	for	rare	taxa	by	removing	taxa	present	in	fewer	than	half	of	the	number	514	

of	samples	in	rarest	ethnicity	(i.e.	fewer	than	10/2	=	5	samples	in	HMP	and	13/2	=	6	(rounded	515	

down)	in	AGP),	retaining	85	distinct	taxa	in	HMP	dataset	and	322	distinct	taxa	in	AGP	dataset	516	

at	genus	 level.	The	 resulting	 taxa	were	normalized	 to	 relative	abundance	and	arcsin-sqrt	517	

transformed	before	being	used	as	features	for	the	RF	models.	We	initially	built	multi-class	518	

RF	model,	but	since	the	RF	model	is	highly	sensitive	to	the	uneven	representation	of	classes,	519	

all	samples	were	identified	as	the	majority	class,	i.e.	Caucasian.	In	order	to	even	out	the	class	520	

imbalance,	 we	 considered	 some	 sampling	 approaches,	 but	 most	 existing	 techniques	 for	521	

improving	classification	performance	on	imbalanced	datasets	are	designed	for	binary	class	522	

imbalanced	 datasets,	 and	 are	 not	 effective	 on	 datasets	 with	 multiple	 underrepresented	523	
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classes.	Hence,	we	adopted	the	binary	classification	approach	and	built	four	one-versus-all	524	

(OVA)	binary	RF	classifiers	to	classify	samples	from	each	ethnicity	compared	to	the	rest.	10-525	

fold	cross-validation	(using	R	package	caret	(79))	was	performed	using	ROC	as	the	metric	526	

for	selecting	optimal	model.	The	performance	metrics	and	ROC	curves	were	averaged	across	527	

the	10	folds	(Fig	3B).	Without	any	sampling	during	training	the	classifiers,	most	samples	528	

were	identified	as	the	majority	class,	i.e.	the	Caucasian,	by	all	four	OVA	RF	classifiers.	In	order	529	

to	overcome	 this	 imbalance	 in	 class	 representation,	we	applied	 two	 sampling	 techniques	530	

inside	 cross-validation:	 i)	 down-sampling,	 and	 ii)	 Synthetic	 Minority	 Over-sampling	531	

Technique	(or	SMOTE)	(29).	 In	 the	down-sampling	approach,	 the	majority	class	 is	down-532	

sampled	by	random	removal	of	instances	from	the	majority	class.	In	the	SMOTE	approach,	533	

the	 majority	 class	 is	 down-sampled	 and	 synthetic	 samples	 from	 the	 minority	 class	 are	534	

generated	based	on	k-nearest	neighbors	technique	(29).	Note,	the	sampling	was	performed	535	

inside	cross-validation	on	training	set,	while	the	test	was	performed	on	unbalanced	held-out	536	

test	 set	 in	 each	 fold.	The	ROC	 curves	 and	performance	metrics	 table	 in	Fig	3B	 show	 the	537	

sensitivity-specificity	 tradeoff	 and	 classification	 performance	 for	 OVA	 classifier	 for	 each	538	

ethnicity	 for	 both	 the	 sampling	 techniques	 applied	 on	 both	 the	 datasets.	 For	 both	 the	539	

datasets,	 down-sampling	 shows	higher	 sensitivity	 and	 lower	 specificity	 and	precision	 for	540	

minority	classes	(i.e.	African	Americans,	Asian-Pacific	Islanders	and	Hispanics)	compared	to	541	

SMOTE.	 However,	 for	 the	 majority	 class	 (i.e.	 Caucasian),	 down-sampling	 lowers	 the	542	

sensitivity	and	increases	the	specificity	and	precision	compared	to	SMOTE.	The	sensitivity-543	

specificity	 tradeoff,	 denoted	 by	 the	 area	 under	 the	 ROC	 curve	 (or	 AUC)	 is	 reduced	 for	544	

Hispanics	in	both	the	datasets.		545	

	 	546	
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Taxon	Associations	547	

	 Taxon	differential	abundance	across	categorical	metadata	groups	was	performed	in	548	

QIIME	(QIIME:	group_significance.py,	S5	Table)	to	examine	whether	observation	counts	(i.e.	549	

OTUs	 and	microbial	 taxon)	 are	 significantly	 different	 between	 groups	within	 a	metadata	550	

category	(i.e.	ethnicity,	sex,	BMI,	age).	The	OTU	table	prior	to	final	community	quality	control	551	

was	collapsed	at	each	taxonomic	level	(i.e.	Phylum	–	Genus;	QIIME:	collapse_taxonomy.py),	552	

with	counts	representing	the	relative	abundance	of	each	microbial	taxon.	Differences	in	the	553	

mean	 abundance	 of	 taxa	 between	 ethnicities	 were	 calculated	 using	 Kruskal-Wallis	554	

nonparametric	 statistical	 tests.	 P-values	 are	 provided	 alongside	 false	 discovery	 rate	 and	555	

Bonferroni	corrected	P-values,	and	taxon	were	ranked	from	most	to	least	significant.	Results	556	

were	collated	into	excel	tables	by	taxonomic	level	and	metadata	category	being	examined,	557	

with	significant	(false	discovery	rate	and	Bonferroni	P-value	<	0.05)	highlighted	in	orange,	558	

and	taxa	that	were	false	discovery	rate	significant	 in	both	datasets	were	colored	red.	The	559	

Fisher’s	exact	test	for	the	overlap	of	number	of	significant	taxa	between	datasets	was	run	at	560	

the	online	portal	(http://vassarstats.net/tab2x2.html),	with	the	expected	overlap	calculated	561	

as	 5%	 of	 the	 number	 of	 significant	 lineages	 at	 all	 taxonomic	 level	within	 the	 respective	562	

dataset,	and	the	observed	25	taxa	that	overlapped	in	our	analysis.	The	permutation	analysis	563	

was	 performed	 by	 comparing	 the	 number	 of	 significant	 taxa	 (S5	 Table,	 pFDR<0.05)	564	

overlapping	between	the	AGP	and	HMP	to	the	number	overlapping	when	the	Kruskal-Wallis	565	

test	was	performed	1,000	times	with	ethnicity	randomly	permuted.	In	1/1000	runs	there	566	

was	one	significant	taxon	overlapping	at	the	family	level,	and	one	in	3/1000	permutations	at	567	

the	genus	level,	with	no	significant	taxa	overlapping	in	any	repetitions	at	higher	taxonomic	568	

levels.	The	12	families	and	genera	that	were	significantly	different	were	evaluated	to	not	be	569	
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‘unique’	 if	 their	abundances	across	ethnicities	at	each	level	represented	at	 least	82-100%	570	

(nearly	all	>95%)	of	the	overlapping	taxonomic	level,	and	the	genera	was	used	if	classified,	571	

and	family	level	used	if	genera	was	unclassified	(g__).	Average	relative	abundances	on	a	log10	572	

scale	 among	 individuals	 possessing	 the	 taxon	were	 extracted	 for	 each	 taxon	within	 each	573	

ethnicity,	and	the	abundance	for	12	families	and	genera	were	made	into	barchart	figures	(Fig	574	

4).	The	external	whisker	(AGP	above,	HMP	below)	depict	the	75th	quartile	of	abundance,	and	575	

the	 internal	 whisker	 depicts	 the	 25th	 quartile.	 Pairwise	 Mann-Whitney-U	 tests	 were	576	

performed	 between	 each	 pair	 of	 ethnicities	 using	 microbial	 abundances	 among	 all	577	

individuals,	and	were	Bonferroni	corrected	for	the	six	comparisons	within	each	taxon	and	578	

dataset.	 Bonferroni	 significant	 P-values	 are	 shown	 in	 the	 figure,	 and	 shown	 in	 bold	 if	579	

significance	 and	direction	 of	 change	 replicate	 in	 both	datasets.	Ubiquity	 shown	 above	 or	580	

below	each	bar	was	calculated	as	the	number	of	individuals	in	which	that	taxon	was	detected	581	

within	the	respective	ethnicity.	Additional	confirmation	of	ethnically	varying	abundance	was	582	

also	performed	at	each	taxonomic	level	(S6	Table),	where	the	correlation	of	continuous	age	583	

and	BMI	along	with	categorically	coded	sex	and	ethnicity	were	simultaneously	measured	584	

against	 the	 log	 10	 transformed	 relative	 abundance	 of	 each	 taxon	 among	 individuals	585	

possessing	it	using	linear	regression	(S6	Table	-	Abundance),	and	against	the	presence	or	586	

absence	of	the	taxon	in	all	individuals	with	logistic	regression	(S6	Table	-	Presence	Absence).	587	

Significance	 is	presented	 for	 the	models	each	with	ethnicity	alone,	and	with	all	metadata	588	

factors	 included	 (age,	 sex,	 BMI),	 alongside	 Bonferroni	 corrected	 p-values,	 and	 individual	589	

effects	of	each	metadata	factor.		590	

	591	

Co-Occurrence	Analysis	592	
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	 Bacterial	 taxonomy	 was	 collapsed	 at	 the	 family	 level,	 Spearman	 correlation	 was	593	

calculated	between	each	pair	of	families	using	SciPy	(80),	and	clustermaps	were	generated	594	

using	 seaborn	 (S2	Fig),	 and	ethnic	associations	were	drawn	 from	S5	Table.	 Correlations	595	

were	masked	where	Bonferroni	corrected	Spearman	p-values	were	>0.05,	and	clusters	were	596	

identified	 as	 the	 most	 prominent	 (strongest	 correlations)	 and	 abundance	 enriched.	597	

Enrichment	 of	 ethnic	 association	 was	 evaluated	 by	 measuring	 the	 Mann-Whitney-U	 of	598	

cluster	families	ethnic	associations	(p-values,	S5	Table)	compared	to	the	ethnic	associations	599	

of	 non-cluster	 taxa.	 Cluster	 associated	 families	 were	 identified	 as	 having	 at	 least	 three	600	

significant	correlations	with	families	within	the	cluster.		601	

	602	

Christensenellaceae	Analysis	603	

	 The	abundance	of	 the	 family	Christensenellaceae	was	 input	 as	 relative	 abundance	604	

across	all	individuals	from	the	family	level	taxonomic	table.	Individuals	were	subset	based	605	

on	the	presence/absence	of	Christensenellaceae	and	BMIs	were	compared	using	a	one	tailed	606	

Mann-Whitney-U	test,	then	each	was	further	subset	by	ethnicity	and	BMI	compared	using	607	

one	tailed	Mann-Whitney-U	tests	and	boxplots	within	each	ethnicity	(Fig	5).		608	

	609	

Genetically	Associated,	Heritable,	and	Correlated	Taxa	Analysis	610	

	 Genetically	associated	taxa	from	population	heritability	studies	(30,	31,	35,	36)	with	611	

a	minimum	heritability	(A	in	ACE	models	or	H2r)	>0.1,	and	from	GWAS	studies	(31,	36)	were	612	

examined	for	exact	taxonomic	overlap	with	our	12	ethnically-associated	taxa.	The	42	genetic	613	

variants	associated	with	Unclassified	Clostridiales	are:	rs16845116,	rs586749,	rs7527642,	614	

rs10221827,	 rs5754822,	 rs4968435,	 rs17170765,	 rs1760889,	 rs6933411,	 rs2830259,	615	
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rs7318523,	 rs17763551,	 rs2248020,	 rs1278911,	 rs185902,	 rs2505338,	 rs6999713,	616	

rs5997791,	 rs7236263,	 rs10484857,	 rs9938742,	 rs1125819,	 rs4699323,	 rs641527,	617	

rs7302174,	 rs2007084,	 rs2293702,	 rs9350764,	 rs2170226,	 rs2273623,	 rs9321334,	618	

rs6542797,	 rs9397927,	 rs2269706,	 rs4717021,	 rs7499858,	 rs10148020,	 rs7524581,	619	

rs11733214,	rs7587067	from	(31).	These	40	variants	along	with	variants	in	Table	1	except	620	

for	 chr7:96414393	 (total=49)	 were	 then	 assessed	 in	 1,000	 Genomes	 individuals	 for	621	

significant	differentiation	across	superpopulations	(34).	The	1,000	Genomes	VCF	files	were	622	

downloaded	(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/),	and	variants	623	

with	a	minor	allele	frequency	less	than	0.01	were	removed	with	FST	calculated	between	each	624	

pair	of	superpopulations	using	vcftools	 (81).	The	East	Asian	versus	South	Asian	FST	rates	625	

were	not	used	in	the	analysis.	A	custom	script	was	used	to	examine	the	FST	for	each	of	the	49	626	

variants	and	compare	 to	 the	FST	of	all	variants	on	 the	same	chromosome	and	all	variants	627	

genome-wide	 for	 that	 pair	 of	 populations,	 with	 percentile	 calculated	 and	 the	 number	 of	628	

variants	with	 a	 higher	 FST	 divided	 by	 the	 total	 number	 of	 variants.	 The	 eQTL	 value	 and	629	

significance	for	rs7587067	were	drawn	from	the	GTEx	database	(67).	630	

	631	

Data	and	Code	Availability	632	

	 Code,	 scripts,	 and	 data	 underlying	 figures	 are	 publicly	 available	 from	 the	 GitHub	633	

repository	 [https://github.com/awbrooks19/microbiota_and_ethnicity].	 Individual	634	

metadata	(age,	sex,	ethnicity…)	for	the	Human	Microbiome	Project	are	held	under	restricted	635	

access	 available	 through	 dbGaP	 application	 [NCBI	 -	 dbGaP,	 Human	 Microbiome	 Project,	636	

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-637	

bin/study.cgi?study_id=phs000228.v3.p1].		638	
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Supplementary	Table/Figure	Legends:	665	

S1	Fig.	The	average	relative	abundance	of	dominant	microbial	phyla	for	each	ethnicity.	666	

	667	

S2	Fig.	Abundance	correlation	of	microbial	families.	Spearman	correlation	clustermaps	668	

of	bacterial	abundance	for	families	in	the	AGP	and	HMP.	Numbers	within	boxes	depict	the	669	

spearman	correlation	value	with	heatmap	 coloration	 from	blue	negative	 correlation	 (-1),	670	

white	no	correlation	(0),	to	red	positive	correlation	(1).	Positions	have	been	masked	based	671	

on	Bonferroni	significance	<0.05	for	the	total	clustermap	of	all	microbial	families.	Lineages	672	

within	boxes	were	identified	as	a	highly	correlated	cluster,	and	lineages	outside	the	boxes	673	

share	multiple	correlations	with	 those	within	 the	cluster.	Blue	 taxonomic	names	 indicate	674	

overlap	 of	 taxa	 within	 boxes	 of	 both	 the	 AGP	 and	 HMP,	 while	 black	 indicate	 multiple	675	

correlations	with	the	clusters	in	both	datasets.	The	ethnic	association	column	depicts	FDR	676	

corrected	p-values	from	Kruskal-Wallis	tests	in	S5	Table,	which	are	bolded	if	<0.05.	677	

	678	

S3	Fig.	 Correlation	of	BMI	with	Christensenellaceae	 abundance.	The	 relationship	 for	679	

each	individual	between	log10	transformed	Christensenellaceae	abundance	on	the	y	axis	and	680	

BMI	on	the	x	axis,	with	statistics	slope,	R2,	and	p	fit	with	a	linear	regression.	Coloration	of	681	

each	 point	 indicates	 ethnicity:	 Yellow	 –	 African	 American;	 Blue	 –	 Asian-Pacific	 Islander;	682	

Green	–	Hispanic;	Red	–	Caucasian.	683	

	684	

S1	Table.	Demographic	information	for	the	AGP.	Breakdown	of	age	and	BMI	by	sex	and	685	

ethnicity.	Heatmaps	were	constructed	within	each	statistic	and	category	(bounded	by	black	686	

box).	The	means	for	all	sex	and	ethnic	groups	were	used	as	the	center	(white),	with	higher	687	
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values	 indicated	 in	red	and	 lower	 in	blue.	HMP	data	 is	not	shown	because	of	data	access	688	

restrictions	on	participant	metadata,	available	through	dbGaP	application.	689	

	690	

S2	Table.	Microbiota	distinguishability	by	ethnicity,	age,	sex	and	BMI.	(A)	AGP	and	HMP	691	

ANOSIM	distinguishability	by	ethnicity,	age,	sex,	and	BMI	at	a	rarefaction	depth	of	1,000	and	692	

across	four	ecological	metrics	(more	details	in	table).	(B)	AGP	ANOSIM	distinguishability	by	693	

ethnicity,	age,	sex,	and	BMI	at	rarefaction	depths	of	1,000	and	10,000.	(C)	ANOSIM	results	694	

for	consensus	distance	matrix	while	subsampling	the	maximum	number	of	individuals	from	695	

each	ethnic	group.	 (D)	BioEnv	results	of	 correlation	between	ethnicity,	 age,	 sex,	and	BMI	696	

together	with	outcome	as	multivariate	beta	diversity	distance	matrices	[Distance	Matrix	=	697	

Ethnicity*x1	+	Categorical	Age*x2	+	Categorical	BMI*x3	+	Sex*x4	+	B].	(E)	ANOSIM	results	698	

for	consensus	distance	matrix	when	each	ethnicity	and	group	of	ethnicities	are	sequentially	699	

removed	from	the	analysis.		700	

	701	

S3	Table.	Alpha	diversity	by	ethnicity,	age,	sex	and	BMI.	Alpha	Diversity	for	Ethnicity,	702	

Age,	Sex,	and	BMI	across	varying	rarefaction	depths	and	beta	diversity	metrics	in	AG	(4A,	4C-703	

E),	 and	 for	 ethnicity	 in	 the	HMP	 (4B).	Results	 are	 based	on	non-parametric	 permutation	704	

based	t-tests,	and	p-values	are	Bonferroni	corrected	within	each	factor	of	interest,	depth,	and	705	

metric.	706	

	707	

S4	Table.	Comparison	of	beta	diversity	distances	for	within	and	between	ethnicities.	708	

All	 values	 depicted	 are	 Mann-Whitney-U	 p-values.	 (A)	 All	 distances	 between	 pairs	 of	709	

individuals	 within	 each	 ethnicity	 were	 compared	 between	 ethnicities	 across	 rarefaction	710	
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depths	 1,000	 and	 10,000,	 four	 beta	 diversity	metrics,	 and	with	while	 subsampling	 over-711	

represented	ethnicities.	(B)	All	distances	between	pairs	of	individuals	within	and	between	712	

each	 ethnicity	were	 compared	 between	 ethnicities.	 (C)	Mean	 distances	 between	 pairs	 of	713	

individuals	within	each	ethnicity	were	compared	between	ethnicities.	(D)	Mean	distances	714	

between	pairs	of	 individuals	within	and	between	each	ethnicity	were	compared	between	715	

ethnicities.		716	

	717	

S5	Table.	Taxa	which	are	differentially	abundant	by	ethnicity,	sex,	BMI,	and	age	in	the	718	

AGP	 and	 HMP.	 Kruskal-Wallis	 results	 for	 differential	 taxa	 abundance	 across	 metadata	719	

groupings,	including	FDR	and	Bonferroni	corrected	p-values,	and	taxa	abundance	averages	720	

within	each	group.	Metadata	factors	and	taxonomic	levels	are	separated	by	excel	tabs.	721	

	722	

S6	 Table.	 Taxa	 which	 are	 correlated	 with	 ethnicity,	 sex,	 BMI,	 and	 age	 in	 the	 AGP.	723	

Results	 of	 linear	 (Abundance)	 and	 logistic	 (Presence	 Absence)	 regression	 results	 for	724	

differential	taxa	abundance	across	metadata	factors	separated	by	taxonomic	level.	Columns	725	

in	order	indicate	the	taxon	name,	the	number	of	individuals	with	non-zero	abundance;	then	726	

the	p-value	for	ethnicity	alone,	the	p-value	Bonferroni	corrected,	the	f-test	statistic,	and	R2;	727	

then	the	same	values	for	the	regression	with	ethnicity,	age,	sex,	and	BMI	together;	then	the	728	

abundances	in	each	ethnic	group,	and	finally	the	p-values	for	each	factor	broken	down.	729	

	730	

S7	 Table.	 Genetic	 variants	 with	 taxa	 associations	 and	 detailed	 1,000	 Genomes	731	

population	differentiation	rates	(FST).	Variants	in	red	indicate	the	variant	has	at	least	one	732	

FST	above	the	95th	percentile	for	high	differentiation	between	at	least	one	pair	of	populations.	733	
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Columns	I-BU	represent	the	values	for	calculating	variant	FST	and	percentiles.	The	first	two	734	

spaces	 indicate	 the	 two	 superpopulations	 being	 compared.	 FST	 indicates	 the	 rate	 of	735	

differentiation	 for	 that	 variant	 between	 that	 pair	 of	 populations.	 Higher	 indicates	 the	736	

number	of	variants	genome-wide	with	a	higher	FST,	and	total	indicates	the	total	genome-wide	737	

variants	 examined.	 The	 columns	with	 chromosome	 indicate	 the	number	 of	 variants	with	738	

higher	FST	and	 total	variants	on	 the	same	chromosome	as	 the	variant	of	 interest.	Percent	739	

indicates	the	number	of	variants	with	a	higher	FST	divided	by	the	total	number	of	variants.	740	

	741	
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