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Abbreviations:	18	

AGP	–	American	Gut	Project	19	

ANOSIM	–	Analysis	of	Similarity	20	

AUC	–	Area	Under	the	Curve		21	

BMI	–	Body	Mass	Index	22	

FST	–	Fixation	Index	23	

GWAS	-	Genome-Wide	Association	Studies	24	

HMP	–	Human	Microbiome	Project	25	

MAF	-	Minor	Allele	Frequency		26	

OTU	–	Operational	Taxonomic	Unit	27	

PERMANOVA	-	Permutational	Multivariate	Analysis	of	Variance	28	

RF	–	Random	Forest	29	

ROC	–	Receiver	Operating	Characteristic		30	

SMOTE	–	Synthetic	Minority	Over-sampling	Technique	 	31	
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Abstract:	32	

	 Composed	 of	 hundreds	 of	 microbial	 species,	 the	 composition	 of	 the	 human	 gut	33	

microbiota	 can	 vary	 with	 chronic	 diseases	 underlying	 health	 disparities	 that	34	

disproportionally	 affect	 ethnic	minorities.	However,	 the	 influence	 of	 ethnicity	 on	 the	 gut	35	

microbiota	 remains	 largely	 unexplored	 and	 lacks	 reproducible	 generalizations	 across	36	

studies.	 By	 distilling	 associations	 between	 ethnicity	 and	differences	 in	 two	United	 States	37	

based	 16S	 gut	 microbiota	 datasets	 including	 1,673	 individuals,	 we	 report	 12	 microbial	38	

genera	and	 families	 that	reproducibly	vary	by	ethnicity.	 Interestingly,	a	majority	of	 these	39	

microbial	 taxa,	 including	 the	most	heritable	bacterial	 family,	Christensenellaceae,	overlap	40	

with	 genetically-associated	 taxa	 and	 form	 co-occurring	 clusters	 linked	 by	 similar	41	

fermentative	and	methanogenic	metabolic	processes.	These	results	demonstrate	recurrent	42	

associations	between	specific	taxa	in	the	gut	microbiota	and	ethnicity,	providing	hypotheses	43	

for	examining	specific	members	of	the	gut	microbiota	as	mediators	of	health	disparities.	 	44	
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Introduction:	45	

	 The	human	gut	microbiota	at	fine	resolution	varies	extensively	between	individuals	46	

(1-3),	and	this	variability	frequently	associates	with	diet	(4-7),	age	(6,	8,	9),	sex	(6,	9,	10),	47	

body	mass	 index	 (BMI)	 (1,	6),	 and	diseases	presenting	as	health	disparities	 (11-14).	The	48	

overlapping	risk	factors	and	burden	of	many	chronic	diseases	disproportionally	affect	ethnic	49	

minorities	in	the	United	States,	yet	the	underlying	biological	mechanisms	mediating	these	50	

substantial	disparities	 largely	remain	unexplained.	Recent	evidence	is	consistent	with	the	51	

hypothesis	that	ethnicity	associates	with	variation	in	microbial	abundance,	specifically	in	the	52	

oral	cavity,	gut,	and	vagina	(15-17).	To	varying	degrees,	ethnicity	can	capture	many	facets	of	53	

biological	variation	including	social,	economic	and	cultural	variation,	as	well	as	aspects	of	54	

human	genetic	variation	and	biogeographical	ancestry.	Ethnicity	also	serves	as	a	proxy	to	55	

characterize	health	disparity	incidence	in	the	United	States,	and	while	factors	such	as	genetic	56	

admixture	create	ambiguity	of	modern	ethnic	identity,	self-declared	ethnicity	has	proven	a	57	

useful	proxy	for	genetic	and	socioeconomic	variation	in	population	scale	analyses,	including	58	

in	the	Human	Microbiome	Project	(18-20).	Microbiota	differences	have	been	documented	59	

across	populations	that	differ	in	ethnicity	as	well	as	in	geography,	lifestyle,	and	sociocultural	60	

structure;	 however,	 these	 global	 examinations	 cannot	 disconnect	 factors	 such	 as	61	

intercontinental	 divides	 and	 hunter-gatherer	 versus	 western	 lifestyles	 from	 ethnically	62	

structured	 differences	 (21-23).	 Despite	 the	 importance	 of	 understanding	 the	63	

interconnections	 between	 ethnicity,	 microbiota,	 and	 health	 disparities,	 there	 are	 no	64	

reproducible	findings	about	the	influence	of	ethnicity	on	differences	in	the	gut	microbiota	65	

and	specific	microbial	taxa	in	diverse	United	States	populations,	even	for	healthy	individuals	66	

(6).		67	
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Here,	we	comprehensively	examine	connections	between	self-declared	ethnicity	and	68	

gut	 microbiota	 differences	 across	 more	 than	 a	 thousand	 individuals	 sampled	 by	 the	69	

American	Gut	Project	(AGP,	N=1375)	(24)	and	the	Human	Microbiome	Project	(HMP,	N=298)	70	

(6).	Previous	studies	demonstrated	that	human	genetic	diversity	in	the	HMP	associates	with	71	

differences	in	microbiota	composition(25),	and	genetic	population	structure	within	the	HMP	72	

generally	 delineates	 self-declared	 ethnicity	 (20).	 Ethnicity	 was	 not	 found	 to	 have	 a	73	

significant	 association	 with	 microbiota	 composition	 in	 a	 Middle	 Eastern	 population,	74	

however	factors	such	as	lifestyle	and	environment	that	influence	microbiota	variation	across	75	

participants	was	homogenous	compared	to	the	ethnic,	sociocultural,	economic,	and	dietary	76	

diversity	 found	 within	 the	 United	 States	 (26).	 While	 ethnic	 diversity	 is	 generally	77	

underrepresented	in	current	microbiota	studies,	evidence	supporting	an	ethnic	influence	on	78	

microbiota	composition	among	first	generation	immigrants	has	been	recently	demonstrated	79	

in	a	Dutch	population	(27).	The	goal	of	this	examination	is	to	evaluate,	for	the	first	time,	if	80	

there	are	reproducible	differences	in	gut	microbiota	across	ethnicities	within	an	overlapping	81	

United	States	population,	as	ethnicity	is	one	of	the	key	defining	factors	for	health	disparity	82	

incidence	 in	 the	United	 States.	 Lifestyle,	 dietary,	 and	 genetic	 factors	 all	 vary	 to	 different	83	

degrees	across	ethnic	groups	in	the	United	States,	and	it	will	require	more	even	sampling	of	84	

ethnic	diversity	and	stricter	phenotyping	of	study	populations	to	disentangle	which	factors	85	

underlie	ethnic	microbiota	variation	in	the	AGP	and	HMP.86	
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Results:	87	

Microbiota	are	subtly	demarcated	by	ethnicity	88	

	 We	first	evaluate	gut	microbiota	distinguishability	between	AGP	ethnicities	(Fig	1A,	89	

family	 taxonomic	 level,	 Asians-Pacific	 Islanders	 (N=88),	 Caucasians	 (N=1237),	 Hispanics	90	

(N=37),	and	African	Americans	(N=13)),	sexes	(female	(N=657),	male	(N=718)),	age	groups	91	

(years	 grouped	 by	 decade),	 and	 categorical	 BMI	 (underweight	 (N=70),	 normal	 (N=873),	92	

overweight	(N=318),	and	obese	(N=114))	(Demographic	details	in	S1A	Table).	Age,	sex,	and	93	

BMI	 were	 selected	 as	 covariates	 because	 they	 are	 consistent	 across	 the	 AGP	 and	 HMP	94	

datasets.	 Additionally,	 31	 other	 categorical	 factors	 measuring	 diet,	 environment,	 and	95	

geography	 were	 compared	 for	 pairwise	 differences	 between	 two	 ethnicities	 using	96	

proportions	tests,	and	very	few	(10	/	894)		tests	significantly	varied	(S1	Table	additional	97	

sheets).	Interindividual	gut	microbiota	heterogeneity	clearly	dominates;	however,	Analyses	98	

of	 Similarity	 (ANOSIM)	 reveal	 subtle	 but	 significant	 degrees	 of	 total	 microbiota	99	

distinguishability	for	ethnicity,	BMI,	and	sex,	but	not	for	age	(Fig	1B,	Ethnicity;	Fig	1C,	BMI;	100	

Fig	1D,	Sex;	Fig	1E,	Age)	(28).	Recognizing	that	subtle	microbiota	distinguishability	between	101	

ethnicities	 may	 be	 spurious,	 we	 independently	 replicate	 the	 ANOSIM	 results	 from	 HMP	102	

African	Americans	(N=10),	Asians	(N=34),	Caucasians	(N=211)	and	Hispanics	(N=43)	(S2A	103	

Table,	R=0.065,	p=0.044).	We	again	observe	no	significant	distinguishability	for	BMI,	sex,	104	

and	age	in	the	HMP.	Higher	rarefaction	depths	increase	microbiota	distinguishability	in	the	105	

AGP	 across	 various	 beta	 diversity	 metrics	 and	 categorical	 factors	 (S2B	 Table),	 and	106	

significance	 increases	when	 individuals	 from	overrepresented	ethnicities	are	subsampled	107	

from	the	average	beta	diversity	distance	matrix	(S2C	Table).	Supporting	the	ANOSIM	results,	108	

Permutational	Multivariate	Analysis	of	Variance	(PERMANOVA)	models	with	four	different	109	
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beta	diversity	metrics	showed	that	while	all	factors	had	subtle	but	significant	associations	110	

with	microbiota	variation	when	combined	 in	a	single	model,	effect	sizes	were	highest	 for	111	

ethnicity	in	7	out	of	8	comparisons	across	beta	diversity	metrics	and	rarefaction	depths	in	112	

the	 AGP	 and	 HMP	 (S2D	 Table).	 We	 additionally	 test	 microbiota	 distinguishability	 by	113	

measuring	the	correlation	between	beta	diversity	and	ethnicity,	BMI,	sex,	and	age	with	an	114	

adapted	BioEnv	test	(S2E	Table)	(29).	Similar	degrees	of	microbiota	structuring	occur	when	115	

all	 factors	are	 incorporated	(Spearman	Rho=0.055,	p-values:	Ethnicity=0.057,	BMI<0.001,	116	

Sex<0.001,	 Age=0.564).	 Firmicutes	 and	 Bacteroidetes	 dominated	 the	 relative	 phylum	117	

abundance,	with	each	representing	between	35%	and	54%	of	 the	total	microbiota	across	118	

ethnicities	(S1	Fig).		119	
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	120	

Fig	 1.	 Gut	microbiota	 composition	 and	distinguishability	 by	 ethnicity,	 sex,	 age	 and	121	

BMI.	(A)	The	average	relative	abundance	of	dominant	microbial	families	for	each	ethnicity.	122	

(B-E)	 Principle	 coordinates	 analysis	 plots	 of	 microbiota	 Bray-Curtis	 beta	 diversity	 and	123	

ANOSIM	distinguishability	 for:	 (B)	Ethnicity,	 (C)	Sex,	 (D)	Age,	 (E)	BMI.	 In	B-E,	each	point	124	

represents	the	microbiota	of	a	single	sample,	and	colors	reflect	metadata	for	that	sample.	125	
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Caucasian	 points	 are	 reduced	 in	 size	 to	 allow	 clearer	 visualization,	 and	 p-values	 are	 not	126	

corrected	across	factors	which	have	different	underlying	population	distributions.	127	

	128	

	 We	next	test	for	ethnicity	signatures	in	the	gut	microbiota	by	analyzing	alpha	and	beta	129	

diversity,	 abundance	 and	 ubiquity	 distributions,	 distinguishability,	 and	 classification	130	

accuracy	 (30).	 Shannon’s	 Alpha	 Diversity	 Index	 (31),	 which	 weights	 both	 microbial	131	

community	 richness	 (Observed	 OTUs)	 and	 evenness	 (Equitability),	 significantly	 varies	132	

across	ethnicities	 in	 the	AGP	dataset	 (Kruskal	Wallis,	p=2.8e-8)	with	 the	 following	ranks:	133	

Hispanics	>	Caucasians	>	Asian-Pacific	Islanders	>	African	Americans	(Fig	2A).	In	the	HMP,	134	

there	 is	 a	 significantly	 lower	 Shannon	 diversity	 for	 Asian-Pacific	 Islanders	 relative	 to	135	

Caucasians	 and	a	 trend	of	 lower	Shannon	diversity	 for	Asian-Pacific	 Islanders	 relative	 to	136	

Hispanics;	 African	 Americans	 change	 position	 in	 diversity	 relative	 to	 other	 ethnicities,	137	

potentially	as	a	result	of	undersampling	bias.	Five	alpha	diversity	metrics,	two	rarefaction	138	

depths,	 and	 separate	 analyses	 of	 Observed	 OTUs	 and	 Equitability	 generally	 confirm	 the	139	

results	(S3A	Table).		140	
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	141	

Fig	2.	Ethnicity	associates	with	diversity	and	composition	of	the	gut	microbiota.	 (A)	142	

Center	lines	of	each	boxplot	depict	the	median	by	which	ethnicities	were	ranked	from	low	143	

(left)	 to	high	 (right);	 the	 lower	and	upper	ends	of	 each	box	 represent	 the	25th	and	75th	144	

quartiles	respectively;	whiskers	denote	the	1.5	interquartile	range,	and	black	dots	represent	145	

individual	 samples.	 Lines	 in	 the	middle	 of	 violin	plots	depict	 the	mean,	 and	p-values	 are	146	

Bonferroni	 corrected	within	each	dataset.	 (B)	Left	 extending	violin	plots	 represent	 intra-147	

ethnic	distances	 for	each	ethnicity,	and	right	extending	violin	plots	depict	all	 inter-ethnic	148	

distances.	Center	lines	depict	the	mean	beta	diversity.	Significance	bars	above	violin	plots	149	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/342915doi: bioRxiv preprint 

https://doi.org/10.1101/342915
http://creativecommons.org/licenses/by-nc/4.0/


	 11	

depict	Bonferroni	corrected	pairwise	Mann-Whitney-U	comparisons	of	the	intra-intra-	and	150	

intra-inter-ethnic	 distances.	 (C)	 Within	 each	 ethnicity,	 OTUs	 shared	 by	 at	 least	 50%	 of	151	

samples.	Colored	lines	represent	a	robust	ordinary	least	squares	regression	within	OTUs	of	152	

each	 ethnicity,	 shaded	 regions	 represent	 the	 95%	 confidence	 interval,	 R2	 denotes	 the	153	

regression	correlation,	the	OTUs	column	indicates	the	number	of	OTUs	with	>50%	ubiquity	154	

for	 that	 ethnicity,	Mean	A/U	 is	 the	 average	 abundance/ubiquity	 ratio,	 and	 the	 padj	 is	 the	155	

regression	significance	adjusted	and	Bonferroni	corrected	for	the	number	of	ethnicities.	156	

	157	

	 If	 ethnicity	 impacts	 microbiota	 composition,	 pairwise	 beta	 diversity	 distances	158	

(ranging	 from	0/completely	dissimilar	 to	1/identical)	will	be	greater	between	ethnicities	159	

than	within	ethnicities.	While	average	gut	microbiota	beta	diversities	across	all	individuals	160	

are	 high	 (Fig	 2B,	 Bray-Curtis=0.808),	 beta	 diversities	 between	 individuals	 of	 the	 same	161	

ethnicity	 (intra-ethnic,	 Bray-Curtis=0.806)	 are	 subtly,	 but	 significantly,	 lower	 than	 those	162	

between	 ethnicities	 in	 both	 the	 AGP	 (inter-ethnic,	 Bray-Curtis=0.814)	 and	HMP	 datasets	163	

(intra-ethnic,	Bray-Curtis=0.870	versus	 inter-ethnic,	Bray-Curtis=0.877).	We	confirm	AGP	164	

results	by	subsampling	individuals	from	overrepresented	ethnicities	across	beta	metrics	and	165	

rarefaction	depths	 (S4A-4B	Tables).	 Finally,	we	 repeat	 analyses	across	beta	metrics	 and	166	

rarefaction	depths	using	only	the	average	distance	of	each	individual	to	all	individuals	from	167	

the	ethnicity	to	which	they	are	compared	(S4C-4D	Tables).		168	

	 Next,	we	explore	 inter-ethnic	differences	 in	the	number	of	OTUs	shared	 in	at	 least	169	

50%	of	 individuals	within	an	ethnicity,	as	the	 likelihood	of	detecting	a	biological	signal	 is	170	

improved	 in	more	 abundant	 organisms	 relative	 to	 noise	 that	may	 predominate	 in	 lower	171	

abundance	OTUs.	Out	of	5,591	OTUs	in	the	total	AGP	dataset,	101	(1.8%)	meet	this	ubiquity	172	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/342915doi: bioRxiv preprint 

https://doi.org/10.1101/342915
http://creativecommons.org/licenses/by-nc/4.0/


	 12	

cutoff	in	all	ethnicities,	and	293	(5.2%)	OTUs	meet	the	cutoff	within	at	least	one	ethnicity.	173	

Hispanics	share	the	most	ubiquitous	OTUs	and	have	the	lowest	average	abundance/ubiquity	174	

(A/U)	 ratio	 (Fig	 2C),	 indicating	 stability	whereby	 stability	 represents	 a	more	 consistent	175	

appearance	of	OTUs	with	lower	abundance	but	higher	ubiquity		(32).	This	result	potentially	176	

explains	 their	 significantly	 lower	 intra-ethnic	 beta	 diversity	 distance	 and	 thus	 higher	177	

microbial	community	overlap	relative	to	the	other	ethnicities	(Fig	2B).	Comparisons	in	the	178	

AGP	between	the	higher	sampled	Hispanic,	Caucasian,	and	Asian-Pacific	Islander	ethnicities	179	

also	reveal	a	trend	wherein	higher	intra-ethnic	community	overlap	(Fig	2B)	parallels	higher	180	

numbers	of	ubiquitous	OTUs	(Fig	2C),	higher	Shannon	Alpha	diversity	(Fig	2A),	and	higher	181	

stability	of	ubiquitous	OTUs	as	measured	by	the	abundance/ubiquity	(A/U)	ratio	(Fig	2C).		182	

	 We	 next	 assess	 whether	 a	 single	 ethnicity	 disproportionately	 impacts	 total	 gut	183	

microbiota	distinguishability	in	the	AGP	by	comparing	ANOSIM	results	from	the	consensus	184	

beta	diversity	distance	matrix	when	each	ethnicity	is	sequentially	removed	from	the	analysis	185	

(Fig	 3A	 and	 S2E	 Table).	 Distinguishability	 remains	 unchanged	 when	 the	 few	 African	186	

Americans	are	removed,	but	is	lost	upon	removal	of	Asian-Pacific	Islanders	or	Caucasians,	187	

likely	reflecting	their	higher	beta	diversity	distance	from	other	ethnicities	(Fig	3A).	Notably,	188	

removal	of	Hispanics	 increases	distinguishability	 among	 the	 remaining	ethnicities,	which	189	

may	be	due	to	higher	degree	of	beta	diversity	overlap	observed	between	Hispanics	and	other	190	

ethnicities	 (S4B	 Table).	 Results	 conform	 across	 rarefaction	 depths	 and	 beta	 diversity	191	

metrics	 (S2F	Table),	 and	 pairwise	 combinations	 show	 strong	 distinguishability	 between	192	

African	Americans	and	Hispanics	(ANOSIM,	R=0.234,	p=0.005),	and	Asian-Pacific	Islanders	193	

and	Caucasians	(ANOSIM,	R=0.157,	p<0.001).		194	
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Finally,	 to	 complement	 evaluation	 with	 ecological	 alpha	 and	 beta	 diversity	 we	195	

implement	a	random	forest	(RF)	supervised	 learning	algorithm	to	classify	gut	microbiota	196	

from	 genus	 level	 community	 profiles	 into	 their	 respective	 ethnicity.	We	 build	 four	 one-197	

versus-all	binary	classifiers	to	classify	samples	from	each	ethnicity	compared	to	the	rest,	and	198	

use	 two	 different	 sampling	 approaches	 to	 train	 the	 models,	 Synthetic	 Minority	 Over-199	

sampling	 Technique	 (SMOTE)	 (33)	 and	 down-sampling,	 for	 overcoming	 uneven	200	

representation	of	ethnicities	in	both	the	datasets	(see	Methods).	Given	that	the	area	under	201	

the	receiver	operating	characteristic	(ROC)	curve	(or	AUC)	of	a	random	guessing	classifier	is	202	

0.5,	the	models	classify	each	ethnicity	fairly	well	(Fig	3B)	with	average	AUCs	across	sampling	203	

techniques	and	datasets	of	0.78	for	Asian-Pacific	Islanders,	0.76	for	African	Americans,	0.69	204	

for	Hispanics,	and	0.70	for	Caucasians.	Ethnicity	distinguishing	RF	taxa	and	out-of-bag	error	205	

percentages	appear	in	(S2	Fig).		206	
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	207	

Fig	 3.	Microbiota	 distinguishability	 and	 classification	 ability	 across	 ethnicities.	 (A)	208	

ANOSIM	distinguishability	between	all	combinations	of	ethnicities.	Symbols	depict	specific	209	

ethnicities	included	in	the	ANOSIM	tests,	and	boxes	denote	the	R-value	as	a	heatmap,	where	210	

white	indicates	increasing	and	black	indicates	decreasing	distinguishability	relative	to	the	R-211	

value	 with	 all	 ethnicities.	 (B)	 Average	 ROC	 curves	 (for	 10-fold	 cross-validation)	 and	212	

prediction	 performance	metrics	 for	 one-versus-all	 RF	 classifiers	 for	 each	 ethnicity,	 using	213	

SMOTE	(33)	and	down	subsampling	approaches	for	training.		214	

 215	

Recurrent	taxon	associations	with	ethnicity	216	
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Subtle	to	moderate	ethnicity-associated	differences	in	microbial	communities	may	in	217	

part	be	driven	by	differential	abundance	of	certain	microbial	taxa.	16.2%	(130/802)	of	the	218	

AGP	 taxa	 and	20.6%	 (45/218)	of	HMP	 taxa	 across	 all	 classification	 levels	 (i.e.	 phylum	 to	219	

genus,	 S5	 Table)	 significantly	 vary	 in	 abundance	 across	 ethnicities	 (Kruskal-Wallis,	220	

pFDR<0.05).	Between	datasets,	19.2%	(25/130)	of	the	AGP	and	55.6%	(25/45)	of	the	HMP	221	

varying	 taxa	 replicate	 in	 the	 other	 dataset,	 representing	 a	 significantly	 greater	 degree	 of	222	

overlap	than	would	be	expected	by	chance	(ethnic	permutation	analysis	of	overlap,	p<0.001	223	

each	 taxonomic	 level	 and	all	 taxonomic	 levels	 combined).	The	highest	 replication	of	 taxa	224	

varying	 by	 abundance	 occurs	with	 22.0%	of	 families	 (9	 significant	 in	 both	 datasets	 /	 41	225	

significantly	varying	families	in	either	dataset),	followed	by	genus	with	13.4%	(9	significant	226	

in	both	datasets	/	67	significantly	varying	genera	in	either	dataset).		227	

Among	18	reproducible	taxa,	we	categorize	12	as	taxonomically	distinct	(Fig	4)	and	228	

exclude	 6	 where	 nearly	 identical	 abundance	 profiles	 between	 family/genus	 taxonomy	229	

overlap.	Comparing	relative	abundance	differences	between	pairs	of	ethnicities	for	these	12	230	

taxa	in	the	AGP	reveals	30	significant	differences,	of	which	20	replicate	in	the	HMP	(p<0.05,	231	

Mann-Whitney-U).	 Intriguingly,	 all	 reproducible	 pairwise	 differences	 are	 a	 result	 of	232	

decreases	 in	 Asian-Pacific	 Islanders	 (Fig	 4).	 We	 also	 test	 taxon	 abundance	 and	233	

presence/absence	associations	with	ethnicity	separately	in	the	AGP	using	linear	and	logistic	234	

regression	models	respectively,	and	we	repeat	the	analysis	while	incorporating	categorical	235	

sex	 and	 continuous	 age	 and	 BMI	 as	 covariates	 (S6	 Table).	 Clustering	microbial	 families	236	

based	 on	 their	 abundance	 correlation	 reveals	 two	 co-occurrence	 clusters:	 (i)	 a	 distinct	237	

cluster	of	six	Firmicutes	and	Tenericutes	 families	 in	 the	HMP	and	(ii)	an	overlapping	but	238	

more	 diverse	 cluster	 of	 20	 families	 in	 the	 AGP	 (S3	 Fig).	 Nine	 of	 the	 12	 taxa	 found	 to	239	
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recurrently	vary	in	abundance	across	ethnicities	are	represented	in	these	clusters	(Fig	4),	240	

with	 four	 appearing	 in	 both	 clusters	 and	 the	 other	 five	 appearing	 either	 in	 or	 closely	241	

correlated	with	members	of	both	clusters	(S3	Fig).	Furthermore,	90%	(18/20)	of	families	in	242	

the	AGP	cluster	and	66%	(4/6)	of	taxa	in	the	HMP	cluster	significantly	vary	in	abundance	243	

across	 ethnicities.	 We	 also	 found	 overlap	 for	 AGP	 and	 HMP	 datasets	 between	 taxa	244	

significantly	varying	in	abundance	across	ethnicities	(with	FDR	<0.05)	and	taxa	in	RF	models	245	

with	percentage	importance	greater	than	50%	for	an	ethnicity	(S2B	Fig).	Taken	together,	246	

these	 results	 establish	 general	 overlap	 of	 the	 most	 significant	 ethnicity-associated	 taxa	247	

between	 the	 these	methods,	 reproducibility	 of	 microbial	 abundances	 that	 vary	 between	248	

ethnicities	 across	 datasets,	 and	 patterns	 of	 co-occurrence	 among	 these	 taxa	which	 could	249	

suggest	they	are	functionally	linked.	250	

	251	
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Fig	4.	Ethnicity-associated	taxa	match	between	the	HMP	and	AGP.	Barplots	depict	the	252	

log10	transformed	relative	abundance	for	individuals	possessing	the	respective	taxon	within	253	

each	ethnicity,	ubiquity	appears	above	(AGP)	or	below	(HMP)	bars,	and	the	25th	and	75th	254	

percentiles	are	shown	with	extending	whiskers.	Mann-Whitney-U	tests	evaluate	differences	255	

in	abundance	and	ubiquity	for	all	individuals	between	pairs	of	ethnicities;	for	example,	the	256	

direction	 of	 change	 in	Victivallaceae	 is	 driven	 by	 ubiquity	while	 abundance	 is	 higher	 for	257	

those	possessing	 the	 taxon.	 Significance	 values	 are	Bonferroni	 corrected	 for	 the	 six	 tests	258	

within	 each	 taxon	 and	dataset,	 and	bold	 p-values	 indicate	 that	 significance	 (p<0.05)	 and	259	

direction	of	change	replicate	in	the	AGP	and	HMP.		260	

	261	

Most	heritable	taxon	of	bacteria	varies	by	ethnicity	262	

	 Identified	 as	 the	 most	 heritable	 taxon	 in	 the	 human	 gut	 (34,	 35),	 the	 family	263	

Christensenellaceae	exhibits	the	second	strongest	significant	difference	in	abundance	across	264	

ethnicities	 in	 both	 AGP	 and	 HMP	 datasets	 (S5	 Table,	 Family:	 AGP,	 Kruskal-Wallis,	265	

pFDR=1.55e-9;	 HMP,	 Kruskal-Wallis,	 pFDR=0.0019).	 Additionally,	 Christensenellaceae	 is	266	

variable	 by	 sex	 and	 BMI	 (AGP:	 Sex,	 Kruskal-Wallis,	 pFDR=1.22e-12;	 BMI,	 Kruskal-Wallis,	267	

pFDR=0.0020),	and	represents	some	of	the	strongest	pairwise	correlations	with	other	taxa	in	268	

both	co-occurrence	clusters	(S3	Fig).	There	is	at	least	an	eight-fold	and	two-fold	reduction	269	

in	 average	Christensenellaceae	 abundance	 in	Asian-Pacific	 Islanders	 relative	 to	 the	other	270	

ethnicities	 in	 the	 AGP	 and	HMP	 respectively	 (S5	Table),	 and	 significance	 of	 all	 pairwise	271	

comparisons	 in	both	datasets	show	reduced	abundance	in	Asian-Pacific	 Islanders	(Fig	4).	272	

Christensenellaceae	 also	 occur	 among	 the	 top	 10	most	 influential	 taxa	 for	 distinguishing	273	

Asian-Pacific	 Islanders	 from	 other	 ethnicities	 using	 RF	 models	 for	 both	 AGP	 and	 HMP	274	
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datasets	 (S2A	 Fig).	 Abundance	 in	 individuals	 possessing	 Christensenellaceae	 and	275	

presence/absence	 across	 all	 individuals	 significantly	 associate	 with	 ethnicity	 (S6	 Table,	276	

Abundance,	 Linear	 Regression,	 pBonferroni=0.006;	 Presence/Absence,	 Logistic	 Regression,	277	

pBonferroni=8.802e-6),	 but	 there	was	 only	 a	 slight	 correlation	 between	 the	 taxon’s	 relative	278	

abundance	 and	 BMI	 (S4	 Fig).	 Confirming	 previous	 associations	with	 lower	 BMI(36),	 we	279	

observe	that	AGP	individuals	with	Christensenellaceae	also	have	a	lower	BMI	(Mean	BMI,	280	

23.7±4.3)	than	individuals	without	it	(Mean	BMI,	25.0±5.9;	Mann-Whitney-U,	p<0.001).	This	281	

pattern	is	separately	reflected	in	African	Americans,	Asian-Pacific	Islanders,	and	Caucasians	282	

but	 not	 Hispanics	 (Fig	 5),	 suggesting	 that	 each	 ethnicity	 may	 have	 different	 equilibria	283	

between	the	taxon’s	abundance	and	body	weight.		284	

	285	

Fig	5.	Christensenellaceae	variably	associate	with	BMI	across	ethnicities.	Boxplots	of	286	

BMI	 for	 individuals	 without	 (unfilled	 boxplots)	 and	 with	 (filled	 boxplots)	287	

Christensenellaceae.	 Significance	was	determined	using	one-tailed	Mann-Whitney-U	 tests	288	

for	lower	continuous	BMI	values.	Black	lines	indicate	the	mean	relative	abundance;	the	lower	289	
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and	upper	end	of	each	box	represent	the	25th	and	75th	quartiles	respectively;	and	whiskers	290	

denote	the	1.5	interquartile	range.		291	

	292	

Genetic-	and	ethnicity-associated	taxa	overlap	293	

	 Many	factors	associate	with	human	ethnicity,	including	a	small	subset	of	population	294	

specific	 genetic	 variants	 (estimated	 ~0.5%	 genome	 wide)	 that	 vary	 by	 biogeographical	295	

ancestry	 (37,	 38);	 self-declared	 ethnicity	 in	 the	HMP	 is	 delineated	 by	 population	 genetic	296	

structure	(20).	Here	we	investigate	whether	ethnicity-associated	taxa	overlap	with	(i)	taxa	297	

that	have	a	significant	population	genetic	heritability	in	humans	(34,	35,	39,	40)	and	(ii)	taxa	298	

linked	with	human	genetic	variants	in	two	large	Genome-Wide	Association	Studies	(GWAS)-299	

microbiota	 analyses	 (35,	 40).	 All	 recurrent	 ethnicity-associated	 taxa	 except	 one	 were		300	

heritable	 in	at	 least	one	study,	with	seven	replicating	 in	three	or	more	studies	(Table	1).	301	

Likewise,	abundance	differences	in	seven	recurrent	ethnicity-associated	taxa	demonstrate	302	

significant	GWAS	associations	with	at	least	one	variant	in	the	human	genome.	Therefore,	we	303	

assess	whether	 any	 genetic	 variants	 associated	with	 differences	 in	microbial	 abundance	304	

exhibit	significant	rates	of	differentiation	(FST)	between	1,000	genomes	superpopulations	305	

(38).	Out	of	49	variants	associated	with	ethnically	varying	taxa,	21	have	higher	FST	values	306	

between	at	 least	one	pair	of	populations	 than	 that	of	95%	of	other	variants	on	 the	 same	307	

chromosome	 and	 across	 the	 genome;	 the	 FST	 values	 of	 five	 variants	 associated	 with	308	

Clostridiaceae	abundance	rank	above	the	top	99%	(S7	Table).	Since	taxa	that	vary	across	309	

ethnicities	exhibit	lower	abundance	in	Asian-Pacific	Islanders,	it	is	notable	that	the	FST	values	310	

of	18	and	11	variant	comparisons	for	East	Asian	and	South	Asian	populations,	respectively,	311	

are	 above	 that	 of	 the	 95%	 rate	 of	 differentiation	 threshold	 from	 African,	 American,	 or	312	
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European	 populations.	 Cautiously,	 the	 microbiota	 and	 1,000	 genomes	 datasets	 are	 not	313	

drawn	 from	 the	 same	 individuals,	 and	 disentangling	 the	 role	 of	 genetic	 from	 social	 and	314	

environmental	factors	will	still	require	more	controlled	studies.		315	

	316	

Recurrent	Ethnicity-Associated	Taxa	 Heritability	 Genetic	Associations	
Family:	Peptococcaceae	 0.1213	A,	0.2154C,	0.26E	 rs143179968E	
Family:	Dehalobacteriaceae	 0.6878B,	0.3087C	 	
Family:	Christensenellaceae	 0.3819A,	0.6170B,	0.4230C,	

0.3065D	

	
Order:	Clostridiales,	Family:	Unclassified	 0.2914	A,	0.4020B,	0.1330C	 *40	Genetic	VariantsC	
Genus:	Veillonella	 0.1370	A,	0.2168D	 rs347941C	
Order:	RF39,	Family:	Unclassified	 0.2341	A,	0.6618B,	0.3074C	 rs4883972C	
Family:	Verrucomicrobiaceae	 0.1257	A,	0.5973B,	0.1394C	 	
Family:	Victivallaceae	 	 	
Family	Odoribacteraceae	 0.1389	A,	0.1917D,	0.34E	 chr7:96414393E,	rs115795847E	
Genus:	Odoribacter	 0.1916D	 	
Family:	Rikenellaceae	 0.1299D,	0.29E	 rs17098734C,	rs3909540C,	rs147600757E	

rs62171178E	
Family:	Coriobacteraceae,	Genus:	Unclassified	 0.1364	A,	0.2822B,	0.1609C	 rs9357092E	

	317	

Table	1.	Most	recurrent	ethnicity-associated	taxa	are	previously	reported	heritable	318	

and	genetically-associated	taxa.	The	table	shows	population	genetic	heritability	estimates	319	

and	associated	genetic	variants	for	the	12	recurrent	ethnically	varying	taxa.	The	minimum	320	

heritability	 cutoff	 was	 chosen	 as	 >0.1,	 and	 only	 exactly	 overlapping	 taxonomies	 were	321	

considered.	Studies	examined:	AUKTwins	(2014,	‘A’	measure	of	additive	heritability	in	ACE	322	

model)	 (34),	 BYatsunenko	 (2014,	 ‘A’	measure	of	additive	heritability	 in	ACE	model)	 (34),	323	

CUKTwins	(2016,	‘A’	measure	of	additive	heritability	in	ACE	model)	(35),	DLim	(2016,	H2r	324	

measure	 of	 polygenic	 heritability	 in	 SOLAR	 (41))	 (39),	 ETurpin	 (2016,	 H2r	 measure	 of	325	

polygenic	 heritability	 in	 SOLAR	 (41)).	 *indicates	 excessive	 variants	 were	 excluded	 from	326	

table.	327	

	328	

Discussion:	329	
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	 Many	common	diseases	associate	with	microbiota	composition	and	ethnicity,	raising	330	

the	 central	 hypothesis	 that	 microbiota	 differences	 between	 ethnicities	 can	 occasionally	331	

serve	 as	 a	mediator	 of	 health	 disparities.	 American’s	 self-declared	 ethnicity	 can	 capture	332	

socioeconomic,	cultural,	geographic,	dietary	and	genetic	diversity,	and	a	similarly	complex	333	

array	of	interindividual	and	environmental	factors	influence	total	microbiota	composition.	334	

This	complexity	may	result	in	challenges	when	attempting	to	recover	consistent	trends	in	335	

total	gut	microbiota	differences	between	ethnicities.	The	challenges	in	turn	emphasize	the	336	

importance	 of	 reproducibility,	 both	 through	 confirmation	 across	 analytical	methods	 and	337	

replication	across	study	populations	(15-17,	20,	27,	42).	In	order	to	robustly	substantiate	the	338	

ethnicity-microbiota	hypothesis,	we	evaluated	recurrent	associations	between	self-declared	339	

ethnicity	and	variation	in	both	total	gut	microbiota	and	specific	taxa	in	healthy	individuals.	340	

Results	 provide	 hypotheses	 for	 examining	 specific	 members	 of	 the	 gut	 microbiota	 as	341	

mediators	of	health	disparities.	342	

	 Our	findings	from	two	American	datasets	demonstrate	that:	(i)	ethnicity	consistently	343	

captures	gut	microbiota	with	a	slightly	stronger	effect	size	than	other	variables	such	as	BMI,	344	

age,	and	sex,	(ii)	ethnicity	is	moderately	predictable	from	total	gut	microbiota	differences,	345	

and	(iii)	12	taxa	recurrently	vary	in	abundance	between	the	ethnicities,	of	which	the	majority	346	

have	been	previously	 shown	 to	 associate	with	human	genetic	 variation.	Whether	 shaped	347	

through	 socioeconomic,	 dietary,	 healthcare,	 genetic,	 or	 other	 ethnicity-related	 factors,	348	

reproducibly	 varying	 taxa	 represent	 sources	 for	 novel	 hypotheses	 addressing	 health	349	

disparities.	For	 instance,	 the	 family	Odoribacteraceae	and	genus	Odoribacter	 are	primary	350	

butyrate	producers	in	the	gut,	and	they	have	been	negatively	associated	to	severe	forms	of	351	

Crohn’s	disease	and	Ulcerative	Colitis	in	association	with	reduced	butyrate	metabolism	(43-352	
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45).	Asian-Pacific	Islanders	possess	significantly	less	Odoribacteraceae	and	Odoribacter	than	353	

Hispanics	and	Caucasians	in	both	datasets,	and	severity	of	Ulcerative	Colitis	upon	hospital	354	

admission	has	been	shown	to	be	significantly	higher	in	Asian	Americans	(46).	Considering	355	

broader	 physiological	 roles,	 several	 ethnicity-associated	 taxa	 are	 primary	 gut	 anaerobic	356	

fermenters	and	methanogens	(47,	48),	and	associate	with	lower	BMI	and	blood	triglyceride	357	

levels	 (36,	 49).	 Indeed,	 Christensenellaceae,	 Odoribacteraceae,	Odoribacter,	 and	 the	 class	358	

Mollicutes	containing	RF39	negatively	associate	with	metabolic	syndrome	and	demonstrate	359	

significant	population	genetic	heritability	 in	 twins	 (39).	 Implications	 for	health	outcomes	360	

warrant	 further	 investigation,	 but	 could	 be	 reflected	 by	 positive	 correlations	 of	361	

Odoribacteraceae,	Odoribacter,	 Coriobacteriaceae,	 Christensenellaceae,	 and	 the	 dominant	362	

Verrucomicrobiaceae	lineage	Akkermansia	with	old	age	(50,	51).	Akkermansia	associations	363	

with	health	and	ethnicity	 in	western	populations	may	reflect	recently	arising	dietary	and	364	

lifestyle	 effects	 on	 community	 composition,	 as	 this	 mucus	 consuming	 taxon	 is	 rarely	365	

observed	 in	 more	 traditional	 cultures	 globally	 (23).	 Moreover,	 these	 findings	 raise	 the	366	

importance	of	controlling	for	ethnicity	in	studies	linking	microbiota	differences	to	disease	367	

because	 associations	 between	 specific	 microbes	 and	 a	 disease	 could	 be	 confounded	 by	368	

ethnicity	of	the	study	participants.	369	

Based	 on	 correlations	 in	 individual	 taxon’s	 abundance,	 a	 similar	 pattern	 of	 co-370	

occurrence	previously	identified	as	the	‘Christensenellaceae	Consortium’	includes	11	of	the	371	

12	recurrent	ethnically	varying	taxa	(34),	and	members	of	this	consortium	associate	with	372	

genetic	 variation	 in	 the	 human	 formate	 oxidation	 gene	ALDH1L1,	which	 is	 a	 genetic	 risk	373	

factor	 for	stroke	(35,	52,	53).	Formate	metabolism	 is	a	key	step	 in	 the	pathway	reducing	374	

carbon	 dioxide	 to	 methane	 (54,	 55),	 and	 increased	 methane	 associates	 with	 increased	375	
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Rikenellaceae,	 Christensenellaceae,	 Odoribacteraceae	 and	 Odoribacter	 (56).	 Products	 of	376	

methanogenic	fermentation	pathways	include	short	chain	fatty	acids	such	as	butyrate,	which	377	

through	 reduction	 of	 pro-inflammatory	 cytokines	 is	 linked	 to	 cancer	 cell	 apoptosis	 and	378	

reduced	risk	of	colorectal	cancer	(57,	58).	Asian	Americans	are	the	only	ethnic	group	where	379	

cancer	 surpasses	 heart	 disease	 as	 the	 leading	 cause	 of	 death,	 and	 over	 70%	 of	 Asian	380	

Americans	were	born	overseas,	which	can	affect	assimilation	into	western	lifestyles,	leading	381	

to	reduced	access	to	healthcare	and	screening,	and	proper	medical	education	(57,	59-61).	382	

Preliminary	results	from	other	groups	suggest	that	the	gut	microbiome	of	Southeast	Asian	383	

immigrants	 changes	 after	 migration	 to	 the	 United	 States	 (Dan	 Knights,	 personal	384	

communication).	 Indeed,	 as	 countries	 in	 Asia	 shift	 toward	 a	 more	 western	 lifestyle,	 the	385	

incidence	 of	 cancers,	 particularly	 gastrointestinal	 and	 colorectal	 cancers,	 are	 increasing	386	

rapidly,	possibly	indicating	incompatibilities	between	traditionally	harbored	microbiota	and	387	

western	 lifestyles	 (62-65).	 Asian	 Americans	 have	 higher	 rates	 of	 type	 2	 diabetes	 and	388	

pathogenic	 infections	 than	 Caucasians	 (66),	 and	 two	metagenomic	 functions	 enriched	 in	389	

control	versus	 type	2	diabetes	cases	appear	 to	be	 largely	conferred	by	cluster-associated	390	

butyrate-producing	and	motility-inducing	Verrucomicrobiaceae	and	Clostridia	taxa	reduced	391	

in	 abundance	 among	 AGP	 and	 HMP	 Asian-Pacific	 Islanders	 (11).	 Both	 induction	 of	 cell	392	

motility	 and	 butyrate	 promotion	 of	 mucin	 integrity	 can	 protect	 against	 pathogenic	393	

colonization	 and	associate	with	microbial	 community	 changes	 (11,	 58,	 67).	 Levels	 of	 cell	394	

motility	 and	 butyrate	 are	 key	 factors	 suspected	 to	 underlie	 a	 range	 of	 health	 disparities	395	

including	inflammatory	bowel	disease,	arthritis,	and	type	2	diabetes	(11,	68-70).	Patterns	of	396	

ethnically	varying	taxa	across	ethnicities	could	result	from	many	factors	including	varying	397	

diets,	 environmental	 exposures,	 sociocultural	 influences,	 human	 genetic	 variation	 and	398	
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others.	However,	 regardless	 of	 the	mechanisms	dictating	 assembly,	 these	 results	 suggest	399	

there	 is	a	 reproducible,	 co-occurring	group	of	 taxa	 linked	by	similar	metabolic	processes	400	

known	to	promote	homeostasis.		401	

	 The	utility	of	this	work	is	establishing	a	framework	for	studying	ethnicity-associated	402	

taxa	and	hypotheses	of	how	changes	in	abundance	or	presence	of	these	taxa	may	or	may	not	403	

shape	health	disparities,	many	of	which	also	have	genetic	 components.	Differing	 in	allele	404	

frequency	 across	 three	 population	 comparisons	 and	 associated	 with	 the	 abundance	 of	405	

Clostridiales,	the	genetic	variant	rs7587067	has	a	significantly	higher	frequency	in	African	406	

(Minor	 Allele	 Frequency	 (MAF)=0.802)	 versus	 East	 Asian	 (MAF=0.190,	 FST=0.54,	407	

Chromosome=98.7%,	 Genome-Wide=98.9%),	 admixed	 American	 (MAF=0.278,	 FST=0.44,	408	

Chromosome=99.0%,	 Genome-Wide=99.1%),	 and	 European	 populations	 (MAF=0.267,	409	

FST=0.45,	Chromosome=98.7.3%,	Genome-Wide=98.7%).	This	intronic	variant	for	the	gene	410	

HECW2	 is	 a	 known	 eQTL	 (GTeX,	 eQTL	 Effect	 Size=-0.18,	 p=7.4e-5)	 (71,	 72),	 and	HECW2	411	

encodes	a	ubiquitin	ligase	linked	to	enteric	gastrointestinal	nervous	system	function	through	412	

maintenance	 of	 endothelial	 lining	 of	 blood	 vessels	 (73,	 74).	 Knockout	 of	HECW2	 in	mice	413	

reduced	enteric	neuron	networks	and	gut	motility,	and	patients	with	Hirschsprung’s	disease	414	

have	 diminished	 localization	 of	HECW2	 to	 regions	 affected	 by	 loss	 of	 neurons	 and	 colon	415	

blockage	when	compared	to	other	regions	of	their	own	colon	and	healthy	individuals	(75).	416	

Hirschsprung’s	 disease	 presenting	 as	 full	 colon	 blockage	 is	 rare	 and	 has	 not	 undergone	417	

targeted	 examination	 as	 a	 health	 disparity,	 however	 a	 possible	 hypothesis	 is	 that	 lower	418	

penetrance	 of	 the	 disease	 in	 individuals	 with	 the	 risk	 allele	 at	 rs7587067	 could	 lead	 to	419	

subtler	effects	on	gut	motility	resulting	in	Clostridiales	abundance	differences.		420	
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Despite	 the	 intrigue	 of	 connecting	 the	 human	 genome,	 microbiota	 and	 disease	421	

phenotypes,	 evaluating	 such	 hypotheses	will	 require	more	 holistic	 approaches	 including	422	

incorporating	metagenomics	and	metabolomics	to	identify	whether	enzymes	or	metabolic	423	

functions	reproducibly	vary	across	ethnicities,	as	well	as	direct	functional	studies	in	model	424	

systems	to	understand	if	correlation	is	truly	driven	by	causation.	Further	limitations	should	425	

also	be	considered,	including	recruitment	biases	for	the	AGP	versus	HMP,	variation	in	sample	426	

processing	and	OTU	clustering,	and	uneven	sampling	which	could	only	be	addressed	with	427	

down	 sampling	of	 over-represented	 ethnicities.	 Still,	 despite	 these	 confounders	 care	was	428	

taken	 to	 demonstrate	 the	 reproducibility	 of	 results	 across	 statistical	methods,	 ecological	429	

metrics,	 rarefaction	 depths,	 and	 study	 populations.	 Summarily,	 this	 work	 suggests	 that	430	

abundance	differences	of	specific	taxa,	rather	than	whole	communities,	may	represent	the	431	

most	reliable	ethnic	signatures	in	the	gut	microbiota.	A	reproducible	co-occurring	subset	of	432	

these	taxa	link	to	a	variety	of	overlapping	metabolic	processes	and	health	disparities,	and	433	

contain	the	most	reproducibly	heritable	taxon,	Christensenellaceae.	Moreover,	a	majority	of	434	

the	microbial	 taxa	 associated	with	 ethnicity	 are	 also	 heritable	 and	 genetically-associated	435	

taxa,	 suggesting	 there	 is	 a	possible	 connection	between	ethnicity	 and	genetic	patterns	of	436	

biogeographical	ancestry	that	may	play	a	role	in	shaping	these	taxa.	Our	results	emphasize	437	

the	importance	of	sampling	ethnically	diverse	populations	of	healthy	individuals	in	order	to	438	

discover	and	replicate	ethnicity	signatures	in	the	human	gut	microbiota,	and	they	highlight	439	

a	need	to	account	 for	ethnic	variation	as	a	potential	confounding	factor	 in	studies	 linking	440	

microbiota	 differences	 to	 disease.	 Further	 reinforcement	 of	 these	 results	 may	 lead	 to	441	

generalizations	 about	 microbiota	 assembly	 and	 even	 consideration	 of	 specific	 taxa	 as	442	

potential	mediators	or	treatments	of	health	disparities.	 	443	
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Materials	and	Methods:	444	

Data	Acquisition	445	

	 AGP	 data	 was	 obtained	 from	 the	 project	 FTP	 repository	 located	 at	446	

ftp://ftp.microbio.me/AmericanGut/.	AGP	data	generation	and	processing	prior	to	analysis	447	

can	 be	 found	 at:	 https://github.com/biocore/American-Gut/tree/master/ipynb/primary-448	

processing.	All	 analyses	utilized	 the	rounds-1-25	dataset	which	was	released	on	March	4,	449	

2016.	 Throughout	 all	 analyses,	 QIIME	 v1.9.0	 was	 used	 in	 an	 Anaconda	 environment	450	

[https://continuum.io]	 for	 all	 script	 calls,	 custom	 scripts	 and	 notebooks	 were	 run	 in	 the	451	

QIIME	2	Anaconda	environment	with	python	version	3.5.2,	and	plots	were	post-processed	452	

using	Inkscape	[https://inkscape.org/en/]	(76).	Ethnicity	used	in	this	study	was	self-declared	453	

by	AGP	study	participants	as	one	of	four	groups:	African	American,	Asian	or	Pacific	Islander	454	

(Asian-Pacific	Islander),	Caucasian,	or	Hispanic.	Sex	was	self-declared	as	either	male,	female,	455	

or	 other.	 Age	was	 self-declared	 as	 a	 continuous	 integer	 of	 years	 old,	 and	 age	 categories	456	

defined	by	the	AGP	by	decade	(i.e.	20’s,	30’s…)	were	used	in	this	study.	BMI	was	self-declared	457	

as	an	integer,	and	BMI	categories	defined	by	AGP	of	underweight,	healthy,	overweight,	and	458	

obese	were	utilized.	A	total	of	31	categorical	metadata	factors	were	assessed	for	structuring	459	

across	ethnicities	with	a	two	proportion	Z	test	between	pairs	of	ethnicities	using	a	custom	460	

python	script	(S1	Table	additional	sheets).	The	p-values	were	Bonferroni	corrected	within	461	

each	 metadata	 factor	 for	 the	 number	 of	 pairwise	 ethnic	 comparisons.	 97%	 Operational	462	

Taxonomic	 Units	 (OTUs)	 generated	 for	 each	 dataset	 are	 utilized	 throughout	 to	maintain	463	

consistency	with	 other	 published	 literature,	 however	microbial	 taxonomy	 of	 the	 HMP	 is	464	

reassigned	using	the	Greengenes	reference	database	(77).	Communities	characterized	with	465	

16S	rDNA	sequencing	of	variable	region	four	followed	an	identical	processing	pipeline	for	all	466	
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samples,	which	was	developed	and	optimized	for	the	Earth	Microbiome	Project	(78).	HMP	467	

16S	 rDNA	 data	 processed	 using	 QIIME	 for	 variable	 regions	 3-5	 was	 obtained	 from	468	

http://hmpdacc.org/HMQCP/.	 Demographic	 info	 for	 individual	 HMP	 participants	 was	469	

obtained	through	dbGaP	restricted	access	to	study	phs000228.v2.p1,	with	dbGaP	approval	470	

granted	to	SRB	and	non-human	subjects	determination	IRB161231	granted	by	Vanderbilt	471	

University.	Ethnicity	and	sex	were	assigned	to	subjects	based	on	self-declared	values,	with	472	

individuals	selecting	multiple	ethnicities	being	removed	unless	they	primarily	responded	as	473	

Hispanic,	while	categorical	age	and	BMI	were	established	from	continuous	values	using	the	474	

same	criteria	for	assignment	as	in	AGP.	The	HMP	Amerindian	population	was	removed	due	475	

to	 severe	 under-representation.	 This	 filtered	 HMP	 table	 was	 used	 for	 community	 level	476	

analyses	(ANOSIM,	Alpha	Diversity,	beta	intra-inter),	however	to	allow	comparison	with	the	477	

AGP	dataset,	community	subset	analyses	(co-occurrence,	abundance	correlation,	etc…)	were	478	

performed	 with	 taxonomic	 assignments	 in	 QIIME	 using	 the	 UCLUST	 method	 with	 the	479	

GreenGenes_13_5	reference.	480	

	481	

Quality	Control	482	

	 AGP	quality	 control	was	performed	 in	Stata	v12	 (StataCorp,	2011)	using	available	483	

metadata	to	remove	samples	(Raw	N=9,475):	with	BMI	more	than	60	(-988	[8,487])	or	less	484	

than	10	(-68	[8,419]),	missing	age	(-661	[7,758]),	with	age	greater	than	55	years	old	(-2,777	485	

[4,981])	or	less	than	18	years	old	(-582	[4,399]),	and	blank	samples	or	those	not	appearing	486	

in	 the	 mapping	 file	 (-482	 [3,917]),	 with	 unknown	 ethnicity	 or	 declared	 as	 other	 (-131	487	

[3786]),	not	declared	as	a	fecal	origin	(-2,002	[1784]),	with	unknown	sex	or	declared	as	other	488	

(-98	[1686]),	or	located	outside	of	the	United	States	(-209	[1477]).	No	HMP	individuals	were	489	
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missing	key	metadata	or	had	other	reasons	for	exclusion	(-0[298]).	Final	community	quality	490	

control	for	both	AGP	and	HMP	was	performed	by	filtering	OTUs	with	less	than	10	sequences	491	

and	removing	samples	with	less	than	1,000	sequences	(AGP,	-102	[1375];	HMP,	-0	[298]).	All	492	

analyses	used	97%	OTUs	generated	by	the	AGP	or	HMP,	and	unless	otherwise	noted,	results	493	

represent	Bray-Curtis	beta	diversity	and	Shannon	alpha	diversity	at	a	rarefaction	depth	of	494	

1,000	counts	per	sample.		495	

	496	

ANOSIM,	PERMANOVA,	and	BioEnv	Distinguishability	497	

	 The	ANOSIM	test	was	performed	with	9,999	repetitions	on	each	rarefied	table	within	498	

a	 respective	 rarefaction	depth	 and	beta	diversity	metric	 (Fig	1	&	S2A-B	Table),	with	R-499	

values	 and	 p-values	 averaged	 across	 the	 rarefactions.	 Consensus	 beta	 diversity	matrices	500	

were	 calculated	 as	 the	 average	 distances	 across	 the	 100	 rarefied	matrices	 for	 each	 beta	501	

diversity	metric	 and	depth.	Consensus	distance	matrices	were	 randomly	 subsampled	 ten	502	

times	for	subset	number	of	individuals	from	each	ethnic	group	with	more	than	that	subset	503	

number	prior	 to	ANOSIM	analysis	with	 9,999	 repetitions,	 and	 the	 results	were	 averaged	504	

evaluating	 the	 effects	 of	 more	 even	 representations	 for	 each	 ethnicity	 (S2C	 Table).	505	

Consensus	 distance	matrices	 had	 each	 ethnicity	 and	 pair	 of	 ethnicities	 removed	 prior	 to	506	

ANOSIM	 analysis	 with	 9,999	 repetitions,	 evaluating	 the	 distinguishability	 conferred	 by	507	

inclusion	 of	 each	 ethnicity	 (Fig	 3A,	 S2F	 Table).	 Significance	 was	 not	 corrected	 for	 the	508	

number	of	 tests	 to	allow	comparisons	between	results	of	different	analyses,	metrics,	 and	509	

depths.	PERMANOVA	analyses	were	run	using	the	R	language	implementation	in	the	Vegan	510	

package	 (79),	 with	 data	 handled	 in	 a	 custom	 R	 script	 using	 the	 Phyloseq	 package	 (80).	511	

Categorical	 variables	 were	 used	 to	 evaluate	 the	 PERMANOVA	 equation	 (Beta-Diversity	512	
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Distance	 Matrix	 ~	 Ethnicity	 +	 Age	 +	 Sex	 +	 BMI)	 using	 999	 permutations	 to	 evaluate	513	

significance,	and	the	R	and	p	values	were	averaged	across	10	rarefactions	(S2D	Table).	The	514	

BioEnv	test,	or	BEST	test,	was	adapted	to	allow	evaluation	of	the	correlation	and	significance	515	

between	beta	diversity	distance	matrices	and	age,	 sex,	BMI,	and	ethnicity	simultaneously	516	

(S2E	Table)	(29).	At	each	rarefaction	depth	and	beta	diversity	metric	the	consensus	distance	517	

matrix	was	 evaluated	 for	 its	 correlation	with	 the	 centered	 and	 scaled	 Euclidian	 distance	518	

matrix	of	 individuals	 continuous	age	and	BMI,	 and	 categorical	 ethnicity	 and	 sex	encoded	519	

using	patsy	(same	methodology	as	original	test)[https://patsy.readthedocs.io/en/latest/#].	520	

The	test	was	adapted	to	calculate	significance	for	a	variable	of	interest	by	comparing	how	521	

often	 the	degree	of	 correlation	with	 all	metadata	 variables	 (age,	 sex,	BMI,	 ethnicity)	was	522	

higher	than	the	correlation	when	the	variable	of	 interest	was	randomly	shuffled	between	523	

samples	1,000	times.		524	

	525	

Alpha	Diversity	526	

	 Alpha	 diversity	 metrics	 (Shannon,	 Simpson,	 Equitability,	 Chao1,	 Observed	 OTUs)	527	

were	computed	for	each	rarefied	table	(QIIME:	alpha_diversity.py),	and	results	were	collated	528	

and	 averaged	 for	 each	 sample	 across	 the	 tables	 (QIIME:	 collate_alpha.py).	 Pairwise	529	

nonparametric	t-tests	using	Monte	Carlo	permutations	evaluated	alpha	diversity	differences	530	

between	the	ethnicities	with	Bonferroni	correction	for	the	number	of	comparisons	(Fig	2A,	531	

S3	Table,	QIIME:	compare_alpha_diversity.py).	A	Kruskal-Wallis	test	implemented	in	python	532	

was	used	to	detect	significant	differences	across	all	ethnicities.		533	

	534	

Beta	Diversity	535	
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	 Each	 consensus	 beta	 diversity	 distance	 matrix	 had	 distances	 organized	 based	 on	536	

whether	they	represented	individuals	of	the	same	ethnic	group,	or	were	between	individuals	537	

of	 different	 ethnic	 groups.	 All	 values	 indicate	 that	 all	 pairwise	 distances	 between	 all	538	

individuals	were	used	(Fig	2B,	S4A-B	Table),	mean	values	indicate	that	for	each	individual	539	

their	average	distance	to	all	individuals	in	the	comparison	group	was	used	as	a	single	point	540	

to	 assess	 pseudo-inflation	 (S4C-D	 Table).	 A	 Kruskal-Wallis	 test	 was	 used	 to	 calculate	541	

significant	 differences	 in	 intra-ethnic	 distances	 across	 all	 ethnicities.	 Pairwise	 Mann-542	

Whitney-U	 tests	were	calculated	between	each	pair	of	 intra-ethnic	distance	comparisons,	543	

along	 with	 intra-versus-inter	 ethnic	 distance	 comparisons.	 Significance	 was	 Bonferroni	544	

corrected	within	 the	 number	 of	 intra-intra-ethnic	 and	 intra-inter-ethnic	 distance	 groups	545	

compared,	with	violin	plots	of	intra-	and	inter-ethnic	beta	diversity	distances	generated	for	546	

each	comparison.	547	

	548	

Random	Forest	549	

 RF	 models	 were	 implemented	 using	 taxa	 summarized	 at	 genus	 level,	 which	550	

performed	 better	 compared	 to	 RF	 models	 using	 OTUs	 as	 features,	 both	 in	 terms	 of	551	

classification	 accuracy	 and	 computational	 time.	We	 first	 rarefied	OTU	 tables	 at	 sequence	552	

depth	of	10,000	(using	R	v3.3.3	package	vegan’s	rrarefy()	function)	and	then	summarized	553	

rarefied	OTUs	at	genus-level	(or	lower	characterized	level	if	genus	was	uncharacterized	for	554	

an	OTU).	We	filtered	for	rare	taxa	by	removing	taxa	present	in	fewer	than	half	of	the	number	555	

of	samples	in	rarest	ethnicity	(i.e.	fewer	than	10/2	=	5	samples	in	HMP	and	13/2	=	6	(rounded	556	

down)	in	AGP),	retaining	85	distinct	taxa	in	HMP	dataset	and	322	distinct	taxa	in	AGP	dataset	557	

at	genus	 level.	The	 resulting	 taxa	were	normalized	 to	 relative	abundance	and	arcsin-sqrt	558	
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transformed	before	being	used	as	features	for	the	RF	models.	We	initially	built	multi-class	559	

RF	model,	but	since	the	RF	model	is	highly	sensitive	to	the	uneven	representation	of	classes,	560	

all	samples	were	identified	as	the	majority	class,	i.e.	Caucasian.	In	order	to	even	out	the	class	561	

imbalance,	 we	 considered	 some	 sampling	 approaches,	 but	 most	 existing	 techniques	 for	562	

improving	classification	performance	on	imbalanced	datasets	are	designed	for	binary	class	563	

imbalanced	 datasets,	 and	 are	 not	 effective	 on	 datasets	 with	 multiple	 underrepresented	564	

classes.	Hence,	we	adopted	the	binary	classification	approach	and	built	four	one-versus-all	565	

binary	RF	classifiers	to	classify	samples	from	each	ethnicity	compared	to	the	rest.	10-fold	566	

cross-validation	(using	R	package	caret	(81))	was	performed	using	ROC	as	 the	metric	 for	567	

selecting	optimal	model.	The	performance	metrics	and	ROC	curves	were	averaged	across	the	568	

10	folds	(Fig	3B).	Without	any	sampling	during	training	the	classifiers,	most	samples	were	569	

identified	as	the	majority	class,	i.e.	the	Caucasian,	by	all	four	one-versus-all	RF	classifiers.	In	570	

order	 to	 overcome	 this	 imbalance	 in	 class	 representation,	 we	 applied	 two	 sampling	571	

techniques	 inside	 cross-validation:	 i)	 down-sampling,	 and	 ii)	 Synthetic	 Minority	 Over-572	

sampling	Technique	(or	SMOTE)	(33).	In	the	down-sampling	approach,	the	majority	class	is	573	

down-sampled	 by	 random	 removal	 of	 instances	 from	 the	 majority	 class.	 In	 the	 SMOTE	574	

approach,	the	majority	class	is	down-sampled	and	synthetic	samples	from	the	minority	class	575	

are	 generated	 based	 on	 k-nearest	 neighbors	 technique	 (33).	 Note,	 the	 sampling	 was	576	

performed	 inside	 cross-validation	 on	 training	 set,	 while	 the	 test	 was	 performed	 on	577	

unbalanced	held-out	test	set	in	each	fold.	In	comparison	to	a	no-sampling	approach,	which	578	

classified	most	samples	as	the	majority	class,	i.e.,	Caucasians,	our	sampling-based	approach	579	

leads	to	improved	sensitivity	for	classification	of	minority	classes	on	unbalanced	test	sets.	580	

Nevertheless,	the	most	accurate	prediction	remains	for	the	inclusion	in	the	majority	class.	581	
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The	ROC	curves	and	performance	metrics	 table	 in	Fig	3B	 show	 the	sensitivity-specificity	582	

tradeoff	 and	 classification	performance	 for	 one-versus-all	 classifier	 for	 each	 ethnicity	 for	583	

both	 the	sampling	 techniques	applied	on	both	 the	datasets.	For	both	 the	datasets,	down-584	

sampling	shows	higher	sensitivity	and	lower	specificity	and	precision	for	minority	classes	585	

(i.e.	 African	 Americans,	 Asian-Pacific	 Islanders	 and	 Hispanics)	 compared	 to	 SMOTE.	586	

However,	for	the	majority	class	(i.e.	Caucasian),	down-sampling	lowers	the	sensitivity	and	587	

increases	 the	 specificity	 and	 precision	 compared	 to	 SMOTE.	 The	 sensitivity-specificity	588	

tradeoff,	denoted	by	the	area	under	the	ROC	curve	(or	AUC)	is	reduced	for	Hispanics	in	both	589	

the	datasets.	The	most	 important	 taxa	with	>50%	 importance	 for	predicting	an	ethnicity	590	

using	RF	model	with	SMOTE	sampling	approach	are	shown	in	S2A	Fig.	Among	the	10	most	591	

important	taxa	for	each	ethnicity,	there	are	9	taxa	which	overlap	between	the	AGP	and	HMP	592	

datasets	 (highlighted	 by	 the	 blue	 rectangular	 box);	 however,	 which	 ethnicity	 they	 best	593	

distinguish	varies	between	the	two	datasets.	Within	each	dataset	we	highlighted	taxa	which	594	

are	distinguishing	in	RF	models	and	have	distinguishing	differential	abundance	in	S2B	Fig,	595	

reporting	 both	 the	 FDR	 corrected	 significance	 for	 Kruskal-Wallis	 tests	 of	 differential	596	

abundance,	and	the	percent	importance	for	the	most	distinguished	ethnicity	of	each	in	RF	597	

models.	We	also	report	out-of-bag	errors	for	the	final	RF	classifier	that	was	built	using	the	598	

optimal	model	parameters	obtained	from	cross-validation	approach	corresponding	to	each	599	

ethnicity	and	sampling	procedure	for	both	AGP	and	HMP	datasets	in	S2C	Fig.	600	

	 	601	

Taxon	Associations	602	

	 Taxon	differential	abundance	across	categorical	metadata	groups	was	performed	in	603	

QIIME	(QIIME:	group_significance.py,	S5	Table)	to	examine	whether	observation	counts	(i.e.	604	
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OTUs	 and	microbial	 taxon)	 are	 significantly	 different	 between	 groups	within	 a	metadata	605	

category	(i.e.	ethnicity,	sex,	BMI,	age).	The	OTU	table	prior	to	final	community	quality	control	606	

was	collapsed	at	each	taxonomic	level	(i.e.	Phylum	–	Genus;	QIIME:	collapse_taxonomy.py),	607	

with	counts	representing	the	relative	abundance	of	each	microbial	taxon.	Differences	in	the	608	

mean	 abundance	 of	 taxa	 between	 ethnicities	 were	 calculated	 using	 Kruskal-Wallis	609	

nonparametric	 statistical	 tests.	 P-values	 are	 provided	 alongside	 false	 discovery	 rate	 and	610	

Bonferroni	corrected	P-values,	and	taxon	were	ranked	from	most	to	least	significant.	Results	611	

were	collated	into	excel	tables	by	taxonomic	level	and	metadata	category	being	examined,	612	

with	significant	(false	discovery	rate	and	Bonferroni	P-value	<	0.05)	highlighted	in	orange,	613	

and	taxa	that	were	false	discovery	rate	significant	 in	both	datasets	were	colored	red.	The	614	

Fisher’s	exact	test	for	the	overlap	of	number	of	significant	taxa	between	datasets	was	run	at	615	

the	online	portal	(http://vassarstats.net/tab2x2.html),	with	the	expected	overlap	calculated	616	

as	5%	of	the	number	of	significant	taxa	at	all	levels	within	the	respective	dataset,	and	the	617	

observed	25	taxa	that	overlapped	in	our	analysis.	The	permutation	analysis	was	performed	618	

by	comparing	the	number	of	significant	taxa	(S5	Table,	pFDR<0.05)	overlapping	between	the	619	

AGP	and	HMP	to	the	number	overlapping	when	the	Kruskal-Wallis	test	was	performed	1,000	620	

times	with	ethnicity	randomly	permuted.	 In	1/1000	runs	there	was	one	significant	 taxon	621	

overlapping	at	the	family	level,	and	one	in	3/1000	permutations	at	the	genus	level,	with	no	622	

significant	taxa	overlapping	in	any	repetitions	at	higher	taxonomic	levels.	The	12	families	623	

and	genera	that	were	significantly	different	were	evaluated	to	not	be	taxonomically	distinct	624	

if	their	abundances	across	ethnicities	at	each	level	represented	at	least	82-100%	(nearly	all	625	

>95%)	of	the	overlapping	taxonomic	level,	and	the	genera	was	used	if	classified,	and	family	626	

level	used	 if	 genera	was	unclassified	 (g__).	Average	 relative	 abundances	on	a	 log10	 scale	627	
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among	individuals	possessing	the	taxon	were	extracted	for	each	taxon	within	each	ethnicity,	628	

and	the	abundance	for	12	families	and	genera	were	made	into	barchart	figures	(Fig	4).	The	629	

external	whisker	(AGP	above,	HMP	below)	depict	 the	75th	quartile	of	abundance,	and	the	630	

internal	whisker	depicts	the	25th	quartile.	Pairwise	Mann-Whitney-U	tests	were	performed	631	

between	each	pair	of	ethnicities	using	microbial	abundances	among	all	individuals,	and	were	632	

Bonferroni	 corrected	 for	 the	 six	 comparisons	within	 each	 taxon	 and	 dataset.	 Bonferroni	633	

significant	P-values	are	shown	in	the	figure,	and	shown	in	bold	if	significance	and	direction	634	

of	change	replicate	in	both	datasets.	Ubiquity	shown	above	or	below	each	bar	was	calculated	635	

as	 the	 number	 of	 individuals	 in	 which	 that	 taxon	 was	 detected	 within	 the	 respective	636	

ethnicity.	Additional	confirmation	of	ethnically	varying	abundance	was	also	performed	at	637	

each	 taxonomic	 level	 (S6	Table),	where	 the	correlation	of	continuous	age	and	BMI	along	638	

with	categorically	coded	sex	and	ethnicity	were	simultaneously	measured	against	the	log	10	639	

transformed	relative	abundance	of	each	taxon	among	individuals	possessing	it	using	linear	640	

regression	(S6	Table	-	Abundance),	and	against	the	presence	or	absence	of	the	taxon	in	all	641	

individuals	with	logistic	regression	(S6	Table	-	Presence	Absence).	Significance	is	presented	642	

for	the	models	each	with	ethnicity	alone,	and	with	all	metadata	factors	included	(age,	sex,	643	

BMI),	 alongside	 Bonferroni	 corrected	 p-values,	 and	 individual	 effects	 of	 each	 metadata	644	

factor.		645	

	646	

Co-Occurrence	Analysis	647	

	 Bacterial	 taxonomy	 was	 collapsed	 at	 the	 family	 level,	 Spearman	 correlation	 was	648	

calculated	between	each	pair	of	families	using	SciPy	(82),	and	clustermaps	were	generated	649	

using	 seaborn	 (S3	Fig),	 and	ethnic	associations	were	drawn	 from	S5	Table.	 Correlations	650	
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were	masked	where	Bonferroni	corrected	Spearman	p-values	were	>0.05,	and	clusters	were	651	

identified	 as	 the	 most	 prominent	 (strongest	 correlations)	 and	 abundance	 enriched.	652	

Enrichment	 of	 ethnic	 association	 was	 evaluated	 by	 measuring	 the	 Mann-Whitney-U	 of	653	

cluster	families	ethnic	associations	(p-values,	S5	Table)	compared	to	the	ethnic	associations	654	

of	 non-cluster	 taxa.	 Cluster	 associated	 families	 were	 identified	 as	 having	 at	 least	 three	655	

significant	correlations	with	families	within	the	cluster.		656	

	657	

Christensenellaceae	Analysis	658	

	 The	abundance	of	 the	 family	Christensenellaceae	was	 input	 as	 relative	 abundance	659	

across	all	individuals	from	the	family	level	taxonomic	table.	Individuals	were	subset	based	660	

on	the	presence/absence	of	Christensenellaceae	and	BMIs	were	compared	using	a	one	tailed	661	

Mann-Whitney-U	test,	then	each	was	further	subset	by	ethnicity	and	BMI	compared	using	662	

one	tailed	Mann-Whitney-U	tests	and	boxplots	within	each	ethnicity	(Fig	5).		663	

	664	

Genetically	Associated,	Heritable,	and	Correlated	Taxa	Analysis	665	

	 Genetically	associated	taxa	from	population	heritability	studies	(34,	35,	39,	40)	with	666	

a	minimum	heritability	(A	in	ACE	models	or	H2r)	>0.1,	and	from	GWAS	studies	(35,	40)	were	667	

examined	for	exact	taxonomic	overlap	with	our	12	ethnically-associated	taxa.	The	42	genetic	668	

variants	associated	with	Unclassified	Clostridiales	are:	rs16845116,	rs586749,	rs7527642,	669	

rs10221827,	 rs5754822,	 rs4968435,	 rs17170765,	 rs1760889,	 rs6933411,	 rs2830259,	670	

rs7318523,	 rs17763551,	 rs2248020,	 rs1278911,	 rs185902,	 rs2505338,	 rs6999713,	671	

rs5997791,	 rs7236263,	 rs10484857,	 rs9938742,	 rs1125819,	 rs4699323,	 rs641527,	672	

rs7302174,	 rs2007084,	 rs2293702,	 rs9350764,	 rs2170226,	 rs2273623,	 rs9321334,	673	
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rs6542797,	 rs9397927,	 rs2269706,	 rs4717021,	 rs7499858,	 rs10148020,	 rs7524581,	674	

rs11733214,	rs7587067	from	(35).	These	40	variants	along	with	variants	in	Table	1	except	675	

for	 chr7:96414393	 (total=49)	 were	 then	 assessed	 in	 1,000	 Genomes	 individuals	 for	676	

significant	differentiation	across	superpopulations	(38).	The	1,000	Genomes	VCF	files	were	677	

downloaded	(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/),	and	variants	678	

with	a	minor	allele	frequency	less	than	0.01	were	removed	with	FST	calculated	between	each	679	

pair	of	superpopulations	using	vcftools	 (83).	The	East	Asian	versus	South	Asian	FST	rates	680	

were	not	used	in	the	analysis.	A	custom	script	was	used	to	examine	the	FST	for	each	of	the	49	681	

variants	and	compare	 to	 the	FST	of	all	variants	on	 the	same	chromosome	and	all	variants	682	

genome-wide	 for	 that	 pair	 of	 populations,	 with	 percentile	 calculated	 and	 the	 number	 of	683	

variants	with	 a	 higher	 FST	 divided	 by	 the	 total	 number	 of	 variants.	 The	 eQTL	 value	 and	684	

significance	for	rs7587067	were	drawn	from	the	GTEx	database	(72).	685	

	686	

Data	and	Code	Availability	687	

	 Code,	 scripts,	 and	 data	 underlying	 figures	 are	 publicly	 available	 from	 the	 GitHub	688	

repository	 [https://github.com/awbrooks19/microbiota_and_ethnicity].	 Individual	689	

metadata	(age,	sex,	ethnicity…)	for	the	Human	Microbiome	Project	are	held	under	restricted	690	

access	 available	 through	 dbGaP	 application	 [NCBI	 -	 dbGaP,	 Human	 Microbiome	 Project,	691	

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-692	

bin/study.cgi?study_id=phs000228.v3.p1].		693	
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Supplementary	Table/Figure	Legends:	720	

	721	

S1	Fig.	The	average	relative	abundance	of	dominant	microbial	phyla	for	each	ethnicity.	722	

	723	
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S2	 Fig.	 Summary	 of	 RF	 distinguishing	 taxa	 and	 out-of-bag	 error	 for	 each	 ethnicity.	 (A)	724	

Importance	 of	 taxa	 for	 predicting	 each	 ethnicity	 using	 RF	models	with	 SMOTE	 sampling	725	

approach	are	 shown	as	percentage	 contributions,	highlighted	by	 color	 for	 each	ethnicity.	726	

Among	the	10	most	important	taxa	for	each	ethnicity,	9	overlap	between	the	AGP	and	HMP	727	

datasets	 (highlighted	 by	 the	 blue	 rectangular	 box),	 however	 which	 ethnicity	 they	 best	728	

distinguish	varies	between	the	two	datasets.	(B)	Taxa	which	are	distinguishing	in	RF	models	729	

and	have	distinguishing	differential	abundance	in	S5	Table.	The	FDR	corrected	significance	730	

for	Kruskal-Wallis	tests	of	differential	abundance	and	the	percent	importance	for	the	most	731	

distinguished	ethnicity	of	each	in	RF	models	are	shown.	(C)	Out-of-bag	error	percentages	for	732	

the	final	RF	classifier	that	was	built	using	the	optimal	model	parameters	obtained	from	cross-733	

validation	approach	corresponding	to	each	ethnicity	and	sampling	procedure	for	both	AGP	734	

and	HMP	datasets.	735	
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	736	

S3	Fig.	Abundance	correlation	of	microbial	families.	Spearman	correlation	clustermaps	737	

of	bacterial	abundance	for	families	in	the	AGP	and	HMP.	Numbers	within	boxes	depict	the	738	

spearman	correlation	value	with	heatmap	 coloration	 from	blue	negative	 correlation	 (-1),	739	

white	no	correlation	(0),	to	red	positive	correlation	(1).	Positions	have	been	masked	based	740	

on	 Bonferroni	 significance	 <0.05	 for	 the	 total	 clustermap	 of	 all	 microbial	 families.	 Taxa	741	
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within	boxes	were	identified	as	a	highly	correlated	cluster,	and	taxa	outside	the	boxes	share	742	

multiple	correlations	with	those	within	the	cluster.	Blue	taxonomic	names	indicate	overlap	743	

of	taxa	within	boxes	of	both	the	AGP	and	HMP,	while	black	 indicate	multiple	correlations	744	

with	the	clusters	in	both	datasets.	The	ethnic	association	column	depicts	FDR	corrected	p-745	

values	from	Kruskal-Wallis	tests	in	S5	Table,	which	are	bolded	if	<0.05.	746	

	747	

S4	Fig.	 Correlation	of	BMI	with	Christensenellaceae	 abundance.	The	 relationship	 for	748	

each	individual	between	log10	transformed	Christensenellaceae	abundance	on	the	y	axis	and	749	

BMI	on	the	x	axis,	with	statistics	slope,	R2,	and	p	fit	with	a	linear	regression.	Coloration	of	750	

each	 point	 indicates	 ethnicity:	 Yellow	 –	 African	 American;	 Blue	 –	 Asian-Pacific	 Islander;	751	

Green	–	Hispanic;	Red	–	Caucasian.	752	

	753	

S1	Table.	Demographic	information	for	the	AGP.	Breakdown	of	age	and	BMI	by	sex	and	754	

ethnicity.	Heatmaps	were	constructed	within	each	statistic	and	category	(bounded	by	black	755	

box).	The	means	for	all	sex	and	ethnic	groups	were	used	as	the	center	(white),	with	higher	756	
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values	 indicated	 in	red	and	 lower	 in	blue.	HMP	data	 is	not	shown	because	of	data	access	757	

restrictions	on	participant	metadata,	available	through	dbGaP	application.	Additional	sheets	758	

depict	proportions	 tests	of	ethnic	 structuring	 for	31	metadata	 factors,	 each	on	 their	own	759	

sheet.				760	

	761	

S2	Table.	Microbiota	distinguishability	by	ethnicity,	age,	sex	and	BMI.	(A)	AGP	and	HMP	762	

ANOSIM	distinguishability	by	ethnicity,	age,	sex,	and	BMI	at	a	rarefaction	depth	of	1,000	and	763	

across	four	ecological	metrics	(more	details	in	table).	(B)	AGP	ANOSIM	distinguishability	by	764	

ethnicity,	age,	sex,	and	BMI	at	rarefaction	depths	of	1,000	and	10,000.	(C)	ANOSIM	results	765	

for	consensus	distance	matrix	while	subsampling	the	maximum	number	of	individuals	from	766	

each	ethnic	group.	 (D)	BioEnv	results	of	 correlation	between	ethnicity,	 age,	 sex,	and	BMI	767	

together	with	outcome	as	multivariate	beta	diversity	distance	matrices	[Distance	Matrix	=	768	

Ethnicity*x1	+	Categorical	Age*x2	+	Categorical	BMI*x3	+	Sex*x4	+	B].	(E)	ANOSIM	results	769	

for	consensus	distance	matrix	when	each	ethnicity	and	group	of	ethnicities	are	sequentially	770	

removed	from	the	analysis.		771	

	772	

S3	Table.	Alpha	diversity	by	ethnicity,	age,	sex	and	BMI.	Alpha	Diversity	for	Ethnicity,	773	

Age,	Sex,	and	BMI	across	varying	rarefaction	depths	and	beta	diversity	metrics	in	AG	(4A,	4C-774	

E),	 and	 for	 ethnicity	 in	 the	HMP	 (4B).	Results	 are	 based	on	non-parametric	 permutation	775	

based	t-tests,	and	p-values	are	Bonferroni	corrected	within	each	factor	of	interest,	depth,	and	776	

metric.	777	

	778	
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S4	Table.	Comparison	of	beta	diversity	distances	for	within	and	between	ethnicities.	779	

All	 values	 depicted	 are	 Mann-Whitney-U	 p-values.	 (A)	 All	 distances	 between	 pairs	 of	780	

individuals	 within	 each	 ethnicity	 were	 compared	 between	 ethnicities	 across	 rarefaction	781	

depths	 1,000	 and	 10,000,	 four	 beta	 diversity	metrics,	 and	with	while	 subsampling	 over-782	

represented	ethnicities.	(B)	All	distances	between	pairs	of	individuals	within	and	between	783	

each	 ethnicity	were	 compared	 between	 ethnicities.	 (C)	Mean	 distances	 between	 pairs	 of	784	

individuals	within	each	ethnicity	were	compared	between	ethnicities.	(D)	Mean	distances	785	

between	pairs	of	 individuals	within	and	between	each	ethnicity	were	compared	between	786	

ethnicities.		787	

	788	

S5	Table.	Taxa	which	are	differentially	abundant	by	ethnicity,	sex,	BMI,	and	age	in	the	789	

AGP	 and	 HMP.	 Kruskal-Wallis	 results	 for	 differential	 taxa	 abundance	 across	 metadata	790	

groupings,	including	FDR	and	Bonferroni	corrected	p-values,	and	taxa	abundance	averages	791	

within	each	group.	Metadata	factors	and	taxonomic	levels	are	separated	by	excel	tabs.	792	

	793	

S6	 Table.	 Taxa	 which	 are	 correlated	 with	 ethnicity,	 sex,	 BMI,	 and	 age	 in	 the	 AGP.	794	

Results	 of	 linear	 (Abundance)	 and	 logistic	 (Presence	 Absence)	 regression	 results	 for	795	

differential	taxa	abundance	across	metadata	factors	separated	by	taxonomic	level.	Columns	796	

in	order	indicate	the	taxon	name,	the	number	of	individuals	with	non-zero	abundance;	then	797	

the	p-value	for	ethnicity	alone,	the	p-value	Bonferroni	corrected,	the	f-test	statistic,	and	R2;	798	

then	the	same	values	for	the	regression	with	ethnicity,	age,	sex,	and	BMI	together;	then	the	799	

abundances	in	each	ethnic	group,	and	finally	the	p-values	for	each	factor	broken	down.	800	

	801	
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S7	 Table.	 Genetic	 variants	 with	 taxa	 associations	 and	 detailed	 1,000	 Genomes	802	

population	differentiation	rates	(FST).	Variants	in	red	indicate	the	variant	has	at	least	one	803	

FST	above	the	95th	percentile	for	high	differentiation	between	at	least	one	pair	of	populations.	804	

Columns	I-BU	represent	the	values	for	calculating	variant	FST	and	percentiles.	The	first	two	805	

spaces	 indicate	 the	 two	 superpopulations	 being	 compared.	 FST	 indicates	 the	 rate	 of	806	

differentiation	 for	 that	 variant	 between	 that	 pair	 of	 populations.	 Higher	 indicates	 the	807	

number	of	variants	genome-wide	with	a	higher	FST,	and	total	indicates	the	total	genome-wide	808	

variants	 examined.	 The	 columns	with	 chromosome	 indicate	 the	number	 of	 variants	with	809	

higher	FST	and	 total	variants	on	 the	same	chromosome	as	 the	variant	of	 interest.	Percent	810	

indicates	the	number	of	variants	with	a	higher	FST	divided	by	the	total	number	of	variants.	811	

	812	

	813	
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