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Abstract

The majority of conclusions and interpretations in quantitative sciences such as neuroscience are based
on statistical tests. However, the statistical inferences, especially in multivariate analyses, commonly rely on
the p-values, but not on more expressive measures such as posterior probabilities, false discovery rates (FDR)
and statistical power (1 - 8). The aim of this report is to make these statistical measures further accessible
in single and multiple statistical testing. For multiple testing, the Empirical Bayesian Inference (Efron et al.,
2001; Efron, 2007) was implemented using non-parametric test statistics (e.g. the Area Under the Curve of
the Receiving Operator Characteristics Curve or Spearman’s rank correlation) and Gaussian Mixture Model
estimation of the probability density function of the original and bootstrapped data. For single statistical
tests, the same test statistics were used to construct and estimate the null and non-null probability density
functions using bootstrapping under null and non-null grouping assumptions. Simulations were used to test
the reliability of the results under a wide range of conditions. The results show conformity to the real truth in the
simulated conditions, which is held under various conditions imposed on the simulated data. The open-source
MATLAB codes are provided and the utility of the approach has been exemplified and discussed for real-world
electroencephalographic signals. This implementation of Empirical Bayesian Inference and informed selection
of statistical thresholds are expected to facilitate more realistic scientific deductions in versatile fields, especially
in neuroscience, neural signal analysis and neuro-imaging.

Keywords: Empirical Bayesian Inference, Multivariate Neural Signals, False Discovery Rate, Statistical
Power, Posterior Probability, Threshold Selection.

1 Introduction of the observed data under the null hypothesis. The

lower the p-value, the more unlikely the null hypoth-

The majority, if not all, of the conclusions and inter-
pretations in quantitative sciences, especially in neu-
roscience and neuro-imaging, are based on statistical
tests. While the traditional hypothesis tests based on
p-values are still dominant, there has been legitimate
remarks on the need for more reliable and thorough
statistical procedures and practices (Nuzzo, 2014). For
statistical inference, it is therefore vital to make acces-
sible more meaningful statistical measures, including
Bayesian posterior probabilities, false discovery rates
(FDR), and statistical power (1 — 3). These measures
are especially useful in statistical inferences involving
high-dimensional neuroimaging or neural signal con-
nectivity data.

The traditional p-value represents the probability
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esis is. Therefore, indirectly, p-values lower than the
threshold value & (commonly taken as 0.05 by conven-
tion) are used to reject the null hypothesis and sup-
port the alternative hypothesis; however, this view has
been subject to criticism (Amrhein, Greenland, and
McShane, 2019; Nuzzo, 2014). The low p-values indi-
cate the low probability of false positives (Type | sta-
tistical error). Therefore, a more reliable measure for
statistical inference of the observed effects is probably
the probability of true positives, which corresponds to
the statistical power (a probability closely related to
the reproducibility). Statitical power is 1-3 where 3 is
the Type Il statistical error, false negative. This basic
concepts can be reviewed from texts in statistics for
classic univariate statistics (Moore, McCabe, and Craig,
2010). The statistical power would provide further in-
sight in situations where the Bayesian Posterior prob-
ability (probability of the effect given the observed
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data) cannot be calculated - the most common reason
being the unknown value for the prior probability (see
Methods). In more practical applications, e.g. mul-
tidimensional analysis of neural signals, multivariate
statistics are needed for an informed statistical infer-
ence. In such situations, measures such as False Dis-
covery Rate (FDR; Benjamini and Hochberg, 1995; Ben-
jamini, Krieger, and Yekutieli, 2006), that refers to the
proportion of the detections that are falsely identified;
as well as multivariate power (the proportion of the
actually affected variables that were successfully de-
tected by the test), are more instrumental for scientific
inference. Importantly, the presence of several vari-
ables provides opportunity forinferring the prior prob-
ability from the data, and hence, estimating the poste-
rior probability (Efron, Tibshirani, Storey, and Tusher,
2001).

Empirical Bayesian Inference (EBI) has shown
promise in large-scale between-group comparisons
(Efron, 2004, 2007b), especially in genomics (Efron
et al., 2001) and to some extent in the applications of
neuroelectric signal and connectivity analysis (Singh,
Asoh, Takeda, and Phillips, 2015). In EBI, constant
prior probabilities are estimated from the data in
large-scale multi-variable inferences or hypothesis
testing and these priors are subsequently used to
find the posterior probabilities using the estimated
probability density functions of the pooled test statis-
tics and the null distribution. It is possible to relate
the posterior probabilities to frequentist concepts
such as FDR, as well as power. While the theoretical
framework is adequately established, the existing
mathematical and numerical implementations (Efron,
2007b) are only suitable for specialised applications
(i.e. statistical genetics, where only a small fraction of
the tests are real findings), and some of the essential
measures such as FDR and power are not immediately
available for informed threshold selection. Conse-
quently, there is no implementation of EBI that
works for any data in unknown arbitrary conditions.
From a practical viewpoint, the existing software
package locfdr in R (R Core Team, 2016) may require
selection of several parameters and is notimmediately
available for neuro-electro-magnetic signals (e.g. EEG
and EMG) and connectivity analysis in packages such
as FieldTrip (Oostenveld, Fries, Maris, & Schoffelen,
2010) or for neuroimaging analysis in packages such
as SPM (Ashburner, 2012; Friston et al., 1994). The
commonly applied methods such as cluster-based
permutation (Bullmore et al., 1999; Maris, Schoffelen,
and Fries, 2007), do control for FDR at specific levels;
however, they suffer from 4 main constraints: 1) They
rely on the implicit assumption that the significant
detections are spatially clustered and therefore play-
ing down the smaller spatial clusters, 2) the lack of
a criterion to define clusters of variables, leading to
arbitrary cluster definitions, 3) inability to estimate
the posterior probability or statistical power, and 4)

difficulty in evaluation and deciding on a significance
thresholds. Consequently, there is the need for new
implementations to facilitate the application of EBI
that work in wider range of situations (e.g. small or
large proportions of test variables belonging to the
affected group), to more explicitly relate the posterior
probabilities to FDR and power (allowing informed
decision on threshold selection), and to intrinsically
account for data with non-normal distributions.

Such informed selection of statistical threshold is
challenging also in complex statistical inferences (e.g.
with non-normal data distributions) involving single
or only a few comparisons or inferences. It would be
desirable to similarly select a threshold value for the
test statistic that corresponds to a known combination
of Type | () and Type Il (3) errors in a single compari-
son.

Here, these needs are address using an imple-
mentation of EBI using non-parametric test statistics,
Gaussian Mixture Models and null bootstrapping. This
implementation readily handles one-sample, two-
sample (between-group comparison) and correlation
problemsin multi-dimensional data with arbitrary dis-
tributions, which is usable for a wide range of appli-
cations. Furthermore, for threshold selection in uni-
variate testing (in the absence of prior probabilities),
the non-null distribution is estimated using a non-null
bootstrapping. This approach approximates the non-
null probability density functions in order to enable
the threshold selection for a desired combination of «
and f3 values, regardless of the distribution of data.

In this report, after setting out the mathematical un-
derpinnings of the EBI, the components of the new im-
plementation are explained. These include the selec-
tion of test statistic, the estimation of density func-
tions by Gaussian Mixture Models (GMM), and boot-
strapping. The implementation is tested against real
truth in simulated data in several conditions, and fi-
nally demonstrated using experimental neuro-electric
data (EEG).

2 Methods

2.1 Empirical Bayesian Inference (EBI) for

Multiple Inferences

2.1.1 EBI framework

EBI, initially used in genomic applications (Efron et al.,
2001) was subsequently expanded theoretically and in
terms of computational implementation (Efron, 2004,
2007a). Here, the fundamentals are briefly explained.
Throughout the report, the procedures are explained
for mass univariate two-sample comparison problems
as an exemplary scenario. However, the procedures
are equally applicable to other problems, e.g. one-
sample / paired problems or correlation analysis (dis-
cussed in the Appendices).
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Suppose X;;, wherei = 1l.m,j = 1..N rep-
resents N variables or N-dimensional data sampled
from m observations/subjects. In the case of two-
sample data, X;; represents pooled data. The group-
ing information of data is represented by g;, which, for
a two-sample (2-group) comparison is a binary choice
(0 or 1). Statistical testing, performed independently
in each variables according to the grouping informa-
tion (e.g. between-group comparisons), using the test
statistic z;, yields NV values. The probability density
function of z;, i.e. the probability of data given the hy-
potheses, is denoted by:

f(z) =pofo(z) +p1fi(2) (1)

where py and p; are the prior probabilities of the
null and non-null hypotheses (p; = 1 — pg) and fo(2)
and f1(z) are the probability density functions of z un-
der the null and non-null (grouping) assumptions, re-
spectively. The posterior probability, i.e. the probabil-
ity of the hypotheses given the data, are subsequently
given by:

P()(Z)
P1 (Z)

pofo(2)/f(2) (2)
1—Py(z) (3)

Comparison of the posterior probability of the non-
null hypothesis P;(z;) against a threshold P.,;; pro-
vides a Bayesian inference, as well as subsequent fre-
quentist quantities such as local false discovery rate,
fdrioe(z) = Py(2), Typel error a, Type Il error /3, and
the FDR value pertaining to the chosen P..;;. The
original formulation of EBI includes several stages for
estimating the posterior probabilities: First, apply-
ing a measure of between-group difference (e.g. Stu-
dent’s t-statistic or p-values) and transforming the val-
ues to normal (e.g. by inverse normal cumulative
distribution function) to build z; values; second, es-
timation of f(z) from the z; histogram; third, esti-
mating fo(z) by theoretical assumptions on the dis-
tribution of z; or bootstrapping; forth, estimation of
null prior pgy, usually through the assumption that
filargmazx, fo(z)) = 0; and finally, P;(2) is found by
equations (2) and (3). Here, we will explain the details
of each stage for the new implementation.

2.1.2 Test Statistic

Instead of using Student’s ¢-statistic or a p-value which
reflects the difference of the means of two groups,
here a non-parametric measure was used as a test
statistic. The Area Under the Receiver Operating Curve
(AUROC), A, is closely related to the Mann-Whitney
U statistic. AUROC is the probability of data in one
group being larger (or smaller) than the other group
(Pr(Xg=0) < Pr(X4=1)); hence it is considerably
independent of the distribution of the original data,

as well as any measure of centrality (e.g. mean or
median) for comparison in parametric testing (e.g the
comparison of means as statistic in using t-tests). This
has been thoroughly discussed elsewhere (Zhou, Mc-
Clish, and Obuchowski, 2009). AUROC was therefore
taken as the test statistic for comparing the m data
points in the two groups for each comparison of the
N variables.

It is noteworthy that while AUROC is independent
of the underlying distribution of the data, the data in
all N variables should come from the same null and
alternative (non-null) distributions. The AUROC distri-
butions depend on the number of data in the first and
second group, as well as the distribution of the original
data. Therefore, the number of data points (e.g. indi-
vidual subjects in a group comparison) in each group
should be (ideally) the same for all variables, and all of
them should come from the same arbitrary distribu-
tion (e.g. normal, Beta, Gamma, or uniform distribu-
tion). This is especially relevant as the curve fitting for
null and mixed density functions, as well as bootstrap-
ping (for construction of null data) rely on pooling data
from all variables.

While not essential to transform the AUROC values
A; to normal, it’s beneficial to do so, from a com-
putational perspective. The transformation to nor-
mal allows the use of more robust estimation meth-
ods such as Gaussian kernel methods that work bestin
unbounded domain, rather than in bounded ([0 1]) do-
mains. Asthe AUROC distribution is bounded between
0 and 1, with the expected value of 0.5 under null, a
mapping of v = 2(A;) — 1 combined with Fisher’s
Z-transform, z; = arctanh(h) = 0.5log.((v) +
1) — 0.5log.(1 — (v)) (Fisher, 1915; Zhou et al., 2009),
can approximately map the data to normal (Qin and
Hotilovac, 2007; Zhou et al., 2009):

1 e+ A;
4 = el g g) @
o%(z) = o (4;) (5)

(e+4;)%(e+1-4;)°

where o2 indicates the variance. The tuning param-
eter € which is added to the classic definition here,
serves to limit the extreme z values thta would typi-
cally spantherange (—oo, +00); hence, facilitating nu-
merical integration in later steps. To limit the z values
to [-10,10], ¢ = 2.061 x 10~? was adopted here. In
addition to this, in order to avoid sharp distributions
where AUC = landz = 10(AUC = —1landz =
—10), the values larger than 9 (smaller than —9) were
redistributed to a truncated normal distribution. The
redistribution of h extreme values larger than 9, as-
signed thei* value to iC' D F(9.0.25,5,13) ((i—0.5)/h),
where iCDF is the inverse cumulative distribution
function and NV (9,0.25,5,13), is the normal distribu-
tion with mean 9, standard deviation 0.25, truncated
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between [5, 13]. The values smaller than —9 were sim-
ilarly reassigned.

2.1.3 Estimating the f(z) Histogram

Gaussian Mixture Model (GMM) distributions (McLach-
lan and Peel, 2004) were used to estimate the prob-
ability density f(z), using the pool of z;,7 = 1...N.
Using maximum likelihood estimates of GMM parame-
ters, models with increasing number of Gaussian ker-
nels were set for fitting z; values. The model with min-
imum Akaike Information Criterion, AIK, (Akaike, 1974)
was eventually considered as the preferred fit. This se-
quential exploration procedure was concluded when
the increasing number of kernels yielded 3 consecu-
tive increases in the AIK. A similar approach has been
previously used (Le, Pan, and Lin, 2003) in statistical
genetics applications, but not in the context of EBI.

2.1.4 Estimating the Null Distribution f,(2)

For robust estimation of the null distribution, the data
labels g; were set for By times re-sampling with sub-
stitution; for each set of the obtained resampled la-
bels, the procedures for the original data and labels
were applied to yield A; and subsequently the z; val-
ues. The data from all the By bootstraps and all the
N tested variables were used for pooling to estimate
the null distribution. For computational efficiency, it
is helpful to sparse the null distribution. In this imple-
mentation, when the null data points exceeded 20000,
the null data were sorted and only the every sk data
values were kept for GMM estimation (sk: the integer
multiples of 20000 in the number of null data values).
Using similar GMM estimation as for f(z), the null dis-
tribution fo(z) was estimated.

2.1.5 Estimating the prior pg

The approach used by EBI for estimation of the prior
po, relies on the key assumption that at maximum
(peak) value of fy(z), the value of f;(z) is zero. Due to
the smooth and reliable estimation of fy(z) and f(z)
by AlK-guided GMM fits, itis possbile to directly use the
values of the estimated probability density functions
to find the prior pg:

f(2)

0 =
fo(2) | z=icDFy, (., (0.5)

(6)

where iCDFy,.y(0.5) is the z value at which the
Cumulative Density Function (CDF) of fy(z) is 0.5,
which is the inverse CDF of 0.5, i.e. the median of the
null data.

2.1.6 Estimating the Posterior P, (z)

Given the estimates of py, fo(2) and f(z), the calcula-
tion of posterior probabilities from equations (2) and

(3) are straightforward. A bound between 0 and 1 was
considered to protect against numerical instability at
very small probability values.

2.1.7 Estimating FDR and Power (1 — 3)

Following the calculation of pg, p1, fo(2), f1(2), f(2),
Py(z) and Py(z), the Type | error «, Type Il error (3,
power (1-3) and FDR (q) can be found by numerical in-
tegrations. Thisis achieved by using a decision thresh-
old value (see Section 2.1.8 for how this threshold is
decided on) on either of these measures to infer which
variables do or do not show an interesting effect. For
a given decision threshold on «, 3, or ¢, and a corre-
sponding criterion on the Posterior, P.,., we may write:

a(Poy) = / folz)dz "
Py (z)> P,
B(P.)=1- / f1(z)dz (8)
Py(2)>Per
[ Po(2)f(z)dz
Py (2)>Per
P = 5 o
Py (z)>P.,

as the parameter ¢ in section 2.1.2 limits the values
of z, the integration would suffice to take place in the
range [—20, 20]. Additionally, the global values «, and
B4 show the sperability of the probability density dis-
tributions regardless of a chosen P,

P (o)
ag = fj;; ho(2)dz (10)
5, = f:;o Po(2) f1(2)dz )
v fj;: f1(2)dz

2.1.8 Threshold Selection

The threshold selection and subsequent inference is
driven by setting a criterion P,,. on Posterior and com-
paring the values of P, (z) against this specific P,,, as
required in the specific context of application. Alterna-
tively, with the availability of the computed «, 3, ¢, it
is possible to find the number of values that are higher
than the threshold #{P;(z;) > P}, and the detec-
tionratio #{ P (z;) > P..}/N as a function of P; (z);
which in turn allows setting the P, values that corre-
spond to specifica,, Ber, ger-
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2.2 Non-null Bootstrapping for Single In-
ference

The above-mentioned procedure is applicable for
large-scale multiple testing, as this enables the esti-
mation of empirical mixed density f(z), the priors pg
and p1, and eventually the Posteriors Py (z) and P (z).
Forsingle statistical testing (V. = 1), similar stages can
be followed in order to calculate the test statistic, esti-
mate the histograms or probability density functions,
and calculate the null distribution. However, it is not
possible to estimate the priors; hence, these variables
are not available. Notwithstanding, it is possible to es-
timate f1(z) by a different approach, namely the non-
null bootstrapping which will make it possible to esti-
mate « and S for a specific threshold, which would be
a criterion on z (rather than on P;(z)). This approach
is explained below:

2.2.1 Non-Null Bootstrapping & Estimating f; (z)

To estimate the non-null distribution f;(z) we may
rely on bootstrapping when the grouping informa-
tion of the data g; are respected (in contrary to the
commonly practised null bootstrapping that aims to
find the null distribution where the grouping informa-
tion/labels are not respected). For this purpose, the
following re-sampling algorithm was used:

1. If myo is the number of observations in group
g = 0, take myo samples (with substitution) from
{Xl|gl = 0} to build EbO-

2. If my; is the number of observationsin group g =
1, (mpo +mp1 = m), take my; samples (with sub-
stitution) from {X; |g; = 1} to build Z;.

3. find the A (AUC for ROC curve) and consequently
the z value according to equation (4) using the ob-
tained set of the bootstrapped data = and Zy;.

4. Repeat this procedure (1-3) for B; times to obtain
the needed samples of z;,b = 1...By.

The GMM was then chosen to find the distribution of
zp values, which estimates f(z).

2.2.2 Estimating o and Power (1 — 3)

Similar to the calculation of « and j for a given P,
value in (7) and (8), it is possible to use numerical in-
tegration to find the relationship between « and g. If
Fy(z) is the cumulative density function correspond-
ing to fo(z), then for a given two-tail decision region
Z(a),

Z(a) = {zl(1=Fo(2)) < SYU{:IRo(2) < 5 (12)

itis possible to describe 3 a as function of a:

Bla)=1-— fi(z)dz
)

2.2.3 Threshold Selection

The threshold selection in single testing is straight-
forward, given the known relationship between o and
B in (13). This can be pursued based on traditional «
as thresholds, but now importantly based on specific
values of 5 or power.

2.3 NumericalImplementation & Simula-
tions

The numerical programming for the proposed
EBI implementation was performed in MATLAB
(versions 2016b-2018a, Mathworks Inc., Nat-
ick, MA, USA). The Empirical Bayesian Infer-
ence Toolbox for MATLAB is publicly available at
https://github.com/NeuroMotor-org/EBI and is
licensed under BSD 3-Clause ”"New” or ”"Revised”
License. To demonstrate the utility of the proposed
implementation and to test its validity, it was applied
to simulated data. Simulated data allow comparison
of the performance measures to real truth, which is
not available in real life applications. All simulations
were performed in MATLAB. Different simulations
were carried out as detailed below.

2.3.1 ADemonstrating Example

An example similar to applications in neural signal
analysis and neuroimaging was considered. The sim-
ulation included N,,, = 2000 variables, each with
mgo = 20 observations/subjects in the first sample
(e.g. controls), and m; = 60 observations/subjects
in second sample (e.g. patients), totalling m; = 80
observations/subjects. In control observations, all
variables had a normal distribution A/(0,1), while in
the other group the first 1600 variables had the same
N(0,1) distribution, the next 300 variables came
from A/(—1,1) and the last 100 variables were from
N(1.5,1).

2.3.2 Comparison Against Real Truth

Using the simulated data from previous section, the 3
and FFDR (or g) values were calculated as a function
of the posterior threshold P, and were compared to
the true values of g and FDR (q) at each P,,. The
real values were found by using the original labels of
the variables in the simulations. By comparing them
to the detected labels by EBI, the true positive (TP),
false positive (FP), false negative (FN) and true nega-
tive (TN) rates were calculated at each threshold, from
which the real 5 and F'D R were found.
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Additionally, the same data underwent a similar
analysis with a previous implementation of EBI (Efron,
2007b) in R (R Core Team, 2016), when used with the
default value. Notice that this implementation of R,
(which by default uses splines to estimate the density
functions, and a parametric normal for the null distri-
bution), is not guaranteed to converge for any data set
in general (as it is fine-tuned for small prior p; values)
unless extensive manual tuning of parameters is used.

2.3.3 Performance Under Different Condition

Several simulations were performed to test the perfor-
mance of the framework in a broader range of condi-
tions. This controlled variation of the simulation con-
dition can test and inform of the performance in real-
life applications, which is not easy to assess with typ-
ical experimental data due to the lack of a gold stan-
dard or real truth. The parameters for generation of
simulated data and the application of the new EBI im-
plementation included: N, = 200,2000, pg =
0.25,0.75, mg = 25,100, m; = 25,100, Normal (o =
1) vs. Beta (a = 2,b = 10) distribution types, small or
large difference/effect-size (Cohen’sd = 0.2,d = 0.9
for normal distributions; shift d = 0.05, d = 0.09 for
Beta distributions). The estimated priorpy, real FDR
at expected nominal value of 0.05, and real 3 at ex-
pected nominal value 0.2 were compared across all
the 64 simulation conditions. Each simulation con-
dition was repeated 3 times to account for the non-
deterministic nature of the implemented bootstrap-
ping and estimation procedures.

2.3.4 Simulation of a Uni-Variate Example

To demonstrate the derivation of the o« — 3 curve, a
simple simulation with mg = 15 and m; = 25, ran-
dom data with normal distributions for both groups
(0 = 1), and shift value (Cohen’s d) of 0.5 was consid-
ered.

2.4 Exemplary Application on Experi-
mental Data

The new implementation of EBI was applied on real-
life experimental High-Density EEG data to further
demonstrate the utility in practice. The experimental
EEG was recorded during steady state conditions, in-
cluding a resting-state condition (S. Dukic et al., 2017;
Stefan Dukicetal.,2019) and a sustained isometric mo-
tor task (Coffeyetal., 2019). The dataincluded 363 and
99 epochs of 1 second duration in each condition re-
spectively. Details of the spectral analysis have been
previously reported (Nasseroleslami et al., 2019). EBI
was used to find the significant difference between
the rest and motor conditions over 128 EEG channels
in 7 frequency bands that cover the range of 2-47Hz
(7 x 128 = 896 variables).

3 Results

3.1 Example of Multiple Testing with EBI

Figure 1 exemplifies the generated results and a re-
port for a typical simulated case as described in Sec-
tion 2.3.1.Notice how the two probability density func-
tions fo(z) and f1(2), as well as the prior p; are the es-
sential components in giving rise to the Posterior dis-
tributions Py(z) and P;(z). In addition pay attention
to how the choice of different threshold levels (color-
coded based on the criteria) helps to choose an in-
formed statistical threshold for inference based on the
levels of FDR and power they afford.

3.2 Comparison of Typical Behaviour
Against Truth

Figure 2 compares the estimated FDR and  as a func-
tion of the threshold values (Py), against the real truth,
using simulation labels as described in Section 2.3.2.
Notice the similarity of real truth curves and estimates
by the new implementation. In addition, as the sim-
ulated condition had a low prior py, the results from
the previous locfdr implementation in R could be cal-
culated, which showed a good conformity to the real
truth and the new implementation.

3.3 Performance of the EBl under Various
Simulation Conditions

Figure 3 compares the estimated prior p; against the
real values, as well as the real FDR and S values at
the selected threshold when estimated at nominal val-
ues at 0.05 and 0.2 (Described in Section 2.3.3). In the
majority of conditions, the estimated measures were
very close to the real values and there was negligi-
ble difference between the 5 different iterations of the
simulation. The exception is at low effect sizes, com-
bined with low number of observation/subjects and
extreme prior values, where the estimation errors in-
crease (possibly due to dissociations between the af-
fected and non-affected variables and density func-
tions). In the majority of the simulation cases the
locfdr R package did not converge; therefore, the re-
sults were not included.

3.4 Example Single Testing

Figure 4 shows the correspondence of different « val-
ues to g values, for a an exemplary simulated data
(Section 2.3.4).

3.5 Application on Experimental Data

Figure 22 shows the application of the EBI on exper-
imental EEG data, showing the cortico-muscular co-
herence across EEG channels and 7 frequency bands.
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Figure 1. Report of an Empirical Bayesian Inference, applied on typical simulated data. The probability density func-
tions of the mixed (f(z)) and null (fo(z)) data, estimated from the original and permuted, as well as of the non-null
(f1(=)) data, estimated from f(z) and fo(z) by Bayesian inference are plotted as a function of the z (which is trans-
formed to z from an original test statistic). Following the estimation of the fixed prior probability p; = 0.19 (the ratio of
affected to non-affected variables), the Posterior probabilities for null (P (z)) and non-null (P (z)) are estimated. The
Qglobal = 0.02and Bgiopa1 = 0.083 show the global level of Type | and Il errors regardless of a specific threshold, calcu-
lated from the probability density functions and Posterior Probabilities by numerical integration. The threshold selection
is facilitated by the plots of FDR and 3 as a function of P; .,;;. The table indicates common criteria as a function of p1, P,
FDR, 8 and « (thresholds are shown as bold diagonal values), and other corresponding values afforded by the selected
criterion in each row. For example, at p1 = 0.18, the estimated F"D R and (3 values will be 0.029 and 0.10 respectively.
In the large plot, for each chosen criterion labelled by colour-coding in the legend, the projections to left and right axes
indicate the afforded F"D R and /3 by each criterion, respectively.
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Figure 2. Comparison of FDR and 3 found by the EBI implemntation against the real truth in simulations. The data
and conditions correspond to Figure 1. The dotted lines show the estimations from the locfdr package in R.

The effect of informed threshold selection on the ex-
perimental data and the corresponding values (Power,
FDR, prior and Posterior) are demonstrated.

4 Discussion

While EBI (Efron, 2007b; Efron et al., 2001) provided a
comprehensive theoretical framework for multivariate
high-dimensional inference, the previous numerical
implementation of EBI provided valid results only in
limited conditions, namely, low prior p; values and for
rather high threshold values. Importantly, the previ-
ous implementation required numerous adjustments
and parameter selection. The new implementation
eliminates the need for parameter tuning (especially
by using AIK for GMD fitting) and allows the method to
be used in broader range of conditions. Importantly,
the statistical power is explicitly estimated and made
available for inference.

4.1 Applications

The new approach suits applications involving neural
signal analysis, such as electromyography (EMG), Elec-
troencephalography (EEG), as well as neuroimaging,
e.g. Magnetic Resonance Imaging (MRI). More specif-
ically, spectral, time-frequency, as well as functional
and effective connectivity analyses can benefit most
from the new statistical implementation. In appli-
cations such as fMRI, the need for improved statisti-
cal inference has been explicitly emphasised by high-
lighting the limitations with existing techniques that
lead to high false discovery rates (Eklund, Nichols, &
Knutsson, 2016). The existing attempts to improve
the statistical inference in EEG connectivity analysis
(Singh, Asoh, & Phillips, 2011; Singh et al., 2015), have
yield only partial success to date. Here, we used sim-
ulations to compare the EBI reports against the real
truth. Importantly, in 2 recent studies, we showed

that EBI is reasonably cross-validated against tradi-
tional frequentist methods. EBI was cross-validated
against the correction of significance level a accord-
ing to the number of principal components in data
(lyer et al.,, 2017) when testing the significance of
EEG time series. Moreover, the inference of EBI was
cross-validated against adaptive False Discovery Rates
(aFDR) (Benjamini & Hochberg, 1995; Benjamini et al.,
2006) in comparing the average EEG connectivity pat-
terns between healthy individuals and patient groups
(Nasseroleslami et al., 2019).

A unique advantage of EBI is its ability to implic-
itly account for potential positive and negative corre-
lations that may be present in the data. It is therefore
a suitable candidate for situations where positive or
negative correlations exist in multi-dimensional data
(e.g. EEG/MEG network connectivity analysis or struc-
tural or functional MR imaging). This is afforded by the
way the individual z-values pertaining to each variable
are aggregated (i.e. theindependent calculation of the
test scores) and by the chosen approach for the calcu-
lation of a null distribution that similarly corresponds
to the same data with or without correlation structures
(Efron, 2007a). The flexible estimation of null distribu-
tion from permuted data by GMM affords such flexibil-
ity for inference in rather broad conditions.

In applications where only simple statistical testing
is required, the calculated FDR is an accurate estima-
tion equivalent to the procedures for pooled multivari-
ate permutation tests, which can be used without ref-
erence to Bayesian inference.

4.1.1 Practical Use

In practical application of single-variate statistical test,
the p-values (The probability of data given the null
hypothesis) are compared against a chosen threshold
such as 0.05 or 0.001. While such established rules
of thumb are not necessarily connected to the prob-
abilities such as the Bayesian Poterior or AUC, they
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Figure 3. Comparison of estimated prior p; against real truth, and observed FDR and 3 values at nominal values
0.05 and 0.2 of the selected thresholds in simulations. See Section 2.3.3 for details of methods. Real truth and nominal
values are shown by red lines.
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Figure 4. Correspondence of different o values
to 3 values. The plot can be used for informed se-
lection of threshold, similar to multivariate EBI.

facilitate their practical uses in day-to-day applica-
tion. The discussion of the appropriate thresholds for
Bayesian Posterior, Power, and FDR are beyond this re-
port. However, a brief discussion to make their mean-
ing more accessible in the context of the applications
shall make it easier to adopt rules of thumb for the
thresholds.

+ P;: For the Bayesian Posterior (The probability
of effect given the data), any value larger than
0.5 should help to show the presence of an ef-
fect. However, in practice, values larger than 0.7,
0.8 and 0.9 can be better associated to small,
medium and large effects.

« FDR: In multivariate applications, it is usually
more informative to generalise the p-value using
FDR, i.e. the probability/rate of false detection in
the whole detection set, rather than by the o, i.e.
the probability of having even a single false detec-
tion. For FDRor ¢ (The ratio of the falsely detected
variable to the all of the detected variables), the
common sensible values should be interpreted
based on the requirements of the applications. It
is helpful to answer what percent of grime would
be acceptablein figuring out the right pattern and
extent of the effect in the variables. Usually the
values of 0.25, 0.1 and 0.05 would be good first
choices for a rough, adequate and good figure of
the effects. Of courseinsituations where few false
detection is affordable, lower values and the use
of Type | error o as a better measure may be prof-
fered. This however usually results in lower sta-
tistical power. It is useful to mention that while
the F'DR estimates the proportion of the falsely
discovered effects, the experimenter/analyst can
still put more weight and emphasis in the inter-
pretations on the detections with higher Posterior
P; or AUC (as test statistic) values.

« Power (1-3): The multi-variate interpretation of
the statistical power or 1 — (3 is the ratio of the

correctly detected variables to all of the affected
variables that exist. This can be similarly best
interpreted in the context of applications. Find-
ing a reasonable threshold can be facilitated by
answering the question: What minimum percent
of the full picture of the effect should the detec-
tion uncover? This is closely related to the repro-
ducibility and replicability of the findings (single-
variable interpretation of power). For example, if
astudy is powered at 0.5, only half of the really af-
fected variables have been detected; therefore, in
a future replication of the study, another 50% of
the effects may be detected, leading to no appar-
ent similarity if the results cannot be explained
or aggregated by supplementary experiments or
analyses. The statistical power of 0.7, 0.8, 0.9 can
be very roughly considered as minimal, adequate
and good levels in general.

Commonly a graphical representation of the FDR-
Power curve (Fig. 1, bottom) is very helpful for an in-
formed selection of the threshold based on the other
performance measures afforded by each threshold.
This actual meaning of these measures can greatly fa-
cilitate the conceptual interpretation of the thresholds
and their actual utility in applications (see Figure 6 for
aschematicilustration). For example the table in Fig. 1
(top right) shows that when the threshold is chosen
to in order to provide the same proportion of the af-
fected/non-affected variables (to match the estimated
prior probability, here 0.18), this would result in a Pos-
terior Probability threshold of 0.73, a FDR of 0.029 and
power of 1-0.1=0.9. It is also possible to define the
threshold based on pre-determined criteria. For ex-
ample choosing Posterior probability threshold of 0.9
results in detection of 16% of the variables (prior p1),
FDR of 0.012, but a power of 1-0.18=0.82. Selection
of FDR = 0.05 as threshold equals a posterior proba-
bility threshold of 0.54, which results in the detection
of 19% of the variables and an estimated power of 1-
0.061=0.939. Finally, if the threshold is chosen to af-
ford a power of 1-0.2=0.8, this would correspond a Pos-
terior probability threshold of 0.92, selection of 16% of
variables, and FDR of 0.01. This provides the opportu-
nity forinformed selection of the threshold for specific
applications.

4.2 Limitations

The practical range for the number of variables is
between 100-10000. The performance beyond this
range degrades. This limitation originates from the
EBIframework, rather than a specific numericalimple-
mentation.

Too few variables lead to inaccurate probability
density estimations where few isolated data points are
not adequately represented by continuous distribu-
tions. In this situation, the extreme values of prior
probabilities would correspond to fewer data points


https://doi.org/10.1101/342964

bioRxiv preprint doi: https://doi.org/10.1101/342964; this version posted July 26, 2019. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Empirical Bayesian Inference & Non-Null Bootstrapping for Threshold Selection, Nasseroleslami

Page 11 of 14

Empirical Bayesian Inference of Motor-Related Changes in Experimntal Spectral EEG Power
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Figure 5. Threshold selection for the detection of significant change in spectral EEG power in steady-state, com-
pared between rest and active motor task. The data corresponds to 1 subject and calculated from 363 and 99 epochs
of 1length during resting-state and isometric force generation, respectively..

with real effect; hence, the probability densities fitted
to these values will not be very representative and ac-
curate.

On the other hand, too many variables lead to un-
wanted spread of the null distribution to the extent
that inference at low FDR values does not yield signif-
icant results. This situation, however, can be partly
remedied for by applying the EBI as several indepen-
dent batches of analyses on the mutually exclusive
chunks of data, each containing different variables.
This is permissible as the quantities such as FDR and
Posterior probability (and to a reasonable extent the
power) are not affected by multiple testing (as is the
case for p-values).

As the complete procedure for EBI relies on permu-
tations for building the null distribution, the proce-
dure would depend on random number generations
and some variability in each run. Additionally, the
numerical procedures for estimating the GMM fits to
the distributions are subject to minor variability in
each run. These 2 factors make the inference a non-
deterministic procedure, which is subject to some vari-
ability. While important to take this into consideration,
the results in Figure 3 idicate that this variability does
not change the nature of the results.

Future studies are expected to focus on the fac-
torsthat lead to inaccurate numerical estimations, fur-
ther extending the range of operating conditions, as
well as theoretical developments for robust estima-
tion of prior when extreme data and conditions are
processed.

4.3 Informed Selection of Appropriate

Statistical Inference

Statistical inference from multi-dimensional data, es-
pecially the neural signals such as EEG/MEG, EMG,
(fMRYI) is challenging. It is crucial to take into consid-
eration the potential advantages and disadvantages
of each inference method, as well as the assumptions
used in each inference framework to be able to choose
the most appropriate method. The methods such as
Statistical Parametric Mapping (SPM) (Friston et al.,
1994) or Cluster-Based Permutation (CBP) (Bullmore
et al., 1999; Maris et al., 2007) incorporate assump-
tions on the spatial distribution of the variables, there-
fore, the features showing the same effect within a
spatial neighbourhood get an increase chance of de-
tection. This is implemented by a smoothness as-
sumption based on random field theory (Mehrkanoon,
Breakspear, & Boonstra, 2014; Siegmund & Worsley,
1995; Worsley, 2001) in SPM, and by "clustering” the
variables based on a statistical threshold and added
weights based on spatial adjacency in time, space
and/or frequency, in CBP (Bullmore et al., 1999; Co-
hen, 2014; Maris et al., 2007). This assumption may
help to better detect the effects in the groups of adja-
centvariables, but may not be optimal in detecting the
boundaries of the effects or to detect all the compo-
nents of the same effect with disjoint spatial presence.
EBI does not impose any explicit spatial constraints
in the inference from the variables. EBI implicitly
accounts for such possible connections through the
increased/accumulated probability of effect for such
variables with similar test statistics that may originate
from spatial adjacency or other correlations or inter-
dependencein the data. This allows a better detection
of the boundaries of the effect and equal chance of de-
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A tecting the components of a spatially disjoint effect.
However, the interpretation of the spatially isolated
detection will be the job of the analyst or researcher.
5 Conclusion
The implementations of statistical inferences such as
Real Truth Detection EBI that can inform of the posterior probabilities and

statistical power need to be converted to common

practice. This implementation of EBI and single test-
ing which supports threshold selection has potential
to add value to the neural signal analysis and neu-
roimaging studies by enabling realistic inference on
high-dimensional multivariate data.
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Figure 6. Schematic illustration of multivari-
ate power and FDR in statistical inference. A. Il-

lustration of the ground truth and the detections Appendix A: Extension of the Tests
in statistical inferences such as EBI, where multi- . .

variate frequentist statistics can be estimated and from Com parison to Correlation Co-
used as thresholds. B. Demonstration of low vs. . o

high values of FDR and Power, which can be cho- efficients and Beyond

sen based on the requirements of scientific aplica-
tions and applied in EBI. Note that the size of the
real truth corresponds to the (estimated) prior p1
and choosing a threshold at the same p; means
using a detection area as large as the real truth (see
Figure1).

The original EBI has been primarily used for
two-sample one-dimensional location problems
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(between-group comparison) such as gene discovery
by comparing a control group to a treatment or
affected group, or similarly by comparison of the
healthy individuals against patients as intended in
neuro-electro-magnetic signal analysis.  Notwith-
standing, the framework can be similarly used for
virtually any statistical test, such as one-sample
location problems (where comparison of data against
zero or paired comparison of data are intended), as
well as correlation analysis. These options have been
implemented in the EBI Toolbox for MATLAB.

A1l. One Sample Inference

For a one-sample 1-dimensional location problem, in-
cluding n data points z;, the Wilcoxon’s Signed Rank
test statisticisdefinedas W = S 10T R) - Yapy >0
where R(i) is the rank of the {|z;||z; # 0}. The func-
tion 1,y is 1 for the z that meet the condition, and
0 otherwise. The normalised test static may be de-
finedasW,, = W /(X R(i)) whichisbounded between
0 and 1. Therefore, W,, can be transformed to the z
space using (4), as in the case of AUC and the sub-
sequent procedures will be similar to the two-sample
problem. The bootstrapping procedure for building
the null distribution, is carried out by performing ran-
dom sign flips (multiplying data by random —1 or 1 val-
ues) and recalculation of the test statistics for the num-
ber of bootstrapping cycles.

A2. Correlation Coefficient

To use the same framework for analysis of correlation
coefficients, the Spearman’s correlation coefficient p
can be mapped to the [0 1] range (as for AUROC, A) by
the transformation (p + 1)/2. In this case, the group-
inginformation will have equal number of paired zeros
and ones. The null permutation of the data shall con-
sist of using separate re-sampling (with substitution)
from the first and second groups of observations for
the same data points as the original data, which disre-
gards their pairing information.
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