Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Signaling dynamics control cell fate in the early Drosophila embryo

Heath E. Johnson, Stanislav Y. Shvartsman, Jared E. Toettcher
doi: https://doi.org/10.1101/342998
Heath E. Johnson
1Department of Molecular Biology Princeton University, Princeton NJ 08544
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stanislav Y. Shvartsman
2Lewis Sigler Institute for Integrative Genomics Princeton University, Princeton NJ 08544
3Department of Chemical and Biological Engineering Princeton University, Princeton NJ 08544
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jared E. Toettcher
1Department of Molecular Biology Princeton University, Princeton NJ 08544
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

The Erk mitogen-activated protein kinase plays diverse roles in animal development, where its activity is associated with phenomena including cell migration, proliferation and differentiation. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? Here, we combine precise optogenetic control with genetic perturbations to dissect Erk-dependent cellular responses in the early Drosophila embryo. We find that light-stimulated Erk activity is sufficient to ‘posterior-ize’ the majority of the embryo, leading to massive apical constriction through expression of the autocrine receptor-ligand pair mist and fog. Ectopic contraction at non-terminal positions requires at least 1 h of high-amplitude Erk signaling, whereas a 30 min pulse of Erk activity patterns non-contractile neurogenic ectoderm during the same time window. In contrast to the canonical ‘transient versus sustained’ model, the cell fate switch is triggered by the cumulative load of Erk signaling, not the duration of a single persistent pulse. Our results reveal that the early fly embryo harbors a classic example of dynamic cell fate control, where the total dose of Erk activity selects between two distinct physiological outcomes.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted June 08, 2018.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Signaling dynamics control cell fate in the early Drosophila embryo
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Signaling dynamics control cell fate in the early Drosophila embryo
Heath E. Johnson, Stanislav Y. Shvartsman, Jared E. Toettcher
bioRxiv 342998; doi: https://doi.org/10.1101/342998
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Signaling dynamics control cell fate in the early Drosophila embryo
Heath E. Johnson, Stanislav Y. Shvartsman, Jared E. Toettcher
bioRxiv 342998; doi: https://doi.org/10.1101/342998

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4231)
  • Biochemistry (9123)
  • Bioengineering (6769)
  • Bioinformatics (23971)
  • Biophysics (12110)
  • Cancer Biology (9511)
  • Cell Biology (13754)
  • Clinical Trials (138)
  • Developmental Biology (7623)
  • Ecology (11678)
  • Epidemiology (2066)
  • Evolutionary Biology (15495)
  • Genetics (10633)
  • Genomics (14312)
  • Immunology (9474)
  • Microbiology (22825)
  • Molecular Biology (9087)
  • Neuroscience (48922)
  • Paleontology (355)
  • Pathology (1480)
  • Pharmacology and Toxicology (2566)
  • Physiology (3842)
  • Plant Biology (8322)
  • Scientific Communication and Education (1468)
  • Synthetic Biology (2295)
  • Systems Biology (6183)
  • Zoology (1299)