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Abstract 
Background	A	differential	gene	expression	analysis	may	produce	a	set	of	significantly	
differentially	expressed	genes	that	is	too	large	to	easily	investigate,	so	that	a	means	of	
ranking	genes	by	their	biological	interest	level	is	desirable.	The	life-sciences	have	grappled	
with	the	abuse	of	p-values	to	rank	genes	for	this	purpose.	As	an	alternative,	a	lower	
confidence	bound	on	the	magnitude	of	Log	Fold	Change	(LFC)	could	be	used	to	rank	genes,	
but	it	has	been	unclear	how	to	reconcile	this	with	the	need	to	perform	False	Discovery	Rate	
(FDR)	correction.	The	TREAT	test	of	McCarthy	and	Smyth	is	a	step	in	this	direction,	finding	
genes	significantly	exceeding	a	specified	LFC	threshold.	Here	we	describe	the	use	of	test	
inversion	on	TREAT	to	present	genes	ranked	by	a	confidence	bound	on	the	LFC,	while	still	
controlling	FDR.	

Results	Testing	the	Topconfects	R	package	with	simulated	gene	expression	data	shows	the	
method	outperforming	current	statistical	approaches	across	a	wide	range	of	experiment	
sizes	in	the	identification	of	genes	with	largest	LFCs.	Applying	the	method	to	a	TCGA	breast	
cancer	data-set	shows	the	method	ranks	some	genes	with	large	LFC	higher	than	would	
traditional	ranking	by	p-value.	Importantly	these	two	ranking	methods	lead	to	a	different	
biological	emphasis,	in	terms	both	of	specific	highly	ranked	genes	and	gene-set	enrichment.	

Conclusions	The	choice	of	ranking	method	in	differential	expression	analysis	can	affect	the	
biological	interpretation.	The	common	default	of	ranking	by	p-value	is	implicitly	by	an	
effect	size	in	which	each	gene	is	standardized	to	its	own	variability,	rather	than	comparing	
genes	on	a	common	scale,	which	may	not	be	appropriate.	The	Topconfects	approach	of	
presenting	genes	ranked	by	confident	LFC	effect	size	is	a	variation	on	the	TREAT	method	
with	improved	usability,	removing	the	need	to	fine-tune	a	threshold	parameter	and	
removing	the	temptation	to	abuse	p-values	as	a	de-facto	effect	size.	

Keywords 
RNA-Seq,	Differential	Expression	Analysis,	Confidence	Interval,	False	Discovery	Rate,	
TREAT	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/343145doi: bioRxiv preprint 

https://doi.org/10.1101/343145
http://creativecommons.org/licenses/by-nd/4.0/


Background 
Misunderstanding	and	abuse	of	p-values	has	led	to	widespread	debate	and	proposals	for	
the	adoption	of	alternatives	[1-3].	One	moderate	proposal	is	to	switch	from	the	reporting	of	
p-values	to	the	reporting	of	Confidence	Intervals	(CIs)	[4].	This	is	a	shift	of	emphasis	from	a	
dichotomous	division	between	zero	and	non-zero	effect	size	to	estimating	the	effect	size	
and	placing	confidence	bounds	on	this	estimate.	CIs	are	based	on	the	same	underlying	
theory	as	p-values,	providing	control	of	the	type	I	error	probability	(the	probability	of	the	
false	rejection	of	a	true	hypothesis)	[5].	For	example,	Cochrane	[6,	section	12.4.1]	uses	CIs	
to	judge	whether	an	intervention	has	not	just	a	non-zero	effect	but	confidently	a	clinically	
useful	effect.	The	widely	used	Publication	Manual	of	the	American	Psychological	
Association	[7,	section	2.07]	recommends	giving	estimated	effect	sizes	and	strongly	
recommends	that	these	be	accompanied	by	CIs,	with	effect	sizes	to	be	given	in	the	original	
units	and	possibly	also	in	a	standardized	form	such	as	Cohen’s	d.	

One	area	this	shift	has	not	yet	occurred	is	in	differential	expression	analysis	of	microarray	
and	RNA-Seq	data.	Here	the	effect	size	of	interest	is	generally	the	Log2	Fold	Change	(LFC)	in	
the	relative	RNA	abundance	of	each	gene	between	two	groups	of	biological	samples.	A	
possible	reason	is	that	due	to	the	large	number	of	genes	tested,	multiple	testing	correction	
is	necessary	in	differential	expression	analysis	in	order	to	maintain	a	False	Discovery	Rate	
(FDR)	[8].	The	dependence	of	FDR	control	on	the	number	of	discoveries	made	makes	it	
difficult	to	reconcile	with	the	use	of	CIs.	An	alternative	would	be	to	control	the	Family-Wise	
Error	Rate	(FWER)	using	a	Bonferroni	correction,	which	has	a	straightforward	
corresponding	Bonferroni	correction	for	CIs.	However,	unless	conclusions	depend	on	every	
single	CI	being	correct,	controlling	the	FWER	is	unnecessarily	strict.	A	final	possibility	is	a	
procedure	that	declares	a	certain	number	of	discoveries	made	based	on	some	criterion,	and	
then	reports	False	Coverage-statement	Rate	corrected	CIs	for	the	selected	genes	[9].	This	
has	been	implemented	in	the	context	of	differential	gene	expression	[10],	with	the	criterion	
being	that	the	genes	have	non-zero	differential	expression	with	a	given	FDR.	An	appealing	
feature	of	this	approach	is	that	the	confidence	intervals	of	genes	that	are	just	judged	to	be	
statistically	significant	also	just	touch	zero	LFC.	However,	this	re-introduces	a	dichotomous	
hypothesis	testing	step	into	a	CI	method,	where	the	point	of	using	CIs	is	to	move	away	from	
such	dichotomous	decisions.	

Considering	the	current	p-value	based	practice,	depending	on	the	nature	of	the	experiment,	
quality	of	the	data	produced,	and	the	chosen	FDR,	the	number	of	significantly	differentially	
expressed	genes	discovered	may	range	from	just	a	few	to	thousands.	However,	a	
researcher	may	only	have	resources	to	follow	up	a	limited	number	of	genes,	so	that	
thousands	of	discoveries	present	a	problem.	Moreover,	many	genes	that	pass	this	statistical	
test	for	significance	may	not	be	sufficiently	changed	to	be	of	biological	significance.	It	is	
important	therefore	to	have	a	way	to	rank	genes	by	interest	level.	

A	common	default	presentation	of	differential	expression	analysis	results	is	to	list	genes	in	
order	of	an	“adjusted	𝑝-value”.	The	researcher	may	choose	a	cutoff	value	for	this	adjusted	
p-value,	producing	a	set	of	genes	with	that	FDR.	This	then	gives	the	researcher	a	means	to	
select	as	many	genes	as	they	are	able	to	further	investigate:	read	down	the	list	until	the	
desired	number	of	genes	is	obtained	(with	a	small	technicality	that	if	multiple	genes	have	
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the	same	adjusted	p-value,	all	or	none	of	them	should	be	chosen).	However	statistical	
significance	is	not	the	same	as	a	biologically	meaningful	effect	size.	It	may	be	that	in	order	
to	obtain	a	manageable	set	of	genes	by	this	method,	the	researcher	chooses	a	far	smaller	
FDR	than	they	actually	require.	Genes	may	as	easily	be	chosen	by	this	method	for	low	
biological	and	technical	variation	as	for	a	large	LFC.	

McCarthy	and	Smyth	[11]	propose	a	principled	solution	to	this	problem	with	their	TREAT	
method.	The	researcher	nominates	a	minimum	LFC	effect	size	of	interest.	The	TREAT	
method	finds	genes	with	magnitude	of	effect	size	larger	than	this.	Again,	the	researcher	is	
presented	with	a	list	in	order	of	adjusted	p-value,	and	may	make	the	final	choice	of	FDR.	
However,	how	to	choose	the	minimum	effect	size	with	TREAT	is	not	necessarily	obvious.	
On	the	other	hand,	the	researcher	may	well	be	able	to	nominate	an	acceptable	FDR	(5%	is	a	
common	choice).	

Therefore,	we	describe	here	a	new	approach	to	the	presentation	of	TREAT	results	in	which	
the	FDR	is	fixed,	and	genes	are	presented	in	order	of	a	quantity	we	call	the	“confident	effect	
size”	or	“confect”.	If	a	set	of	genes	is	chosen	having	magnitude	of	confect	greater	than	or	
equal	to	some	amount,	we	guarantee	with	the	given	FDR	that	those	genes	will	have	a	true	
LFC	magnitude	greater	than	that	chosen	amount.	The	researcher	is	then	easily	able	to	
choose	a	desired	effect	size	of	interest	to	follow	up,	and	is	never	presented	with	
unreasonably	small	adjusted	p-values.	This	is	“test	inversion”,	converting	hypothesis	
testing	into	a	confidence	bound	calculation,	however	with	a	novel	feature	being	the	
incorporation	of	FDR	control.	The	confect	ranking	solves	two	problems	at	once,	giving	
confidence	bounds	with	an	appropriate	level	of	multiple-testing	correction,	and	
simultaneously	providing	a	ranking	of	genes	by	confident	effect	size.	

We	show	using	synthetic	data	that	the	confect	ranking	method	scales	across	experiment	
sizes.	The	method	is	then	applied	to	a	cancer	data-set,	which	has	a	high	degree	of	
heteroscedasticity	between	genes.	The	confect	ranking	method,	as	compared	to	the	𝑝-value	
ranking	method,	leads	to	a	markedly	different	emphasis	on	affected	biological	processes.	

Method 
The	confidence	bound	calculation	requires	as	input	a	𝑝-value	function	𝑝"(𝑒)	for	each	gene	𝑖,	
1 ≤ 𝑖 ≤ 𝑛*+,+,	for	a	test	that	the	absolute	effect	size	is	at	most	𝑒.	𝑝"(𝑒)	will	be	a	
monotonically	increasing	function	of	𝑒.	The	TREAT	method	[11]	provides	a	suitable	𝑝-value	
function,	with	the	effect	size	being	LFC.	The	limma	R	package	[12]	provides	an	
implementation	of	this	in	the	treat	function.	

In	the	next	section,	confidence	bounds	derived	from	TREAT	are	considered	for	a	fixed	
significance	level	cutoff	𝛼.	In	the	following	section,	this	is	extended	to	FDR	control,	in	which	
confidence	bounds	are	found	with	a	dynamic	significance	level	cutoff.	
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Confidence bounds from TREAT 
There	is	a	close	relationship	between	CIs	and	𝑝-values.	For	example,	considering	the	two-
sided	𝑡-test	that	the	LFC	of	a	gene	is	not	𝑒,	those	values	of	𝑒	where	𝑝/01+21(𝑒) > 𝛼	form	a	
1 − 𝛼	confidence	interval.	Similarly,	a	confidence	bound	can	be	obtained	from	the	one-
sided	𝑡-test.	This	is	called	test	inversion.	

Note	in	particular	that	a	significant	result	on	a	𝑡-test	for	𝑒 = 0	not	only	establishes	that	the	
LFC	is	non-zero,	but	also	establishes	that	the	sign	of	the	LFC	is	known,	since	the	
corresponding	confidence	interval	will	lie	either	entirely	above	or	below	0.	

In	the	case	of	TREAT,	the	null	hypothesis	is	that	the	LFC	lies	inside	the	range	[−𝑒, 𝑒].	Thus	
TREAT	𝑝-values	are	always	larger	than	those	from	the	𝑡-test	that	the	LFC	is	0,	and	a	
significant	TREAT	result	determines	the	sign	of	the	LFC.	Taking	the	small	liberty	of	
considering	that	these	two	properties	hold	simultaneously,	we	view	the	largest	𝑒	for	which	
𝑝"(𝑒) ≤ 𝛼	as	providing	a	confidence	bound,	establishing	either	that	the	LFC	is	greater	than	
𝑒,	or	establishing	that	it	is	less	than	−𝑒.	

Calculation of confects 
Using	TREAT,	and	making	the	assumption	that	each	gene	is	independent	of	the	others,	a	set	
of	genes	with	effect	size	exceeding	𝑒	at	a	given	FDR	𝑞	may	be	obtained	using	the	procedure	
of	Benjamini	and	Hochberg	[8].	This	set	𝑆(𝑒)	is	the	largest	set	satisfying	

𝑆(𝑒) = <𝑖: 𝑝"(𝑒) ≤
|𝑆(𝑒)|
𝑛*+,+

𝑞?	

Sets	for	different	effect	sizes	nest.	If	𝑒 > 𝑒′	then	𝑆(𝑒) ⊆ 𝑆(𝑒′).	Genes	may	drop	out	of	𝑆(𝑒)	as	
𝑒	increases	for	two	reasons.	Firstly,	𝑝"(𝑒)	may	rise	above	the	threshold	for	inclusion	in	the	
set.	Secondly,	the	threshold	for	inculsion	in	the	set	is	a	function	of	the	size	of	the	set	|𝑆(𝑒)|,	
so	as	the	set	becomes	smaller	the	threshold	also	becomes	stricter.	Thus	as	one	gene	drops	
out,	several	more	may	also	need	to	immediately	be	dropped.	

Let	|𝑐"|	be	the	largest	𝑒	such	that	𝑖 ∈ 𝑆(𝑒),	and	let	the	sign	of	𝑐"	be	the	actual	sign	of	the	
estimated	effect.	We	call	this	quantity	the	“confect”,	for	confident	effect	size.	In	our	
implementation,	when	computing	𝑐"	we	scan	through	a	discrete	set	of	effect	sizes,	by	
default	considering	𝑒 = 0, 0.01, 0.02, 0.03,…	until	𝑆(𝑒)	is	empty.	

By	presenting	genes	in	order	from	largest	to	smallest	|𝑐"|,	the	researcher	may	easily	choose	
an	effect	size	resulting	in	a	set	of	genes	𝑆(𝑒)	of	a	size	suitable	for	their	purpose.	It	may	
happen	that	some	genes	have	the	same	|𝑐"|,	and	in	order	to	obtain	a	total	order	we	sort	
these	by	𝑝"(𝑒)	at	the	first	𝑒	for	which	they	are	not	in	𝑆(𝑒).	Some	genes	are	not	a	member	of	
any	set,	and	are	not	given	a	confect.	These	are	listed	last,	in	order	of	𝑝"(0)	(the	𝑝-value	
given	by	limma	without	using	TREAT).	An	illustration	of	this	method	is	shown	in	Figure	1.	
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Figure	1.	Illustration	of	ranking	method.	Sets	𝑆(𝑒)	are	sets	of	genes	with	effect	size	
significantly	exceeding	threshold	𝑒	at	some	desired	FDR.	These	sets	nest,	providing	a	ranking	
of	genes.	

	

The	overall	effect	of	this	procedure	is	to	provide	a	lower	confidence	bound	on	the	
magnitude	of	LFC	for	each	gene,	but	with	a	higher	level	of	confidence	required	for	the	
larger	effect	sizes	at	the	top	of	the	list	than	for	the	smaller	effect	sizes	lower	down	the	list.	
Further	the	set	{𝑖: |𝑐"| ≤ 𝑒}	is	precisely	𝑆(𝑒),	and	is	always	at	the	top	of	the	ordering.	

R	code	implementing	this	procedure	is	provided	as	a	supplemental	file.	Ongoing	
development	of	this	method	as	an	R	package	is	available	at	
https://github.com/pfh/topconfects	

Evaluation with synthetic data 
Simulated	data	for	𝑛*+,+	genes	is	generated	for	two	equally	sized	groups	with	𝑛J+K	samples	
within	each	group.	We	follow	the	distributional	assumption	of	limma	[12]	that	the	gene-
wise	within-group	variances	𝜎"M	follow	a	scaled	inverse	chi-square	distribution	with	
degrees	of	freedom	𝑑OP1QP,	and	scale	parameter	𝑠OP1QP,.	

𝜎"M ∼
𝑠OP1QP,M 𝑑OP1QP,
𝜒UVWXYWZ
M 	

limma’s	calculation	of	p-values,	both	normally	and	with	the	TREAT	method,	do	not	depend	
on	any	assumption	about	the	distribution	of	LFC.	limma’s	calculation	of	the	posterior	log-
odds	𝐵	statistic	does	make	such	assumptions,	specifically	that	there	are	a	set	of	genes	that	
are	not	differentially	expressed,	and	the	ratio	of	LFC	to	𝜎" 	for	the	differentially	expressed	
genes	follows	a	specific	distribution.	This	𝐵	statistic	is	not	used	here.	The	intent	of	this	
paper	is	to	move	from	the	dichotomous	mode	of	thinking	associated	with	𝑝-values	to	the	
estimation	mode	of	thinking	associated	with	effect	sizes	[4],	so	our	simulation	does	not	
assume	any	gene	has	precisely	zero	LFC.	However	in	a	typical	experiment	some	genes	are	
differentially	expressed	to	a	much	greater	extent	than	the	majority.	Therefore	we	use	a	

Gene3
Gene9
Gene5
Gene6
Gene2
Gene4
Gene8
Gene7
Gene1

S(0.75)

S(0.5)

S(0.25)
S(0)
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distribution	with	tails	following	a	power	law,	specifically	a	scaled	t-distribution	with	
𝑑\+1O++,	degrees	of	freedom	and	scaling	factor	𝑠\+1O++,.	

𝛽" ∼ 𝑠\+1O++,𝑡(𝑑\+1O++,)	

In	particular	the	values	used	for	the	simulation	were	𝑛*+,+ = 15000,	𝑛J+K = 2	to	10,	
𝑑OP1QP, = 2,	𝑠OP1QP, = 0.75,	𝑑\+1O++, = 3,	and	𝑠\+1O++, = 0.5.	Note	in	particular	that	𝑑OP1QP,	
has	been	chosen	to	be	extremely	small,	which	will	generate	a	highly	heteroscedastic	data-
set,	in	order	to	emphasize	differences	between	different	ways	of	ranking	genes.	Results	are	
averaged	over	100	runs	of	the	simulation.	

Eight	different	methods	of	ranking	genes	are	compared:	

(a)	Confect	ranking	at	FDR	0.05.	This	is	the	proposed	method,	with	a	reasonable	choice	of	
FDR.	

(b)	Confect	ranking	at	FDR	0.5.	This	is	an	unreasonably	high	FDR,	however	its	accuracy	as	a	
ranking	method	is	of	interest.	

(c)	Ranking	by	the	inner	end	of	a	95%	CI.	Where	the	CIs	span	zero,	genes	are	further	
ranked	by	limma	𝑝-value.	While	this	does	not	control	the	FDR,	its	accuracy	as	a	ranking	
method	is	of	interest.	

(d)	Ranking	by	the	inner	end	of	a	Bonferroni	corrected	CI	maintaining	a	FWER	of	5%.	
Where	the	CIs	span	zero,	genes	are	further	ranked	by	limma	p-value.	This	is	a	very	strict	
correction	for	multiple	testing.	

(e)	Ranking	by	TREAT	p-value	with	LFC	threshold	1.0.	While	not	a	general	ranking	by	LFC	
effect	size,	this	should	serve	to	distinguish	genes	having	LFC	magnitude	exceeding	1.0	from	
those	that	do	not.	

(f)	Ranking	by	TREAT	p-value	with	LFC	threshold	5.0.	

(g)	Ranking	by	limma	p-value	(i.e.	TREAT	LFC	threshold	0.0).	This	is	included	because	
differential	expression	software	often	outputs	genes	ranked	by	𝑝-value	as	the	default.	

(h)	Ranking	by	the	magnitude	of	the	LFC	estimated	by	limma.	If	the	noise	level	𝜎"M	was	
uniform	over	all	genes,	this	would	be	the	ideal	ranking	method.	The	ranking	methods	that	
perform	better	than	this	one	will	do	so	based	on	their	ability	to	adapt	to	heteroscedasticity.	

Evaluation with cancer data 
RNA-Seq	read	counts	for	genes	for	97	tumor-normal	pairs	from	The	Cancer	Genome	Atlas	
breast	cancer	dataset	were	obtained	from	Firebrowse	[13].	There	was	an	average	of	85	
million	reads	counted	per	sample.	The	edgeR	R	package	was	used	to	estimate	TMM-
adjusted	library	sizes	[14],	and	the	edgeR	function	cpm	was	then	used	to	convert	the	count	
data	to	logM	Reads	Per	Million	(RPM),	using	the	default	prior	count	of	

c
d
.	Genes	with	an	

average	log2	RPM	less	than	-4	were	excluded	from	further	analysis.	The	limma	R	package	
was	then	used	to	fit	linear	models	for	each	gene	suitable	for	performing	a	paired-samples	
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test	for	differential	expression	between	tumor	and	normal	samples	[12].	Empirical	Bayes	
variance	moderation	was	applied,	and	the	trend	option	was	used	to	allow	prior	variance	to	
follow	a	trend	line	based	on	average	expression	level.	The	method	described	above	was	
then	used	to	calculate	confect	values	and	rank	genes,	using	an	FDR	of	0.05.	

Gene-set enrichment 
In	order	to	better	understand	the	biological	processes	emphasized	by	different	methods	of	
ranking	genes,	R	package	fgsea	was	used	to	find	enriched	gene-sets	associated	with	Gene	
Ontology	(GO)	Biological	Process	terms	[15].	fgsea	implements	the	Gene	Set	Enrichment	
Analysis	(GSEA)	method,	in	particular	the	variant	of	the	method	for	a	pre-ranked	list	of	
genes	[16].	The	exponent	parameter	𝑝	is	set	to	0,	so	that	results	are	based	purely	on	the	
ranking,	and	not	any	associated	score.	The	effect	size	used	to	rank	gene-sets	was	the	
Normalized	Enrichment	Score	(NES)	produced	by	this	method.	A	p-value	testing	whether	
the	NES	is	non-zero	is	available	from	fgsea,	but	unfortunately	no	confidence	interval.	Gene-
sets	containing	between	15	and	2,000	genes	were	considered.	10,000	permutations	were	
used	when	calculating	p-values.	

Results 

Confect ranking out-performs alternative ranking methods in 
simulated data 
To	test	the	performance	of	the	confect	ranking	method	against	alternative	ranking	
methods,	we	generated	simulated	data-sets	with	between	2	and	10	replicates	per	group,	
with	parameters	as	described	in	the	methods	section.	The	parameters	were	chosen	to	
emphasize	differences	between	ranking	methods,	and	in	particular	the	within-group	
variance	has	been	made	to	vary	greatly	between	genes.	As	the	data	is	simulated,	the	true	
LFC	for	each	gene	and	the	correct	ranking	of	genes	by	magnitude	of	LFC	is	known,	and	
results	from	different	ranking	methods	may	be	compared	to	this	true	ranking.	The	
percentage	correct	genes	in	the	top	20,	100,	and	500	genes	were	calculated	(Figure	2).	

Confect	ranking	at	FDR	0.05	(a)	performs	well,	although	for	experiments	with	small	
numbers	of	replicates	this	is	due	to	falling	back	to	ranking	by	the	𝑝-value	for	the	gene	
having	non-zero	LFC	(shown	as	a	grey	bar	in	Figure	2).	Confect	ranking	at	FDR	0.5	(b)	also	
performs	well	and	without	any	fallback,	however	the	confect	values	produced	here	would	
not	be	trustworthy	for	anything	other	than	a	method	of	ranking,	as	up	to	50%	of	the	
confidence	bounds	within	a	set	of	top	genes	may	be	incorrect.	

Interestingly,	the	naive	method	of	ranking	based	on	the	inner	end	of	a	CI	(c)	also	performed	
well,	although	performing	worse	than	confect	ranking	with	a	very	small	number	of	
replicates.	The	inner	end	of	a	FWER	corrected	CI	(d)	performed	worse	than	confect	ranking	
for	larger	numbers	of	replicates	when	looking	for	the	top	100	or	500	genes.	

TREAT	𝑝-value	based	ranking	(e,	f)	may	be	tuned	to	perform	well	when	finding	a	certain	
number	of	top	genes,	but	is	not	a	good	general	ranking	scheme.	This	is	as	expected.	The	
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point	of	the	confect	value	calculation	is	to	modify	the	presentation	of	TREAT	results	to	
correct	this	shortcoming.	

Although	it	is	probably	the	most	common	approach	to	the	analysis	of	differential	gene	
expression,	𝑝-value	based	ranking	(g)	did	not	perform	well	in	this	simulation,	nor	should	it	
be	expected	to	as	𝑝-values	are	not	an	indication	of	LFC	effect	size.	The	estimated	LFC	(h)	
performed	worst	in	this	simulation.	This	is	because	some	genes	with	very	high	within-
group	variability	will	have	randomly	had	a	large	estimated	LFC,	displacing	the	genes	with	
truly	large	LFC.	

	

	

	

	

	

Figure	2.	Results	of	simulation,	showing	proportion	of	top	genes	correct	by	various	ranking	
methods	in	the	top	20,	50,	and	500	genes.	Where	genes	were	correct	only	because	the	ranking	
method	fell	back	to	ranking	by	limma	𝑝-value,	this	is	shown	in	grey.		
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In a cancer data-set, sorting by confident effect size rather than p-
value highlights different biological pathways 
To	understand	how	ranking	by	confect	rather	than	𝑝-value	impacts	the	interpretation	of	
real	experimental	data,	we	turned	to	tumor-normal	comparisons	of	breast	cancer	patients	
within	the	TCGA.	With	this	breast	cancer	data-set,	limma	assigns	a	low	prior	degrees	of	
freedom	of	3.4,	indicating	a	high	degree	of	heteroscedasticity:	different	genes	have	very	
different	levels	of	variability.	The	variance	moderation	applied	here	by	limma	is	minor	in	
relation	to	the	96	residual	degrees	of	freedom.	

Of	the	17,426	genes	tested,	13,416	are	found	to	be	differentially	expressed	at	FDR	0.05	
(this	also	means	13,416	genes	are	given	a	confect	value	at	FDR	0.05).	Such	a	large	list	is	of	
little	use	to	a	biologist	prioritizing	genes	for	further	investigation.	Therefore	we	compared	
the	top	20	genes	ranked	by	confect	at	FDR	0.05	(Figure	3)	and	the	top	20	genes	ranked	by	
limma	𝑝-value	(Figure	4).	The	full	rankings	are	included	in	supplemental	files.	The	facetted	
plots	to	the	right	of	the	main	listing	in	these	figures	show	the	raw	data	for	each	gene.	The	
two	methods	of	ranking	have	highlighted	very	different	patterns	of	gene	expression.	
Ranking	by	confect,	the	top	genes	have	large	LFC.	The	variability	in	LFC	between	patients	is	
high	in	these	genes,	however	the	confect	values	are	also	large,	giving	confidence	that	the	
population	average	LFC	is	truly	large.	Note	that	sets	of	genes	at	the	top	of	the	confect	
ranking	can	be	obtained	using	the	TREAT	method	directly.	For	example,	the	top	10	genes	
would	be	obtained	using	TREAT	with	an	LFC	threshold	of	5.02	(the	absolute	confect	value	
for	the	10th	gene	in	the	ranking).	However,	arriving	at	this	threshold	without	using	confect	
values	would	require	trial	and	error.	

Examining	the	ranking	by	𝑝-value,	the	top	genes	may	have	smaller	average	LFCs	if	the	LFC	
also	has	smaller	variability	between	patients.	Examples	of	such	genes	are	NEK2	and	KIF4A,	
both	involved	in	chromosome	segregation	for	cell	division.	
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Figure	3.	Top	20	genes	by	confect	ranking	of	the	breast	cancer	data-set	at	FDR	0.05.	For	each	
gene,	the	dot	shows	the	estimated	LFC	and	the	line	shows	the	"confect"	confidence	bound.	To	
the	right,	normal	and	tumor	expression	levels	for	all	patients	are	shown	for	each	listed	gene.	

	

	

	

Figure	4.	Top	20	genes	by	limma	p-value	based	ranking	of	the	breast	cancer	data-set.	p-values	
shown	are	FDR	adjusted.	
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Gene-set	enrichment	was	searched	for	using	the	R	package	fgsea.	There	were	5,058	GO	
Biological	Process	gene-sets	available	with	between	15	and	2,000	genes.	At	FDR	0.05,	482	
of	these	gene-sets	are	significantly	enriched	when	ranking	genes	by	𝑝-value,	and	1,336	are	
significantly	enriched	when	ranking	by	confect.	This	is	too	many	gene-sets	to	reasonably	
examine,	so	the	Normalized	Enrichment	Score	effect	size	was	used	to	find	the	top	enriched	
gene-sets.	Table	1	shows	the	top	10	enriched	gene-sets	for	both	ranking	methods.	For	the	
𝑝-value	ranking,	the	emphasis	is	on	processes	associated	with	cell	division	as	can	be	
expected	for	oncological	cell	transformation.	For	the	confect	ranking	however,	a	variety	of	
biological	processes	are	found	at	the	top	of	the	list,	including	cell	adhesion	and	blood	vessel	
development	suggestive	of	the	tumor	micro-environment.	Also	notable	is	the	presence	of	
genes	involved	in	the	extra-cellular	matrix	in	the	top	20	genes,	including	two	collagen	
(COL10A1,	COL11A1)	and	three	matrix	metalloproteinase	genes	(MMP13,	MMP11,	MMP1).	
Only	two	of	these	are	seen	in	the	top	20-genes	by	𝑝-value.	

	

Table	1.	Top	enriched	GO	Biological	Process	gene-sets	by	NES,	based	on	𝑝-value	and	confect	
rankings.	Columns	“Up”	and	“Down”	are	the	percent	significantly	up-	and	down-regulated	
genes	in	the	cancer	samples	at	FDR	0.05.	

Ranking	
method	 GO	term	 Description	 NES	 Genes	 Up	 Down	
𝑝-value	 GO:0007059	 chromosome	segregation	 4.47	 327	 61%	 24%	
	 GO:0000819	 sister	chromatid	segregation	 4.36	 222	 65%	 21%	
	 GO:0051301	 cell	division	 4.35	 550	 53%	 31%	
	 GO:0098813	 nuclear	chromosome	segregation	 4.18	 280	 61%	 25%	
	 GO:0000070	 mitotic	sister	chromatid	segregation	 3.95	 139	 63%	 22%	
	 GO:1903047	 mitotic	cell	cycle	process	 3.84	 795	 53%	 29%	
	 GO:0022402	 cell	cycle	process	 3.78	 1237	 50%	 32%	
	 GO:0007049	 cell	cycle	 3.65	 1718	 47%	 34%	
	 GO:0071417	 cellular	response	to	organonitrogen	

compound	
3.60	 483	 34%	 49%	

	 GO:1901700	 response	to	oxygen-containing	compound	 3.59	 1379	 34%	 46%	
Confect	 GO:0003008	 system	process	 6.18	 1366	 23%	 55%	
	 GO:0009888	 tissue	development	 5.43	 1579	 34%	 45%	
	 GO:0022610	 biological	adhesion	 5.12	 1276	 33%	 48%	
	 GO:0007155	 cell	adhesion	 5.10	 1270	 33%	 48%	
	 GO:0001944	 vasculature	development	 5.07	 588	 26%	 54%	
	 GO:0072358	 cardiovascular	system	development	 5.06	 596	 26%	 54%	
	 GO:0001568	 blood	vessel	development	 5.05	 563	 27%	 53%	
	 GO:0009887	 animal	organ	morphogenesis	 5.01	 882	 33%	 48%	
	 GO:0007186	 G-protein	coupled	receptor	signaling	pathway	 5.01	 718	 25%	 55%	
	 GO:0007267	 cell-cell	signaling	 5.00	 1371	 32%	 48%	
	 	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/343145doi: bioRxiv preprint 

https://doi.org/10.1101/343145
http://creativecommons.org/licenses/by-nd/4.0/


Few	biological	experiments	contain	the	very	large	number	of	samples	present	in	consortia	
data	such	as	the	TCGA.	A	smaller	data-set	may	be	simulated	by	taking	a	random	subset	of	
patients.	Results	using	a	random	subset	of	10	patients	are	shown	in	Figure	5.	For	the	top	
ranked	genes,	the	confect	values	are	a	much	smaller	fraction	of	the	effect	sizes	than	with	
the	full	data-set.	Not	all	of	the	genes	with	large	effect	sizes	found	in	the	full	data-set	are	
near	the	top	of	the	list	in	this	subset,	and	some	genes	with	smaller	effect	sizes	have	been	
“lucky”	and	are	highly	ranked,	such	as	SFRP1	(jumping	from	53rd	in	the	full	data-set	to	6th	
in	the	subset).	“Luck”	of	this	kind	is	inevitable	in	a	small	data-set	with	this	level	of	
heteroscedasticity,	and	the	small	confect	values	warn	that	this	is	occurring.	Similarly,	by	
conventional	𝑝-value	based	differential	expression	analysis,	genes	in	an	underpowered	
experiment	would	need	a	combination	of	a	large	effect	size	and	a	certain	amount	of	“luck”	
to	be	declared	significantly	DE.	Also	note	that	if	TREAT	were	being	used	directly,	the	LFC	
threshold	would	need	to	be	adjusted	between	the	full	dataset	and	the	subset	in	order	to	
obtain	a	set	of	genes	of	reasonable	size.	The	LFC	threshold	in	TREAT	may	be	viewed	as	a	
threshold	on	the	confidence	bound	and	not	the	effect	size	itself,	and	hence	needs	to	be	
adjusted	to	suit	the	size	of	the	experiment.	The	confect	ranking	method	removes	this	need	
for	parameter	adjustment.	

	

	

	

Figure	5.	Top	20	genes	by	confect	ranking	of	the	breast	cancer	dataset	at	FDR	0.05,	using	only	
10	patients'	data.	

	 	

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Effect
(LFC)

 6.74
 5.44
 5.79
 7.05
−3.36
−3.90
−4.03
 5.16
 6.85
 4.57
 6.80
 6.26
−3.35
−5.82
 4.50
−3.73
 6.22
−4.08
−3.86
 5.37

Confect

>
>
>
>
<
<
<
>
>
>
>
>
<
<
>
<
>
<
<
>

 1.98
 1.98
 1.98
 1.98
−1.92
−1.92
−1.92
 1.92
 1.92
 1.85
 1.82
 1.82
−1.82
−1.82
 1.82
−1.82
 1.81
−1.80
−1.78
 1.78

MMP11
COMP

LOC283867
COL10A1

HLF
SFRP1
SYNM

COL11A1
MMP13
WISP1

SLC24A2
PPAPDC1A

DMD
ANGPTL7

CCL11
MAPK4
PLAC1
NRXN1
NTRK2

HIST1H2AM

−8−6−4−2 0 2 4 6 8
Effect (LFC)

●

●
●
●

●
●

●
●●

●

●●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●● ●
●

● ●●
●

●

●

●

●

●

● ●

●
●●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●
●

●

● ●●
●

●

●

●

●
●
●

●
●

●
●

●●

●

●

●

●●●●●

●●

●
●

●

●

●
●

●●

●

●

●●
●●

●

●●

●

●
●

●

●●●

●
●

●

●

●

●
●

●

●
● ●●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●

●
●

● ●●

●

●

●
●●

●

●
●

●●
●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

● ●●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
● ●● ●●●

●

●
●●●

●

●
●

●

●

●

●

●
●

●
●●●
●

●

●●

●
●

●

●
●

●

●

●●

●

●

●●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●●●

●

●
●●

●

●

● ●
●

●

●

●●
●

●
● ●●●●●

●
●

●●

●
●

●

●

●
●

●
●

●
●●

●●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

● ●

● ●●

●

●

●

●
●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●●● ●
●

●

●

●●

●

●

●
●

●
●

●●●
●●

●
● ●

●

●
● ●

●

●●
●

● ●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●●●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●●●
●●

●●

●

●●
● ●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●●
●●
●●

● ●
●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●●
●

●
●

●

● ●●●
●
●

●
●

●●
●
●●

●

● ●

● ●
●●

●
●

●
●

●

●

●

●

● ●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●●

●
●

●
● ●

●

●

●

●

●
●

●

●

●

● ●● ●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●●

●●●●
●

●

●●

●

●● ●●

●

●

●●

●
●

●
●

●

●●

●●

●

●●
●

●
●

●●

●

●

●
●

●
●●

●
●●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●●● ●●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●●●

●● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●

●

●
●

●●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●
●

●

●●
●● ●●●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●●

●

●●

●

● ●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

● ●
●●
●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●

●

●
●

● ●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●
●

●

●●
●

●

●
●

●
●

●●

●
●● ●
●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●
●

●

●
●

●
●●

●
●

● ●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

● ●
●

●●

●

●

●

●

●●

●
● ●

●

●

●
●

●●

●●

●

●

●

●
●

●
●●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●●●

●

●●

●

●

●

●

●
●
●

●
●

●

●
●

●● ●
●
●

●●●
●
●

●

●

●
●

●

●

●

●●

●

●
●
●●

●●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●
●
● ●

●

●
●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●

●

●● ●
●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●

●

●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●

●

●
● ●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

● ●●

●

●
●●

●
●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

● ● ●

●

● ●

●
●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●
●

●
●

●
●

● ●

●

● ●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●
●

PLAC1 NRXN1 NTRK2 HIST1H2AM

DMD ANGPTL7 CCL11 MAPK4

MMP13 WISP1 SLC24A2 PPAPDC1A

HLF SFRP1 SYNM COL11A1

MMP11 COMP LOC283867 COL10A1

−50 5 10 −50 5 10 −50 5 10 −50 5 10

−5
0
5

10

−5
0
5

10

−5
0
5

10

−5
0
5

10

−5
0
5

10

Normal (log2 RPM)

Tu
m

or
 (l

og
2 R

PM
)

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/343145doi: bioRxiv preprint 

https://doi.org/10.1101/343145
http://creativecommons.org/licenses/by-nd/4.0/


Discussion 
The	effect	size	used	here	was	the	LFC,	with	the	intention	of	finding	changes	in	expression	
with	a	large	biological	effect.	The	confect	ranking	method	identifies	genes	with	confidently	
large	LFC.	This	places	all	genes	on	the	same	scale,	and	this	scale	has	meaningful	units	of	
log2	fold	change.	

Can	a	case	for	using	p-values	as	an	effect	size	be	made?	What	follows	is	an	attempt.	In	fields	
such	as	psychology	where	the	thing	being	measured	may	not	have	a	scale	with	meaningful	
units,	or	where	there	may	be	a	number	of	different	scales	on	which	something	may	be	
measured,	standardized	effect	sizes	are	used.	Cohen's	𝑑	is	one	such	standardized	effect	
size.	Cohen's	𝑑	is	the	ratio	of	an	effect	size	to	some	appropriate	standard	deviation	(several	
choices	are	possible	[4,	17]).	Applied	to	differential	gene	expression,	a	problem	is	that	each	
gene	has	its	own	standard	deviation	and	is	therefore	effectively	placed	on	a	different	scale,	
but	a	situation	where	comparing	Cohen's	𝑑	between	genes	might	be	appropriate	would	be	
to	identify	reliable	prognostic	biomarkers,	where	the	interest	is	in	genes	for	which	the	
signal	exceeds	the	background	noise	level.	Leaving	aside	the	use	of	variance	moderation	in	
limma,	and	when	the	standard	deviation	used	is	the	residual	standard	deviation	of	the	
linear	model	used,	Cohen’s	𝑑	is	proportional	to	the	𝑡	statistic,	and	𝑝	is	a	monotonic	function	
of	|𝑡|,	so	p-values	can	serve	as	a	kind	of	standardized	effect	size,	albeit	one	that	is	not	
comparable	between	experiments.	While	the	p-values	shown	in	Figure	4	are	meaninglessly	
small	when	considered	as	p-values,	they	may	have	some	meaning	when	considered	in	this	
way.	

In	the	breast	cancer	data-set,	it	was	seen	that	different	ranking	methods	lead	to	an	
emphasis	on	different	biological	processes,	both	in	the	top	ranked	genes	and	in	
downstream	gene-set	enrichment	analysis.	The	difference	may	be	largely	explained	by	the	
difference	in	ranking	between	Cohen’s	𝑑	and	LFC	effect	sizes.	The	common	practice	of	
using	the	𝑡	statistic	for	gene-set	enrichment	tests	is	effectively	a	choice	to	use	Cohen’s	𝑑,	as	
discussed	above.	

limma’s	TREAT	method	was	used	here	as	the	basis	of	the	confect	calculation.	The	TREAT	
method	has	been	extended	to	negative	binomial	Generalized	Linear	Models	(GLMs)	and	
Quasi-Likelihood	models	in	the	edgeR	R	package’s	glmTreat	function,	specifically	the	
worst.case	mode	[18].	The	DESeq2	R	package	[19]	also	provides	a	test	relative	to	a	
threshold	for	negative	binomial	GLMs,	which	could	serve	as	a	basis	for	the	confect	
calculation.	

It	was	noted	in	the	methods	section	that	a	number	of	genes	may	fall	out	of	𝑆(𝑒)	
simultaneously	as	𝑒	increases.	This	may	lead	to	several	genes	being	given	an	identical	|𝑐"|	
value,	in	which	case	they	should	ideally	be	included	or	excluded	from	further	investigation	
as	a	group.	While	this	is	an	odd	feature	of	confect	values,	it	is	no	stranger	than	the	current	
practice	of	FDR-adjusting	p-values.	This	may	similarly	produce	a	number	of	genes	with	
identical	adjusted	p-values,	despite	having	distinct	unadjusted	p-values.	This	is	not	an	error	
but	a	feature	of	the	adjustment,	and	again	these	should	be	included	or	excluded	as	a	group.	
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Conclusions 
The	confect	ranking	method	described	here	makes	best	use	of	any	amount	and	quality	of	
data.	There	is	only	one	parameter,	the	desired	FDR,	for	which	a	sensible	default	can	be	
given.	The	resulting	confect	quantities	are	used	in	a	similar	way	to	FDR	adjusted	𝑝-values	
to	select	a	set	of	genes	of	interest,	and	have	some	similar	properties.	However,	confect	
values	are	in	the	same	units	as	the	effect	size	(here	LFC),	making	them	easier	to	interpret.	
Comparing	confect	values	to	estimated	LFC	values	provides	feedback	on	whether	or	not	an	
experiment	was	under-powered.	The	common	practice	of	performing	an	ad-hoc	filtering	
step	by	estimated	LFC	is	no	longer	necessary,	and	compared	to	TREAT,	which	provides	a	
more	principled	method	of	filtering	by	LFC,	even	the	need	to	provide	a	threshold	is	
removed.	Overall,	this	method	of	differential	expression	analysis	has	improved	usability,	
with	less	expertise	required	in	the	choice	of	parameters	and	in	interpretation.	
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