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ABSTRACT 
Flavin adenine dinucleotide (FAD) and its 
precursor flavin mononucleotide (FMN) are 
redox cofactors that are required for the activity 
of more than hundred human enzymes. 
Mutations in the genes encoding these proteins 
cause severe phenotypes, including a lack of 
energy supply and accumulation of toxic 
intermediates. Ideally, patients should be 
diagnosed before they show symptoms so that 
treatment and/or preventive care can start 
immediately. This can be achieved by 
standardized newborn screening tests. However, 
many of the flavin-related diseases lack 
appropriate biomarker profiles. Genome-scale 
metabolic models can aid in biomarker research 
by predicting altered profiles of potential 
biomarkers. Unfortunately, current models, 
including the most recent human metabolic 
reconstructions Recon and HMR, typically treat 
enzyme-bound flavins incorrectly as free 
metabolites. This in turn leads to artificial 
degrees of freedom in pathways that are strictly 
coupled. Here, we present a reconstruction of 
human metabolism with a curated and extended 
flavoproteome. To illustrate the functional 
consequences, we show that simulations with the 
curated model – unlike simulations with earlier 
Recon versions - correctly predict the metabolic 
impact of multiple-acyl-CoA-dehydrogenase 
deficiency as well as of systemic flavin-

depletion. Moreover, simulations with the new 
model allowed us to identify a larger number of 
biomarkers in flavoproteome-related diseases, 
without loss of accuracy. We conclude that 
adequate inclusion of cofactors in constraint-
based modelling contributes to higher precision 
in computational predictions. 
 
Keywords: FAD, FMN, flavoprotein, inborn 
errors of metabolism, human genome-scale 
reconstruction, constraint-based modelling  
 
 
1. Introduction 
 
In the past decade, systems biology modelling 
has become indispensable to explore the 
behaviour of metabolic networks and gain 
insight into their response to disease mutations. 
Genome-scale models of metabolism comprise 
the entire set of biochemical reactions known to 
exist in an organism or cell type of interest (as 
described in depth in [1]). These models 
represent the metabolic potential of living 
systems and provide a comprehensive 
framework to understand metabolism. Genome-
scale models integrate biochemical and 
genotypic data and enable efficient exploration 
of associations between genotypes and 
phenotypes, and mechanisms of 
(patho)physiology [2]. The most recent 
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consensus and generic human metabolic 
reconstructions are Recon 2.2 [3],  Recon 3D 
[4], and HMR 2.0 [5]. Both are comprehensive 
models aiming to describe all known metabolic 
reactions within the human body. 
Genome-scale constraint-based models contain 
mass-balanced chemical equations for each 
metabolic reaction in a specific cell type or 
organism [6]. Classically, neither enzyme 
kinetics nor enzyme concentration are accounted 
for in this approach [7]. The recently published 
GECKO method [8] for yeast models, which 
links enzyme abundances with reaction fluxes 
addresses this issue. Similarly, Shlomi et al. [9] 
successfully studied the Warburg effect in 
human genome-scale model by taking an 
enzyme solvent capacity into consideration. 
However, general incorporation of enzyme 
concentrations and kinetics in human models 
remains to be addressed. Consequently, taking 
enzyme-bound cofactors into account remains a 
challenge.  
Cofactors are molecular compounds required for 
the enzyme’s biological activity. Chemically, 
they can be divided into two groups: inorganic 
ions that are taken up by the cell from the 
environment, and more complex organic or 
metalloorganic molecules – also called 
coenzymes - which are (partly) synthesized in 
the cell. The latter are often derived from 
vitamins and organic nutrients and their 
biosynthesis pathways must be covered by 
genome-scale models.  
The flavins FAD and FMN are redox cofactors 
required for the activity of 111 human enzymes, 
52 of which are known to cause human diseases 
if inactive [10]. In human cells, flavins are 
synthesized from their precursor riboflavine, 
also known as vitamin B2. Flavins exist in three 
different redox states, namely a quinone, 
semiquinone and hydroquinone state. Unlike 
nicotinamide adenine dinucleotide (NAD) which 
diffuses freely between enzymes, flavins are 
bound to enzymes [11]. Enzymes that require 
bound FAD or FMN for their enzyme activity 
are called flavoproteins.  
A classical flavoprotein-dependent disease is 
multiple-acyl-CoA-dehydrogenase deficiency 
(MADD), also known as glutaric aciduria type 
II. It is caused by a defect in one of the electron 
transfer flavoproteins (encoded by ETFA or 
ETFB genes) or in the ‘electron transfer 
flavoprotein ubiquinone oxidoreductase’ (ETF-
QO, encoded by ETFDH gene) [12]. These 

FAD-containing enzymes are crucial to link both 
mitochondrial fatty acid oxidation (mFAO) and 
amino acid metabolism (mostly that of sarcosine 
and dimethylglycine) to the mitochondrial 
respiratory chain. Depending on the residual 
ETF or ETF-QO activity, MADD may lead to a 
life-threatening lack of energy supply to the 
body, with episodes of severe metabolic 
decompensation, hypoglycaemia, metabolic 
acidosis, sarcosinemia and cardiovascular 
failure. The available treatment consists of low-
fat, low-protein and high-carbohydrate diet with 
riboflavin, glycine and L-carnitine 
supplementation. However, this treatment is not 
effective for neonatal patients [13] for whom 
experimental treatment with sodium-D,L-3-
hydroxybutyrate showed promising results [14]. 
To screen for and diagnose diseases, as well as 
provide a prognosis for disease severity and 
treatment outcome, biomarkers are used. 
According to the NIH definition, a biomarker is 
“a biological molecule found in blood, other 
body fluids, or tissues that is a sign of a normal 
or abnormal process, or of a condition or 
disease” [15]. They are measured routinely in a 
non-invasive manner in plasma, urine or faeces 
[16]. Several inborn errors of metabolism (IEM) 
have their metabolic phenotypes characterized 
[17]. However, for many diseases no known 
biomarker profile exists [18] or their sensitivity 
is low causing some patients to be wrongly 
diagnosed in the screening process [19]. 
Additionally, clinical presentations of IEM are 
often non-specific and are described as a 
spectrum rather than a clear one gene – one 
phenotype – one disease relation. This further 
justifies the search for more sensitive and 
accurate biomarkers.  Systems biology 
approaches have already been proven to aid in 
such research by revealing known and novel 
biomarkers of several IEMs  [17,20–23]. Human 
genome-scale models, Recon 2 and HMR 2, can 
be used to identify biomarkers from altered 
patterns of metabolites taken up or excreted by 
tissues [24]. These models typically treat flavins 
and other enzyme-bound cofactors as free-
floating metabolites, as seen on a Fig. 1A and B 
[5,23]. This allows enzymes to inadvertently 
oxidize or reduce flavin molecules that are in 
reality confined to another enzyme. In the 
models, this leads to artificial uncoupling of 
pathways. Such an artefact is seen clearly in the 
case of MADD where electrons from mFAO 
should be coupled to the oxidative 
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phosphorylation system by the ETF/ETF-QO 
proteins (Fig. 1C). In the current models, 
however, FADH produced from mFAO can also 
be re-oxidized via other pathways: by reversal of 
the mitochondrial succinate dehydrogenase 
reaction as well as an artificial reaction that 
represents triglycerides synthesis (Fig. 1B, 
model Recon2.2). Another artefact in Recon2.2, 
but not HMR 2, is that flavin biosynthesis is not 
explicitly required due to the presence of an 
FAD uptake reaction in the model. Finally, the 
current description of the flavoprotein-related 
reactions is inconsistent, using sometimes free 
FAD and sometimes the final electron acceptor. 
Sometimes both options occur in parallel if the 
same biochemical reaction occurs twice in the 
model, due to inconsistencies in metabolite 
naming. Therefore, the effects of defects 
associated with FAD biosynthesis or 
flavoproteins could not, until now, be accounted 
for by genome-scale constraint-based models. 
Furthermore FMN is not used as an electron 
acceptor in the current reconstruction, but only 
as an intermediate metabolite in the FAD 
synthesis. 
The aim of this study is to explore the 
physiological effects of flavin-related 
enzymopathies and to identify candidates for 
biomarkers. To this end, we modified Recon2.2 
to correctly represent flavins as bound cofactors 
and we introduced a novel simulation approach 
that enables studies of cofactor scarcity in 
mammalian models. Moreover, we analysed 
metabolic disturbances for 38 flavin-related 
diseases, for which genes were included in the 
metabolic reconstruction. For 16 of them, which 
are known to affect the core metabolism, we 
additionally analysed their ATP production 
capacity from different carbon sources, showing 
metabolic blockages in line with the current 
knowledge about these diseases and their 
biomarkers.  
 
2. Materials and Methods 
 
2.1. Genome-scale constraint-based modelling  
 
As described earlier [23] metabolic and transport 
reactions are summarized in an m x n 
stoichiometric matrix S, that contains the 
stoichiometric coefficient of each of the m 
metabolites in each of the n reactions described 
by the model.  Gene–protein-reaction 
associations use Boolean rules (“and” or “or” 

relationships) to describe the protein 
requirement of each reaction.  
At steady state, metabolite consumption and 
production in equilibrium and therefore b equals 
of vector of length m with zeros in the following 
equation: 

S·v = b 
with v a vector of length of n and vi representing 
the flux through reaction i. Reaction (ir-) 
reversibility is introduced as constraints limiting 
minimal and maximal flux values: 

li ≤ vi ≤ ui   for i ∈ {1, …, n}. 
 

2.2. Model curation 
 
We started from Recon 2.2 [3] obtained from the 
Biomodels database 
(http://identifiers.org/biomodels.db/MODEL16
03150001). Flavoprotein-related reactions were 
identified and manually curated based on a 
review by Lienhart at al. [10] as well as 
information available in the public databases: 
KEGG, NCBI Gene and OMIM. Additionally, 
several rounds of manual curation revealed 
inconsistencies in directionality of reactions of 
fatty-acyl CoA ligase, reactions participating in 
the mitochondrial transport of fatty-acyl 
carnitines, peroxisomal fatty-acid oxidation and 
fatty acid synthesis, which were corrected. 
Missing reactions in the fatty-acid synthesis 
pathway were added. Subsequently, invalid or 
duplicated reactions were removed from the 
model. The curated model was saved as 
Recon2.2_FAD. For detailed information on all 
the changes and the underlying documentation, 
see Supplementary Table 2.  
Similarly, we performed a manual curation of 
FAD-related reactions in Recon 3D model 
available at (https://vmh.uni.lu). We identified 
all reactions dependent on flavoproteins and 
manually replaced the FAD and FADH2 with the 
final electron acceptor (Table S4), creating 
Recon3D_FAD model.  
 
 
2.3. Model constraints 
 
In simulations of MADD and FAD deficiency, 
the minimum required flux through the 
‘biomass_reaction’ was set to 0.1 mmol·gDW-

1·hr-1, to mimic the basic cell maintenance 
(protein synthesis, DNA and RNA synthesis 
etc.), unless stated otherwise, as in [25]. Other 
constraints used only in specific simulations are 
indicated where applicable. No changes to the 
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model boundaries were made, unless stated 
otherwise.  
 
2.4. MADD simulations 
 
Multiple acyl-dehydrogenase deficiency was 
simulated as a single gene deletion (ETFDH, 
HGNC:3483), and the solution space of the 
models was sampled with the optGpSampler 
with 10000 points explored and distance of 2000 
steps [26]. Additionally, uptake of common 
carbon_sources (glucose, fructose, C4:0, C6:0, 
C8:0, C10:0, C12:0 C14:0. C16:0, C18:0, C20:0, 
C22:0, C24:0, C26:0, alanine, arginine, 
asparagine, aspartic acid, cysteine, glutamine, 
glutaric acid, glycine, histidine, isoleucine, 
lysine, methionine, phenylalanine, proline, 
serine, threonine, tryptophan, tyrosine, valine, 
sarcosine) was set to -1 mmol·gDW-1·hr-1. 
 
2.5. FAD limitation 
 
To study the metabolic response to flavin 
deficiency we adapted parsimonious FBA [27] 
to mimic the resource re-allocation among 
cofactor requiring enzymes upon cofactor 
scarcity. Furthermore, we linked cofactor 
requirement and cofactor biogenesis in an 
approach similar to the method introduced by 
Beste et al [28]. In short, flavin-related reactions 
were identified using their GPR annotation (with 
respect to the Boolean relationship – only 
reactions for which the flavoprotein is essential 
were selected), split to two irreversible reactions 
for each direction and an artificial metabolite 
‘cofactor_FAD’ was added to be consumed by 
each of them with an very low (0.000002) 
stoichiometric coefficient based on an average 
human proteome life-time[29] and an average kcat 
value[30]. Biogenesis of the cofactor was linked 
to the artificial ‘cofactor_FAD’ through the 
artificial reaction ‘FADisCofactor’. Adjusting 
the boundaries of FADisCofactor reaction or 
reducing the flux of FAD biogenesis pathway 
allowed us to independently study flavin 
shortage effects linked to i) FAD biosynthesis 
impairments, ii) enzymatic mutations hampering 
cofactor binding or iii) defects in cofactor 
dissociation and transfer in protein dimers. 
Cofactor limitation was obtained by constraining 
the flux of the FMN adenyltransferase (FLAT1) 
reaction. The solution space for the control 
model and FAD deficiency model was sampled 
using optGpSampler with 10000 points explored 
and distance of 2000 steps [26]. 

 
2.6. Calculation of maximum ATP yield per 
carbon source 
 
To calculate the maximum ATP yield per carbon 
source we adapted the method developed by 
Swainston et al [3]. All model boundaries for 
uptake of nutrients were set to 0 except for a set 
of compounds defined collectively as a minimal 
medium (Ca2+, Cl-, Fe2+, Fe3+, H+, H2O, K+, Na+, NH4 
SO4

2-, Pi) for which the boundaries of uptake and 
export fluxes were set to -1000 and 1000 
mmol×gDW-1×h-1. Additionally, lower bounds of 
EX_ribflv(e) were set to -1000 – to simulate 
riboflavin addition to the minimal medium since 
the Recon 2.2_flavo model depended on this 
vitamin to synthesize FAD. For each of the 
specified carbon sources, the uptake flux was set 
to -1 mmol×gDW-1×h-1 forcing the model to 
consume it at a fixed rate. The demand reaction 
for ATP, ‘DM_atp_c_' is used to account for 
cellular maintenance requirements.  It was used 
as an objective function for flux maximization. 
Under aerobic conditions the possible intake flux 
of oxygen was set to -1000 mmol×gDW-1×h-1 by 
changing the lower bound of the corresponding 
exchange reaction, EX_o2(e). 
 
2.7. Analysis of biomarkers for inborn errors of 
metabolism 
 
Inborn errors of metabolism and known genes 
mutated in these IEMs were retrieved from the 
OMIM database (34, https://www.omim.org). 
GPR associations in the model were used to 
identify affected reactions and they were 
subsequently removed from the model for the 
simulation of the corresponding disease. 
Maximum ATP yield was calculated for a set of 
carbon sources linked to known biomarkers, as 
described above. Changes in the maximum ATP 
yields between the diseased model and its 
healthy counterpart were compared to reported 
biomarkers [32]. 
Secondly, a method described originally by 
Shlomi et al. [24] and modified by Sahoo et al. 
[33] was used to screen for potential biomarkers. 
In short, the min and max values of each 
exchange reaction were calculated in disease or 
healthy models. In the disease models a gene 
knock-out was simulated by simultaneously 
blocking all reactions associated with the tested 
gene. In the healthy models all reactions 
associated with the tested gene were 
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simultaneously activated. Min-max intervals 
were then compared to test if the flux range 
would yield a higher or lower exchange reaction 
flux, and as the result, would lead to increased or 
decreased concentrations of a studied metabolite 
in the bodily fluids (blood/plasma, urine).  
A list of tested single enzyme deficiencies 
together with their respective objective functions 
and biomarkers has been provided (See Table S3 
[Known biomarkers & diseases]).  
 
2.8. Software 
 
Model curation and all simulations were carried 
out with MatLab R2015a (MathWorks Inc., 
Natick, MA) using the Gurobi5.6 (Gurobi 
Optimization Inc., Houston TX) linear 
programming solver and the COBRA toolbox 
[34]. For FVA analysis GLPK 4.63 (GNU 
Linear Programming Kit, 
https://www.gnu.org/software/glpk/) solver was 
used. Data analysis was performed using 
MatLab R2015a. All supplementary files, 
models, and scripts can be found at 
https://github.com/WegrzynAB/Papers . 
 
3. Results 
 
3.2. A new representation of flavoprotein 
biochemistry 
 
We started by manually curating the existing 
Recon 2.2 model to improve the simulation of 
flavin dependent reactions. We assembled a list 
of 111 flavoproteins (Table S1 [Flavoproteins]). 
The genes encoding 62 of these proteins were 
already present in Recon 2.2 and they were 
associated with 378 reactions. First, the gene-
protein-reaction (GPR) associations in the 
selected reactions were examined. Wrongly 
annotated genes were corrected. In the 
mitochondrial and peroxisomal beta-oxidation 
pathways, many GPR associations were 
extended to account for complete oxidation of 
fatty acids. Secondly, the directionalities of 
fatty-acyl CoA ligases, reactions participating in 
the mitochondrial transport of fatty-acid-
carnitines, and fatty acid synthesis reactions 
were checked, and inconsistencies were 
corrected. Lastly, missing reactions in 
unsaturated fatty acid synthesis and peroxisomal 
beta-oxidation were added. Altogether 548 
reactions were corrected, 31 were added, and 49 
reactions were deleted from the model (Table 
S2). In the original Recon 2.2 model FAD was 

represented as a free metabolite similar to 
NADH (Fig 1A, top). This approach artificially 
generated a pool of free FAD, while 
physiologically FAD is a part of an active 
holoenzyme rather than a free metabolite. Thus, 
systemic effects of flavoprotein deficiencies 
could not be properly accounted for. We have 
changed the model to more precisely describe 
the cofactor dependency of these reactions. To 
this end, FAD has first been removed as a free 
metabolite and replaced by the final electron 
acceptor in each reaction, such as ubiquinone-10 
or ETF (Fig. 1A, middle). This approach allows 
a more accurate representation of the electron 
channelling in the pathway, which is clearly 
visible in the scheme describing how fatty-acid 
oxidation links to oxidative phosphorylation (Fig 
1C).  At this stage, 157 reactions were curated 
and 33 reactions were deleted. This curated 
model version was called Recon 2.2_FAD.  
Removing FAD and FMN as free metabolites 
from all redox reactions, however, made these 
reactions completely independent from flavin 
biosynthesis. To preserve a link between 
riboflavin dependency and flavoprotein-related 
reactions, an artificial metabolite called 
‘cofactor_FAD’ was generated from the newly 
synthesized FAD (Recon2.2_flavo model). This 
cofactor was added as an additional substrate to 
all flavoprotein-dependent reactions, to be 
consumed with a low stoichiometric coefficient 
(Fig. 1A, bottom). The latter was estimated 
based on available data on  protein half-lives 
[29] and catalytic turnover rates (kcat) [30] in 
humans. Thus, it can be seen as a flavin-
maintenance requirement. In the resulting model 
version all flavoprotein-dependent reactions are 
strictly dependent on the presence of riboflavin 
and flavin biosynthesis, yet without introducing 
the artificial degrees of freedom of the Recon 2.2 
model. We have additionally tested if the chosen 
stoichiometric coefficient did not overly 
constrain the model. To this end we tested the 
sensitivity of the flavoprotein-related reaction 
flux through the model to changes in the 
cofactor stoichiometric coefficient. Only a minor 
effect on the flux was observed (Fig. S4B). In 
total 420 reactions were linked to the FAD 
biosynthesis by cofactor consumption. 
 
3.3. Metabolic role of the flavoproteome 
 
We mapped the known human flavoproteins 
(Table S1) to the original and the updated 
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versions of Recon 2.2. For each flavoprotein we 
identified all the associated metabolic 
reaction(s). Also reactions for which a non-
flavoprotein isoenzyme was present, were 
included in the mapping. We found that the 
majority (270 out of 381 for Recon 2.2 and 263 
out of 401 for Recon 2.2_FAD/flavo) of the 
reactions associated with flavoproteins were 
localized in peroxisomes and mitochondria (Fig. 
S1A).  Out of the 65 flavoprotein genes included 
in the Recon 2.2 38 are linked to known human 
diseases (Table S1 [Diseases]). Moreover, our 
curation added seven additional disease-linked 
flavoproteins genes (NOS1, MTRR, NQO2, 
L2HGDH, IYD1, D2HGDH and FOXRED1) to 
the Recon 2.2 gene set (Fig. 2A). In total 73% of 
the disease-linked flavoproteins were mapped 
onto Recon 2.2_FAD/flavo, while 69% of them 
were mapped on the Recon 2.2 model. Among 
the disease-linked flavoproteins that were not 
included in our models are those of non-
metabolic function: a chaperone (ALR), a pro-
apoptotic factor (AIFM1), a histone demethylase 
(KDM1A), and a proton channel (NOX1). 
We then investigated the reliance of metabolic 
subsystems, as defined in the original Recon 2.2 
model, on flavoproteins. Vitamin B6 
metabolism, cytochrome metabolism, butanoate 
metabolism, D-alanine metabolism, and 
limonene and pinene detoxyfication were most 
heavily affected with more than 30% of their 
reactions depending on flavoproteins (Fig. 2B). 
Additionally, oxidative phosphorylation was 
also affected with 2 out of 8 of its reactions 
linked to the flavoproteins (Fig. S1B).  
 
3.4. The improved model correctly simulates 
MADD 
 
To simulate MADD, we deleted the ETFDH 
gene (HGNC:3483; Fig 1B and C) from all 
model versions and calculated the steady-state 
solution space. Indeed, the flux through the ETF 
dehydrogenase reaction was completely blocked 
in all three models, confirming that the deletion 
was effective (Fig. S2A). The biomass 
production flux remained largely unchanged in 
all the models (Fig. S2B). This is not surprising, 
since the simulations were performed with 
carbon and energy sources other than fatty acids 
available, such as sugars and amino acids. As we 
had suspected, deletion of ETFDH did not 
dramatically reduce the fatty-acid oxidation flux 
in the original Recon2.2 model (Fig. 3). 

This can be explained from the fact that in 
Recon 2.2 the FADH2 produced by the acyl-CoA 
dehydrogenases in the fatty-acid beta-oxidation 
is not strictly coupled to ETF dehydrogenase, 
but can be reoxidized by other reactions utilising 
FADH2 (Fig. 1B). This prediction is clearly 
incorrect, since mitochondrial fatty-acid 
oxidation is severely impaired in MADD 
patients [13]. In contrast, deletion of ETFDH 
caused a total block of the mitochondrial fatty-
acid oxidation in Recon2.2_FAD and 
Recon2.2_flavo (Fig. 3), in agreement with the 
disease phenotype. Since we had, as part of the 
curation, removed the incorrect FAD reaction 
from the model, we checked that this could not 
explain our results. Indeed, the results were not 
altered by addition of free FAD uptake reaction 
back to the Recon2.2_FAD model, neither by 
only deleting free FAD uptake reaction from 
Recon 2.2 model (Fig. S2C). 
Subsequently we compared the maximum 
stoichiometric ATP yield per unit of consumed 
carbon source in aerobic conditions between the 
models. If a substrate was incompletely 
metabolized, this caused a decrease of the 
maximum ATP yield. If the substrate could not 
be metabolised to produce ATP, then the 
obtained yield was zero. In contrast to the 
original model, Recon2.2_FAD and 
Recon2.2_flavo predicted that ETFDH deletion 
eliminated any ATP yield from fatty-acids with 
chain lengths C4 through C14, which are 
primarily substrates of mFAO in the models. 
Longer fatty acids (C16 to C26) can be partially 
oxidized by peroxisomal beta-oxidation and 
therefore still yield some ATP if ETFDH is 
deficient, also in Recon2.2_FAD and 
Recon2.2_flavo (Table 1). Instead of the 
mitochondrial acyl-CoA dehydrogenase, the 
peroxisomal pathway contains a hydrogen 
peroxide producing acyl-CoA oxidase, which is 
not dependent on the ETF system as electron 
acceptor. Glycolysis and the TCA cycle 
remained unchanged, since they do not depend 
on ETFDH either. Accordingly, aerobic sugar 
metabolism was not affected by ETFDH 
deficiency in any of the models (Table 1). 
 
3.5. FAD deficiency 
 
Subsequently, we studied the systemic effects of 
riboflavin deficiency caused by reduced FMN 
and FAD synthesis from their precursor 
riboflavin (vitamin B2). Mutations of FAD 
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synthase (encoded by the FLAD1 gene) are 
known to exist. Some mutants maintain residual 
catalytic activity and are therefore responsive to 
dietary riboflavin, while others are completely 
non-responsive to riboflavin supplementation 
[35]. FLAD1 mutations cause MADD-like 
symptoms in patients, with elevated levels of 
multiple acylcarnitines and organic acids in 
blood and/or urine [35]. 
We repeated the calculation of ATP yields per 
unit of carbon source with and without 
riboflavin. In Recon2.2_FAD model, FAD had 
been removed as an electron acceptor from all 
flavoprotein-dependent reactions, thus 
completely uncoupling these reactions from 
FAD biosynthesis (Fig. 1A). Accordingly, the 
ATP yield of none of the substrates was affected 
by the absence of riboflavin in this model (Table 
1). In contrast, in Recon 2.2_flavo all 
flavoprotein-dependent reactions are strictly 
dependent on the presence of flavins (Fig. 1A). 
Therefore, if FAD and FMN are depleted due to 
riboflavin deficiency, none of the flavoprotein-
dependent reactions can run anymore. 
Consistently, we found that in the Recon 
2.2_flavo model the mitochondrial beta-
oxidation and the TCA cycle were fully blocked 
in the absence of riboflavin. Therefore, ATP 
could only be generated in glycolysis, leading to 
only 2 ATP per sugar molecule and no ATP was 
generated from any of the fatty-acid substrates in 
the absence of riboflavin. We noted that the net 
ATP yields of all substrates in the presence of 
riboflavin were lower in Recon 2.2_flavo than in 
Recon2.2_FAD (Table 2). The reason is that the 
active FAD biosynthesis in Recon2.2_flavo 
requires ATP. 
Finally, we analysed the response of the models 
to a gradual limitation of the rate of the FAD 
synthase reaction (Fig. 4A). First, we computed 
how the maximum flux capacity of the summed 
flavoprotein-catalysed reactions responded to a 
limitation of FAD biosynthesis. The Recon 
2.2_FAD model remained unresponsive to the 
rate of FAD biosynthesis (Fig. 4B). This is not 
surprising, since in Recon 2.2_FAD, the final 
electron acceptor replaced FAD in each reaction; 
hence, all flavoproteins were artificially 
independent of the FAD. Recon 2.2_flavo 
instead made the flavoprotein-catalysed 
reactions dependent on a low rate of 
biosynthesis (Fig. 1A). This resulted in a linear 
decrease of the flavoproteome-dependent flux 

capacity in Recon2.2_flavo, when the FAD 
synthesis flux was below 0.05 mmol´gDW-1´h-1.   
Subsequently, we calculated how the shape of 
the actual steady-state solution space for the 
FAD-related reactions changed due to the 
cofactor_FAD limitation.  The overall average 
steady-state flux (Fig. 4C) was lower than its 
maximum capacity (Fig. 4B). The 
responsiveness of the Recon 2.2_flavo model 
was preserved but since the pathways worked 
below their maximum capacity, the 
cofactor_FAD limitation started to play a role 
only when the cofactor availability was close to 
zero (Fig. 4C). 
 
3.6. Prediction of biomarkers 
 
Genome-scale metabolic-models have been 
shown to assist in biomarker prediction. The 
authors of the original Recon 2.04 model [23], 
used the method by Sahoo et al [33] to predict 
biomarkers based on altered maximum uptake 
and secretion rates of metabolites. We tested the 
same method for biomarker prediction in Recon 
2.04, Recon2.2 and Recon2.2_flavo models 
against the golden standard set of known 
biomarkers [17]. Prediction accuracies (correctly 
predicted biomarkers compared to total 
predicted biomarkers), and their p-values, 
calculated as reported in Thiele et al. [23] were 
similar in all the models (Table 2, GS) and in 
agreement with the previously published 77% 
accuracy in Recon 2 [23]. With respect to True 
Positive Rate (the percentage of known 
biomarkers that was correctly predicted) our 
Recon 2.2_flavo model scored highest with 
33%, while Recon 2.2 and Recon 2.04 had 31% 
and 26% TPR respectively (Table 2). This shows 
that we could recover more biomarkers without 
a loss in accuracy. Furthermore, we used the 
same method to study flavoproteome-related 
diseases and their associated biomarkers (Table 
S3 [Known biomarkers&diseases]) in our Recon 
2.2_flavo model. For this subset of diseases TPR 
was only 24%, coupled with lower accuracy of 
59%. The p-value of the prediction accuracy was 
higher for this subset of diseases (Table 2, FD). 
The high p-value can be linked to the relatively 
small number of diseases in our FD set and 
therefore a higher chance of obtaining the same 
values distribution by chance. The low TPR 
values for all tested models reflect the FVA-
based method’s inability to predict many known 
biomarkers for important flavoproteome-related 
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diseases, such as those in fatty-acid metabolism 
and oxidative phosphorylation (Table S3 
[FVA]). For instance, typical biomarkers of 
fatty-acid oxidation defects, acyl carnitines were 
not altered in disease simulations. 
To circumvent this caveat of the classical 
method, we decided to study the maximum ATP 
yields for a selected range of carbon sources that 
are also biomarkers in human diseases, 
modifying the method of Swainston et al.[3]. 
This method allows to study the capacity to 
metabolise a carbon source under defined model 
boundaries and compare the outcome from the 
disease model and control model. We selected 
16 diseases which are known to affect core 
metabolism and for which we expected changes 
in the net ATP production from certain carbon 
sources. In total for 11 out of 16 diseases 
studied, the known biomarkers, marked in red 
boxes in Fig. 5, could be linked to the metabolic 
changes seen in the Recon 2.2_flavo model. For 
FOXRED1, PRODH and ETFDH deficiencies 
the Recon 2.2 model did not predict any 
metabolic changes while our flavoproteome-
curated models showed reduced ATP yield from 
carbon sources known as biomarkers for these 
diseases. Moreover, our method revealed 
disrupted amino acid metabolism in ACADSB, 
DLD, GCDH, IVD, and ACAD8 deficiencies, 
which may point to new possible biomarker 
profiles. In all MADD variants (ETFDH, ETFA 
or ETFB deficiency) a full block of 
mitochondrial FAO capacity was seen only in 
our improved models. Long-chain fatty acids 
(above C20:0) were still partially metabolised as 
peroxisomal FAO remained functional. In 
contrast, and as expected, when simulating 
deficiency of the peroxisomal enzyme ACOX1, 
only the peroxisomal FAO was impaired.  
For many diseases, metabolic biomarkers are not 
known, or the known biomarkers fail to 
differentiate between patients with different 
severity of the disease. Our models predicted 
metabolic changes at the level of maximum ATP 
yield per carbon source in all tested flavin-
related diseases. Clear disease-specific patterns 
are seen, which allow to distinguish between 
different diseases. Most of the changes were 
identified in the amino acids metabolism. Those 
compounds are routinely used in the newborn 
screening test; however, they have not yet been 
related to these diseases.  
 
3.7. Compatibility with Recon 3D 

 
During the writing of this manuscript Recon 3D 
came out [4], another major update of the human 
metabolic reconstruction that had been 
developed in parallel to Recon 2.2 [3]. The 
number of reactions was increased by 74% to 
13,543, and the number of metabolites by 56% 
to 4,140 in Recon 3D compared to Recon 2.2. 
Furthermore, the representation of enzymes 
involved in oxidative phosphorylation system 
has been corrected according to the fix made in 
Recon 2.2 [3]. However,  the change of the gene 
mapping from GeneID to HGNC standard 
proposed in Recon 2.2 was not applied in Recon 
3D.  We tested the applicability of our curation 
to Recon 3D, in order to ensure that it can be 
readily used with different model versions. 
Similar to previous model versions, Recon 3D 
treats FAD as a free cofactor. Our method of 
replacing FAD with the final electron acceptor 
was easily applied to Recon 3D (Table S4). The 
impact of FAD cofactor limitation was similar as 
in the Recon2.2-derived models (Fig. S4A). 
Additionally, we tested how Recon 3D 
responded to simulation of MADD. As seen 
before, there was a significant remaining total 
flux through the mFAO reactions in the Recon 
3D model with ETFDH deficiency, while in the 
flavoproteome-curated models the mFAO flux 
was correctly blocked by MADD (Fig.S5A). We 
verified that the deletion was effective (Fig. 
S5B), and that the biomass production flux 
remained largely unchanged in all the models 
(Fig. S5C).  
Since Recon 3D has a much larger metabolic 
coverage than its predecessors, we tested its 
capability of detecting biomarkers. However, the 
model showed no substantial change in the 
accuracy (74%) of biomarker predictions, while 
a significant decrease in the TPR value (10%) 
was observed (Table S5). 
 
 
4. Discussion 
 
We present an updated version of Recon 2.2 that 
was curated and extended to correctly represent 
the flavoprotein-catalysed reactions.  
Furthermore, we introduced a new method to 
study the role of enzyme-bound cofactors, such 
as FAD. Curating the representation of FAD in 
Recon 2.2 allowed to correctly simulate aberrant 
metabolic behaviour upon single enzyme 
deficiencies. Since the predecessor of Recon 2, 
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the metabolic reconstruction Recon 1 [36], was 
published, many groups have extended and 
improved model versions. They used it as a basis 
for tissue specific models [5,23,37–40], studied 
the effects of diet [38], and predicted biomarkers 
for enzymopathies [17,23,24,38]. Work by 
Smallbone [41] and Swainston et al. [3] focused 
on a full mass and charge balance and on 
simulations of energy metabolism. However, 
despite their crucial role in metabolism, none of 
the curative efforts in human reconstructions, 
including the most recent Recon 3D [4], focused 
on cofactors, not even organic cofactors that are 
(in part) synthesized in the cell. Metabolism 
related to other apoenzymes requiring other 
bound cofactors for their activity (metals, iron-
sulfur clusters, or heme) would potentially profit 
from the same solution to further enhance 
biomarker research in genome-scale models. 
Flavoprotein-linked diseases can lead to very 
strong metabolic responses in patients, such as 
episodes of severe metabolic derangement, 
hypoglycaemia, metabolic acidosis, 
sarcosinemia and cardiovascular failure in 
MADD patients. Acylcarnitines, as well as 
sarcosine are known to be changed in the plasma 
and urine of MADD patients [12–14]. The 
original Recon 2.2 model could not predict any 
of the known biomarkers and no systemic effects 
of MADD were seen in the simulations, because 
the model incorrectly comprised alternative 
routes to reoxidize FADH2. In our new model, in 
which the electrons are transferred to the final 
electron acceptor of each flavoprotein-catalysed 
reaction rather than to a soluble FAD pool, and 
in which flavoprotein-dependent reactions are 
dependent on flavin synthesis, both systemic 
effects and metabolic changes linked to 
biomarkers were predicted correctly. This is 
seen clearly by a full block of mFAO capacity 
while peroxisomal FAO remained functional in 
MADD. In contrast, when simulating deficiency 
of the peroxisomal enzyme ACOX1, only the 
peroxisomal FAO was impaired, leading to 
reduced metabolism of long-chain fatty acid 
substrates (Fig. 5). This extension is relevant for 
a correct description of mitochondrial fatty-acid 
oxidation defects, which can be partly rescued 
by peroxisomes [42].  
In total, we tested metabolic changes for 45 
diseases, out of which 31 are associated with 
biochemical biomarkers. A caveat of the existing 
methods for biomarker predictions is that they 
only include the metabolites that are known as 

biomarkers. The models, however predict many 
more metabolites with altered production or 
consumption rates. These are potential novel 
biomarkers. Since they have most often not been 
explored experimentally, however, we do not 
know if the predictions are correct. If these 
would be tested, we would get a more complete 
insight into the accuracy of our predictions. 
Therefore, we propose usage of true positive 
rates for more correct description of model 
performance. Using Recon 2, Recon 2.2, and 
Recon 2.2_flavo, we predicted biomarkers for 
diseases included in the compendium of inborn 
errors of metabolism published by Sahoo et al. 
[17] with True Positive Rates of 26%, 31% and 
33% respectively, while accuracies, as calculated 
in Thiele et al. [23], remained similar to 
previously published 77% (77%, 75% and 76% 
respectively). A lower (17% and 24%) TPR was 
reported with Recon2.2 and Recon2.2_flavo 
respectively for biomarkers of the flavoprotein-
related diseases subset, with accuracies of 78% 
and 59% respectively. However more detailed 
studies of metabolism, using ATP production 
yield estimation performed for 16 flavoprotein-
related diseases linked to the core metabolism, 
showed promising results for both our models. 
This method allowed us to test if alternative 
metabolic pathways exists that allow ATP 
production from the single carbon sources in 
various IEMs. The metabolic changes identified 
with this method were in line with clinical data, 
including impaired FAO and sarcosine 
degradation in all MADD cases, no proline 
degradation in PRODH deficiency and blocked 
very-long chain FAO in ACOX1 deficiency [43]. 
Interestingly, ATP-generating breakdown of 
amino acids has been predicted to be affected in 
several diseases analysed. Valine breakdown has 
been predicted by our model to be significantly 
impaired in isobutyryl-CoA dehydrogenase 
deficiency (ACAD8) which is in line with the 
literature knowledge about this disease [44].  
Furthermore, our models predict a decreased 
ATP yield from breakdown of several amino 
acids, and a general impairment of energy 
metabolism in SDHA deficiency. This extremely 
rare disease is indeed known to affect energy 
metabolism. However, due to its low prevalence, 
no specific biomarkers are known [45]. Our 
models predict valine, leucine, threonine, and 
methionine degradation pathways to be most 
severely affected in this disease. FAD-
containing enzymes are crucial in both fatty acid 
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oxidation and amino acid metabolism as was 
highlighted in flavoproteome mapping (Fig. 2B 
and S1B). Consistently, their impact on 
biomarkers became more pronounced after our 
curation (Fig. 5). For all 16 tested flavoprotein–
related diseases we predicted new metabolic 
changes that may lead to new biomarker 
patterns. Our data suggests that these diseases 
might have multiple identifiable biomarkers. 
Using a multimarker approach or specific 
biomarkers ratios, which is common in 
cardiovascular risk assessment [46], instead of 
only single compounds, we could better 
differentiate between different diseases and 
potentially also between patients with different 
severity of the defects which has been proven 
recently for Zellweger syndrome patients 
differentiation [19]. The latter was not pursued 
here, since we only studied complete enzyme 
deficiencies.  
Limitations in accuracy and True Positive Rates 
of biomarker predictions with existing methods 
and models, may have different causes. Cellular 
lipid profiles are very complex [19], and 
currently incompletely represented in the human 
genome-scale models. Since many flavoprotein-
related diseases affect lipid metabolism it is 
likely that a better representation of the lipid 
metabolism will improve the predictions. 
Additionally, our new method of cofactor 
implementation could be extended to account for 
all different cofactors required in human 
metabolism. Future improvement of our method 
may involve a differentiation in stoichiometric 
coefficients of flavin usage per enzyme 
depending on the specific protein half-life. This 
would allow the incorporation of differences in 
efficiency of flavin utilization for various flavin-
dependent enzymes, thereby increasing the 
accuracy of metabolic predictions. In addition, 
one should remain critical on our assumption 
that all FAD or FMN is tightly bound as a 
prosthetic group. While some flavoproteins have 
FAD covalently bound, most have a non-
covalent, yet tight-binding FAD or FMN. Some 
flavoproteins, however, may have a relatively 
low FAD binding affinity. This holds for 
instance for bacterial two-component 
monooxygenases in which reduced FAD must be 
translocated from one protein domain to another 

[47]. Low FAD affinity of cancer-associated 
variants of NAD(P)H quinone oxidoreductase 1 
leads to low protein stability [48]. We are not 
aware of low-affinity flavoproteins that depend 
on free diffusion of reduced FAD.  
We noted that the currently most extensive 
reconstruction of human metabolism, Recon 3D, 
showed a significant decline in the number of 
correctly predicted biomarkers compared to its 
predecessors (Table S5). By extending the 
coverage of the metabolic network, alternative 
pathways have been created. One may 
hypothesise that their physiological relevance is 
smaller in reality than in the model, e.g. due to 
kinetics, spatial separation, or thermodynamics. 
This limitation can possibly be overcome by 
using tissue-specific models with an appropriate 
set of boundaries for the exchange reactions, as 
has been proposed recently by Thiele et al. [49]. 
Finally, it is quite likely that some biomarkers 
will only be predicted correctly when kinetic and 
thermodynamic constraints are included.  
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TABLES 
 
Table 1. Comparison of maximum ATP yields in a medium without riboflavin (B2 -), with riboflavin (B2 
+), and in a model with ETFDH knocked out in the presence of B2 (MADD). Minimal medium: Ca2+, Cl-, 
Fe2+, Fe3+, H+, H2O, K+, Na+, NH4 SO4

2-, Pi, plus the indicated carbon and energy source. Note that this medium is 
insufficient for cell growth. ATP yield was expressed stoichiometrically as the net rate of ATP production (in 
steady-state equal to the rate of the ATP demand reaction) divided by the rate of carbon-source consumption in 
mmol × g DW-1 × h-1. If no ATP was produced at all, the yield was set to zero, irrespective of whether the carbon 
source was consumed, to avoid division by zero. We verified that the precise value of the stoichiometric 
coefficient for FAD consumption in Recon2.2_flavo did not affect the maximum ATP yield from single carbon 
sources at the accuracy presented here. 

Carbon 
source 

ATP yield 

Theoreticala 
Recon2.2 Recon2.2_FAD Recon2.2_flavo 

B2 - B2 + MADD B2 - B2 + MADD B2 - B2 + MADD 
Glucose 31 32 32 32 32 32 32 2 32 32 
Fructose 31 32 32 32 32 32 32 2 32 32 

C4:0 21.5 22 22 22 22 22 0 0 22 0 
C6:0 35.25 36 36 36 36 36 0 0 36 0 
C8:0 49 50 50 50 50 50 0 0 50 0 
C10:0 62.75 64 64 64 64 64 0 0 63.99 0 
C12:0 76.5 82.5 82.5 82.5 78 78 0 0 77.99 0 
C14:0 90.25 92 92 92 92.5 92.5 0 0 92.49 0 
C16:0 104 106.75 106.75 106.75 108.25 108.25 2.25 0 108.24 0 
C18:0 117.75 120 120 120 121.5 121.5 12.75 0 121.49 12.75 
C20:0 131.5 134 134 134 135.5 135.5 25 0 135.49 25 
C22:0 145.25 147.25 147.25 147.25 147 147 38 0 146.99 38 
C24:0 159 160.5 160.5 160.5 159.25 159.25 50.25 0 159.24 50.25 
C26:0 172.75 170.75 170.75 170.75 169.5 169.5 61.75 0 169.49 61.75 

Cn:0, a saturated fatty acid of length n 
a Theoretical yields as calculated by Swainston et al. after Salway[50]
 
 
Table 2. Comparison of the prediction accuracy of Recon 2.04, Recon 2.2 and Recon 2.2_flavo against the 
gold standard (GS) [17] or against our compendium of flavoprotein-related diseases (FD).  

 
Recon2 Recon2.2 Recon2.2_flavo Recon2.2 Recon2.2_flavo 

GS GS GS FD) FD 

Correct prediction 76 88 94 11 16 
Wrong prediction - 
wrong directiona 23 29 30 3 11 

Accuracyb 77% 75% 76% 78% 59% 
P value  
(Fischer test) 7.93 ´ 10-4 1.2 ´ 10-2 2.6 ´ 10-3 0.16 0.12 
Wrong prediction –  
no changec 187 169 162 53 39 

True positive rated 26% 31% 33% 17% 24% 
a wrong direction – where the model predicted the metabolite to change in the opposite direction from the 
experimental values 
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b Prediction accuracy measured as a ratio of correct positive predictions to sum of all predicted biomarkers 
(correct and wrong direction) as reported in Thiele et al.[23] 
c no change -  where model predicted no change in the metabolite, despite it being known as a biomarker 
d True Positive Rate measured as a ratio of correct predictions to the sum of all biomarkers in the database. 
 
FIGURES

 

Fig. 1. Schematic representation of the difference in handling of the covalently bound cofactors 
(represented by FAD) between Recon 2.2 and the newly curated models. A. General scheme of the reactions 
associated with flavoproteins; top: current Recon 2.2; middle: FAD replaced by the final electron acceptor in the 
reaction equation; bottom: linking the reactions to FAD biosynthesis via the artificial metabolite 
‘cofactor_FAD’; B. Scheme of electron transfer from fatty-acid oxidation to the oxidative phosphorylation 
pathway as in Recon 2.2, C: Scheme of electron transfer from fatty-acid oxidation to the oxidative 
phosphorylation pathway in our models, Recon 2.2_FAD and Recon 2.2_flavo. Yellow – flavoproteins. 
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Fig. 2. Mapping of the flavoproteome on the models before (grey, Recon 2.2) and after curation (black, 
Recon 2.2_FAD or Recon 2.2_flavo). A. Number of reactions associated with each flavoprotein-encoding 
gene. amarks a gene associated with an IEM; B. Percentage of reactions associated with flavoproteins per 
subsystem (subsystems as defined in Recon 2.2). 
 

 
Fig. 3. New models can correctly simulate the physiology of MADD. Overall flux through the mFAO (sum 
of fluxes through the mFAO reactions). Only in the new models Recon2.2_FAD and Recon2.2_flavo full block 
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of the mitochondrial fatty-acid oxidation flux was observed upon deletion of ETFDH. Flux values were 
obtained by sampling the solution space using the optGpSampler (10000 points explored, 2000 steps). Boxes 
span 25th to 75th percentiles, lines show medians, whiskers indicate minimum and maximum values. 
 

 
Fig. 4. Coupling of FAD-related reactions to FAD-biosynthesis enabled the new model to respond to low 
cofactor availability. A. Schematic representation of FAD biosynthesis, RFK – riboflavin kinase, FLAD1 flavin 
adenine dinucleotide synthetase 1. B. Average flux through the FAD-related reactions as a function of FAD 
biosynthesis flux. Maximum capacity was calculated by maximizing the objective function – a sum of fluxes 
through all the FAD-related reactions. C. Average and SD of the flux through the FAD-dependent reactions 
from the sampled solution space (using the optGpSampler with 10000 points explored and 2000 steps distance) 
in response to declining cofactor biosynthesis flux. 
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Fig. 5. Changes in the ATP yield from different carbon sources in flavoprotein-related diseases predict 
metabolic adaptations in energy metabolism. For each disease, predictions from all three models are shown, 
first (light-grey): Recon 2.2, second (grey): Recon 2.2_FAD, third (black): Recon 2.2_flavo. Ratios between 
ATP yields in disease model vs. healthy model are shown as a gradient (white – no change (1), dark blue – 
reaction is blocked in disease model (0)). Red frames - metabolites known to be affected, elevated in blood 
and/or plasma, in patients. See Supplementary Table 3 [Known biomarkers&diseases] for details about the 
IEM’s and the reactions used as biomarkers. ACADL – Acyl-CoA dehydrogenase very long-chain deficiency 
(MIM:201475); ACADSB - Short/branched-chain acyl-CoA dehydrogenase deficiency (MIM:610006); ACOX1 
– Adrenoleukodystrophy (MIM:264470); DLD – Dihydrolipoamide dehydrogenase deficiency (MIM:246900); 
SARDH– sarcosinemia (OMIM entry MIM:268900); DPYD - Dihydropyrimidine dehydrogenase deficiency 
(MIM:274270); ETFA - Glutaric aciduria IIA (MIM:231680); ETFB - Glutaric aciduria IIB (MIM:231680); 
ETFDH - Glutaric aciduria IIC(MIM:231680); GCDH– glutaryl-CoA dehydrogenase deficiency 
(MIM:231670); IVD– Isovaleric academia (MIM:243500); NDUFV1 - Leigh syndrome (MIM:256000); 
PRODH - Hyperprolinemia 1 (MIM:239500); SDHA - Mitochondrial complex II deficiency (MIM:252011); 
ACAD8 - Isobutyryl-CoA dehydrogenase deficiency (MIM:611283); FOXRED1– mitochondrial complex I 
deficiency (MIM: 252010); 
 
 
Supporting information 
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Fig S1. Mapping of the flavoproteome on the models before (grey, Recon 2.2) and after curation 
(black, Recon 2.2_FAD/flavo). A. Number of flavoprotein-related reactions in each compartment. 
Numbers above the bars show the number of flavoproteins in the compartment. Values in the bars 
show the percentage of all reactions in the subsystem that are affected by flavoproteins. B. Average 
percentage of the reactions associated with flavoproteome in the subsystem grouped by higher level metabolic 
functions (as defined in Recon 2.2). 
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Fig S2. Biomass and ETFDH flux in the models used for MADD simulation.  Flux values were 
obtained by sampling the solution space using the optGpSampler (10000 points explored, 2000 steps). 
Boxes span 25th to 75th percentiles, lines show medians, whiskers indicate minimum and maximum 
values. MADD was simulated by deletion of ETFDH in the models A. The flux via the biomass 
synthesis reaction remains unchanged in all models. B. None of the three models carry flux via the 
ETFDH reaction in the MADD simulation. C. Removal of FAD uptake in the Recon2.2 model does 
not change the incorrect model behaviour in MADD case, similarly adding a free FAD uptake to our 
curated model does not cause incorrect flux predictions.  
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Fig S3. Biomarker predictions for single gene deficiencies. Detailed in Table 3 [FVA]. 
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Fig S4.  Average flux through the FAD-related reactions as a function of FAD biosynthesis flux. Maximum 
capacity was calculated by maximizing the objective function – a sum of fluxes through all the FAD-related 
reactions. A. Coupling of FAD-related reactions to FAD-biosynthesis enabled the modified Recon 3D_FAD 
model to respond to low cofactor availability similarly to Recon 2.2_FAD; B. Sensitivity of the average flux 
through flavoprotein-dependent reactions to changes in the cofactor’s stoichiometric coefficient. C. FAD 
biosynthesis flux required to reach the 66% of the maximal flux through the FAD-related reactions depending 
on the different stoichiometric coefficient of cofactor.  
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 Fig S5. Recon 3D can correctly simulate the physiology of MADD after our FAD fix was 
applied. Flux values were obtained by sampling the solution space using the optGpSampler (10000 
points explored, 2000 steps). Boxes span 25th to 75th percentiles, lines show medians, whiskers indicate 
minimum and maximum values. MADD was simulated by deletion of ETFDH in the models; A. Total 
flux through the mFAO (sum of fluxes through the mFAO reactions); B. None of the three models 
carry flux via the ETFDH reaction in the MADD simulation; C. The flux via the biomass synthesis 
reaction remains unchanged in all models. 
 
Table S1. Information about human flavoproteome. 
Table S2. Manual curation process of Recon 2.2. 
Table S3. Metabolic biomarkers for flavoprotein-related diseases. 
Table S4. FAD curation step applied for Recon 3D. 
Table S5. Biomarker prediction accuracy and TPR between Recon 2.04, Recon 2.2, and Recon 3D. 
 
Files S1 and S2 (containing models and scripts) are available as separate files. 
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