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Abstract 

There are over 15,000 known variants that cause human inherited disease by disrupting RNA splicing. 
While several in silico methods such as CADD, EIGEN and LINSIGHT are commonly used to predict the 
pathogenicity of noncoding variants, we introduce S-CAP, a tool developed specially for splicing which is 
better able to effectively distinguish pathogenic splicing-relevant variants from benign variants. S-CAP is 
a novel splicing pathogenicity predictor that reduces the number of splicing-relevant variants of 
uncertain significance in patient exomes by 41%, a nearly 3-fold improvement over existing noncoding 
pathogenicity measures while correctly classifying known pathogenic splicing-relevant variants with a 
clinical-grade 95% sensitivity. 

Introduction 

 Genomic sequencing, and in particular exome sequencing, is revolutionizing the diagnosis of 
Mendelian disease1–4, with over 5,000 genetic diseases already successfully mapped to over 3,000 
genes5. Sifting through patient exomes in search of a causal variant is a time consuming process that 
often focuses on the coding sequence (CDS) of genes6,7. Powerful pathogenicity meta-predictors such as 
M-CAP8 integrate multiple primary predictors such as SIFT9, Polyphen-210 and CADD11 with cross-species 
sequence conservation features to offer accurate clinical grade predictions capable of missing only a tiny 
fraction of known coding pathogenic mutations12. Achieving high sensitivity is important because 
reducing the size of the candidate list of variants of uncertain significance (VUS) is futile if the 
pathogenic variant itself is incorrectly classified as benign13. M-CAP is commonly used by clinicians to 
prioritize nonsynonymous variants14,15, so that they can effectively consider first the variants that are 
most likely to yield a diagnosis. 
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However, with estimates that 70% of patient cases remain undiagnosed16,17, there is value in 
looking beyond the CDS itself. Splicing is a complex and crucial step of gene expression, wherein vast 
sections of RNA, called introns, are removed from a pre-messenger RNA and the remaining RNA, called 
exons, are joined together to form the mature messenger RNA (mRNA). Changes in splicing induced by 
genetic variants can have severe impacts on the protein coding potential of an mRNA, such as the 
exclusion of an entire exon18 or a frameshift19,20 induced by creation of a new splice site21, among other 

effects22–2422–24. Exome sequencing typically captures sequence information up to 50 base pairs past 
exon boundaries into each adjacent intron25.  This region covers a broad class of splicing-relevant 
variants: those that disrupt existing splice sites or exonic and proximal intronic splicing regulators, such 
as the branch point, and some that create new splice sites.  

Indeed, there are over 15,000 known Mendelian disease causing variants that impact the gene 
product through RNA splicing26,27. At the same time, a typical singleton patient’s exome contains over 
500 splicing-relevant variants of uncertain significance (VUS)28.  Existing tools such as CADD11, EIGEN29 
and LINSIGHT30 tackle a broad spectrum of non-coding variants, but in doing so they do not effectively 
predict splicing-relevant variant pathogenicity or provide clinical grade assurances of minimizing the 
false prediction of known pathogenic splicing-relevant variants as benign. Generic methods ignore the 
rich literature characterizing mRNA splicing and predicting associated molecular phenotypes, such as the 
percentage-spliced-in of exons31–34. These findings and methods provide invaluable insight into the 
potential of a variant to disrupt splicing. However, the splicing literature does not tell the whole story 
either, as predicting molecular phenotypes is a fundamentally different task from predicting if a variant 
will cause a disease. For a variant to cause a disease, the variant must disrupt normal splicing in one or 
more relevant tissues and the induced change in mRNA phenotype must be pathogenic. Similar 
obstacles are met in the few cases where clinicians attempt to identify patient genetic variants that 
disrupt splicing by performing a costly and time consuming RNA-seq experiment in an accessible, but not 
necessarily disease relevant, cell population35,36. 

We introduce S-CAP (Splicing Clinically Applicable Pathogenicity), a machine learning tool that 
integrates knowledge of splicing with measures of variant, exon and gene importance into a splicing-
specific pathogenicity score. We evaluate S-CAP at the high sensitivity required in clinical settings and 
show that it far outperforms existing non-coding pathogenicity scores, as well as tools focused solely on 
identifying synonymous variants that disrupt splicing. S-CAP will allow clinicians to consider a broad class 
of splicing-relevant variants, resulting in the diagnosis of more patients suffering from Mendelian 
disease. 

Results 

We developed a machine-learning framework to model and evaluate splicing-relevant variant 
pathogenicity. We analyzed the positional distribution and potential functional effects of variants near 
splice sites and defined 6 genomic regions that display distinct mutation rates and functional effects. We 
trained 6 models (1 per region) to predict splicing variant pathogenicity. This involved building (i) a 
labeled dataset of known pathogenic and benign splicing-relevant variants, (ii) a set of features to help 
discriminate between the pathogenic and benign variants in each region and (iii) a learning algorithm to 
identify patterns in the features and to distinguish between variants in the two classes. Finally, we 
evaluated our models on a set of known pathogenic and benign variants, as well as on real patients with 
various diseases caused by splicing-relevant variants. 
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The landscape of splice region variation 

To build a dataset of labeled splicing-relevant variants, we considered variant pathogenicity, semantic 
effect and population frequency. We start by taking the union of 109,279 pathogenic single nucleotide 
variants (SNVs) from the Human Gene Mutation Database26 (HGMD) and 25,793 pathogenic SNVs from 
ClinVar37 to get a total of 114,382 unique pathogenic variants. We curated 15,833,389 benign SNVs 
observed in controls from the gnomAD database38 who generally do not suffer from a Mendelian 
disease. To identify a subset of variants with a likely splicing semantic effect, these sets were filtered to 
the ‘splicing region’, all synonymous or intronic variants within 50 base pairs25,39 of an exon boundary 
(we justify the choice of ‘splicing region’ below). Removing nonsynonymous and loss of function (stop 
gain or stop loss) variants ensured that our model was trained and evaluated nearly exclusively on 
splicing-relevant variants. To avoid any ambiguities, the benign SNVs were further filtered to remove any 
variant labelled pathogenic in HGMD or ClinVar. This resulted in 14,938 splicing-relevant pathogenic 
variants and 7,027,609 splicing-relevant benign variants. Then a frequency filter, based on the ACMG 
guidelines13 that suggest clinicians consider common (> 1% frequency) variants as definitively benign, 
was applied to both sets yielding 14,838 rare splicing-relevant pathogenic variants and 6,760,450 rare 
splicing-relevant benign variants. In support of this ACMG guideline, we note that only 100 of 14,938 
(0.67%) known pathogenic variants in the splicing region are common in the general population (see 
Methods).  

To substantiate that nearly all pathogenic ‘splicing region’ variants do, in fact, disrupt splicing, 
we developed a simple model to assign a putative effect of variants on splicing. Variants can affect 
splicing by (1) create a cryptic splice site (2) disrupt an existing splice site or (3) disrupt an existing 
branchpoint, a mechanistically essential sequence motif generally located 18 to 45 base pairs upstream 
of each 3’SS40. We used the existing tools MaxEntScan41 and LaBranchoR42, which predict the strength of 
splice site sequences and branchpoint sequences, respectively. We denoted a variant as creating a 
cryptic splice site if the variant creates a splice site with a MaxEntScan score at least as high as the score 
for the reference splice site (with the variant included), disrupting a splice site if it greatly reduces the 
MaxEntScan score of the reference splice site, and disrupting a branchpoint if it has a low LaBranchoR in 
silico mutagenesis score. In cases where a variant had multiple putative effects, e.g. creating a cryptic 
splice site and disrupting an existing splice site, we resolved to the most extreme effect (cryptic splice 
site creation > splice site disruption > branchpoint disruption). We found that 97% of pathogenic 
splicing-region variants are predicted to have an effect on splicing, as opposed to only 18% of likely 
benign variants (Fig. 1a-b). We found that pathogenic variants are enriched at positions where the 
mechanistically essential U2 snRNA, U2AF, and U1 snRNA bind43 (Fig. 1b). Conversely, variants occurring 
in the general population are biased away from these high information content positions44 (Fig. 1a). 

Region specific models to increase performance and alleviate ascertainment bias 

In order to effectively capture these position specific patterns, we separated the variants into 6 
regions relative to the splice sites with generally homogenous function and built a separate model for 
each region (Supplementary Fig. 1). Specifically, we grouped variants occurring in the obligate 5’ GT (5’ 
core) and 3’ AG (3’ core) dinucleotides, intronic variants upstream of a 3’ss (3’ intronic), variants lying in 
the canonical U1 snRNA binding site, excluding the core 5’ss (5’ extended), intronic variants downstream 
of a 5’ss (5’ intronic), and synonymous variants within the protein coding gene (exonic) (Fig. 1c). 

Core splice site variants are well known as having a large functional effect and are readily 
identified, a fact that has likely led to an overrepresentation of core splice site variants in pathogenic 
variant databases. Around 73% of known splicing region pathogenic variants occur within the core splice 
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sites (Fig. 1c). Although this is consistent with the mechanistic importance of these positions, in 
unbiased studies of splicing quantitative trait loci, it is generally found that fewer than 1% of splicing-
relevant variants are found to be located in core splice sites45,46 and in a recent study employing RNA-
seq data to identify splicing-relevant variants resulting in Mendelian disease only 2 of 6 (33%) causal 
variants in the splicing region were in core splice sites35. If left unaddressed, this bias would allow a 
classifier to have strong test set performance (by calling most core splice site variants pathogenic and 
others benign), but would often miss non-core splice site pathogenic variants. Separating variants by 
position allows us to guarantee that pathogenic variants are rarely misclassified as benign regardless of 
genomic region, thereby ensuring an overall low false negative rate irrespective of ascertainment biases 
present in annotated data. 

S-CAP features 

We curated existing metrics and developed several novel features to help distinguish between 
pathogenic and benign variants within the splicing region (Supplementary Table 1). The set consists of 
chromosome, gene, exon, and variant level features. At the chromosome level, 3 binary features 
distinguish between variants found on chromosome X, chromosome Y and the autosomes. Variants on 
the X chromosome present an important subset since in males, a hemizygous X chromosome variant 
inducing loss of function results in no viable gene product. Consistent with this intuition, pathogenic 
variants are highly enriched on the X chromosome as compared to the autosomes (7.11 fold 
enrichment, p < 10-140 by two-sided Fisher’s Exact Test). At the gene level, pLI44, RVIS47, and a 
haploinsufficiency score48 help to measure the likelihood that a given gene is a ‘disease gene’. At the 
exon level, exon length, exon length modulo 3, reference splice site strengths, an existing regional 
constraint score49 and the exon sequence similarity between hg19 and 99 species from the UCSC 
100way alignment serve to assist in distinguishing critical exons from those that may be safely excluded. 
Additionally, we developed a novel splice site constraint score to measure the fragility and tolerance of 
each exon to splice site mutations (see Online Methods). At the variant level, CADD11 measures 
pathogenicity based on functional data annotations, LINSIGHT30 measures variants’ fitness effect 
through functional data and molecular evolution and SPIDEX33 was incorporated to measure the impact 
of a variant on exon inclusion. PhyloP50 and PhastCons51 scores from the multiz46way and multiz100way 
alignments52 measure the evolutionary importance of the affected base across primate species, 
placental mammals and all vertebrates. We also included a feature to capture the change in 3-mer 
content induced by a variant53.  Additionally, we included region-specific features, such as a branchpoint 
disruption term for the 3’ intronic region42 and a 5’ cryptic splice site creation term for the 5’ intronic 
region (see Online Methods for a complete description of features). 

The machine learning algorithm 

Similar to the M-CAP classifier8 for nonsynonymous SNVs, S-CAP is built using a gradient boosting tree 
classifier, a highly effective machine learning model54. This model iteratively builds decision trees, where 
each tree is picked to correct the most cases that were misclassified in the previous step. The final 
classifier is a linear combination of each of the previously derived decision trees (see Online Methods for 
details). 
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S-CAP consistently outperforms existing pathogenicity scores 

Each of the 6 regions (described above) contains a set of pathogenic and benign variants (Fig. 1c), which 
were used to train 6 separate models. We performed 5-fold cross-validation and selected the median 
performing model as the final model for each region. S-CAP was evaluated against the most popular 
existing methods that score splicing-relevant variants: CADD, SPIDEX, LINSIGHT and EIGEN. The 6 S-CAP 
models outperformed all existing methods in all regions resulting in up to a 26.6% improvement in the 
AUC over the next best performing model (Fig. 2). S-CAP performance ranged from achieving an AUC of 
0.804 in the 3’ core region (Fig. 2b) to achieving an AUC of 0.953 in the 3’ intronic region (Fig. 2a). No 
existing method consistently outperforms the other existing metrics across all splicing regions (Fig. 2). 

To ensure a fair comparison, S-CAP performance on exonic variants was also independently 
compared against MutPred Splice53, a tool focused on scoring only splicing-relevant synonymous 
variants, and found superior in both AUC and especially hsr-AUC (see Online Methods and 
Supplementary Fig. 2).  

Clinically relevant threshold maintains high sensitivity 

As previously shown in M-CAP8, it is important to tune thresholds for clinical settings so that fewer than 
5% of known pathogenic variants are misclassified. Neither LINSIGHT, EIGEN or SPIDEX provides a 
default threshold to consider a variant as pathogenic. As a result, it is difficult to use these methods for 
variant pathogenicity classification. CADD provides a threshold but, at the author-recommended default 
threshold, virtually all pathogenic splicing mutations outside the two core splice sites are discarded and 
incorrectly classified as benign (Table 1). Similarly, MutPred Splice provides a default threshold, but over 
48% of known pathogenic exonic variants are misclassified at this threshold. We generated a high 
sensitivity threshold for all metrics in each region by finding the lowest threshold that results in the 
correct classification of at least 95% of a test set of pathogenic variants from that region (Table 2). 

S-CAP is the best performer at clinically relevant thresholds 

Moving into the high sensitivity domain, at or above a 95% true positive rate, S-CAP’s performance 
(Supplementary Fig. 3a-f) ranged from achieving an hsr-AUC of 0.186 in the exonic region 
(Supplementary Fig. 3c) to an hsr-AUC of 0.549 in the 3’ intronic region (Supplementary Fig. 3a). 
Similarly, S-CAP outperforms MutPred Splice on an independent test set of exonic variants 
(Supplementary Fig. 2b). Overall, S-CAP improves on existing metrics in all 6 splicing regions when 
focused on the high sensitivity domain, and no existing method consistently outperforms the others .  

Different patterns observed for recessive and dominant variants 

Recessive and dominant diseases are associated with different selective pressure on alleles, which we 
hypothesized would result in different feature importance and thresholds for determining variant 
pathogenicity. To address this complexity, we developed separate classifiers for dominant (heterozygous 
in patient) and recessive (homozygous or compound heterozygous in patient) at the gene level. In 
patients, we are given whether each variant appears in the heterozygous or homozygous state. 
However, our training data did not provide dominant and recessive labels, so we developed a 
framework for predicting this information from a control population for the sake of model training (see 
Methods). 
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Tagging 3’ and 5’ core variants as dominant or recessive resulted in improved performance 
Supplementary Fig. 4a-h) compared to models without these tags (Fig. 2b,d). For 3’ core variants, we 
built a model that improved upon an AUC of 0.804 and hsr-AUC of 0.257 from the original 3’ Core model 
to an AUC of 0.805 and 0.890 (Supplementary Fig. 4c,d) and hsr-AUC of 0.296 and 0.454 
(Supplementary Fig. 4g,h) when tested on just dominant or recessive variants, respectively. Similarly, 
for 5’ core variants, we built a model that improves upon an AUC of 0.805 and hsr-AUC of 0.291 from 
the original 5’ core model to an AUC of 0.779 and 0.880 (Supplementary Fig. 4a,b) and hsr-AUC of 0.222 
and 0.518 (Supplementary Fig. 4e,f) when testing on just dominant or recessive variants, respectively. 
The S-CAP model to be used on patients takes advantage of these split dominant and recessive models 
in the core splice site regions. 

S-CAP eliminates the most VUS in patient exomes 

Resources like S-CAP are developed on large sets of benign and pathogenic variants but ultimately are 
used to help with the interpretation of VUS in individual patients (Fig. 1c). To demonstrate the practical 
utility of S-CAP, we evaluated S-CAP and each of the comparison methods on 14 patients with 
Mendelian diseases caused by splice-altering mutations. After applying the standard allele frequency 
filter of ≤ 1%, a typical individual has on average a total of 533 rare variants within the splicing region 
(Fig. 1c). Typically, ~32% of variants were observed in each of the 5’ intronic, exonic and 3’ intronic 
regions. 3% were in the 5’ extended regions and 0-3 variants were in each of the 3’ core and 5’ core 
regions (Fig. 1c). Existing methods, CADD, LINSIGHT, EIGEN and SPIDEX, using the 95% sensitivity 
thresholds (Table 2), perform comparably when applied to all VUS in the splicing region of an individual 
patient and on average reduce the number of VUS by 4% - 15%. By contrast, S-CAP is more powerful, 
reducing the number of VUS in the splicing region for an individual patient by 31-46% (Fig. 3c), while 
confidently retaining the pathogenic variant for further detailed analysis (Table 3). For a larger sample 

size, we also evaluated each method on all (n=2054) individuals in the 1000 Genomes Project28, which 
can conceptually be thought of as Mendelian disease patients with their pathogenic variants removed 
(see Fig. 1c). The observed fraction of VUS reduced on average per 1000 Genomes Project individual is 
consistent with the performance observed when applied to patients (Fig. 3c-d). Specifically, S-CAP is 
nearly three times as powerful as existing methods and on average results in a 41% reduction of the VUS 
within the splicing region of a given individual. 

Discussion 

Variants affecting splicing comprise the second largest category of known pathogenic mutations27. A 
broad class of potential splicing-relevant variants are already being captured by exome sequencing, yet 
clinicians are less able to interpret these variants for lack of proper interpretation tools. Here we 
address this problem by developing S-CAP, the first clinically applicable pathogenicity predictor 
dedicated exclusively to splicing-relevant variants. 

In order for an in silico pathogenicity predictor to be useful in the clinic, it needs to be easy to 
use, carefully evaluated at high sensitivity and confidently remove a substantial fraction of benign 
variants. Existing noncoding variant tools are not easy to use for splicing variants because their 
performance is strongly dependent upon position relative to splice sites and no single method 
consistently outperforms the others. This means that employing existing methods, a clinician would 
have to consult multiple pathogenicity scores for variants in different regions. Furthermore, none of the 
existing methods have been carefully evaluated at clinical-grade sensitivity and most methods give no 
guidance about what cutoff should be used or result in the misclassification of an unacceptably high 
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number of pathogenic variants (Table 1). After carefully evaluating the existing methods, we found that 
none of them confidently removed a considerable fraction of benign variants (Fig. 3). For example, after 
we retuned it (Table 2), SPIDEX performed well on variants in the intronic bins, but was close to random 
at predicting the pathogenicity of core splice site variants. CADD, only after we retune it, (Table 1,2) 
performed well on core and exonic variants but poorly on intronic variants (Fig. 2). S-CAP, addresses 
these important issues, as it consistently outperforms existing methods across all the regions, its 
performance has been carefully evaluated at clinical-grade sensitivity, and it removes close to three 
times as many benign variants as any other method (Fig. 3).  

Central to the design of S-CAP is the use of region-specific models to alleviate the effects of 
ascertainment biases in curated pathogenic variant databases. Curated pathogenic variant databases 
contain invaluable information about the properties of pathogenic variants, but they also over-represent 
variants in known disease genes and in association with easily identifiable features. Of particular 
concern in splicing pathogenicity prediction is the inflated number of variants in core splice sites, which 
exists because they are easily recognized and have well established molecular consequences. If left 
unaddressed, this bias in the labeled pathogenic data would lead to unrealistic model performance, as a 
model could achieve relatively high test set performance simply by predicting that all core splice site 
variants are pathogenic and all others are benign. However, in the clinic, such a model would incorrectly 
classify pathogenic, non-core splice site variants as benign at an unacceptably high rate. Introducing 
separate models for each region alleviates this concern since each model’s performance is evaluated 
using data from the same region, thereby assuring high sensitivity irrespective of the underlying 
positional distribution of pathogenic variants. Additionally, we accounted for the over-representation of 
pathogenic variants in known disease-associated genes by ensuring that variants from the same gene 
were never split between the training and evaluation sets (see Methods). This guaranteed that no gene 
level information was shared by features across folds. 

The use of patient RNA-sequencing (RNA-seq) data to identify pathogenic variants that disrupt 
splicing is a growing and promising field35,36,55 to which we believe S-CAP is complementary. In fact, our 

model already includes scores from SPIDEX33, a deep learning model that was trained on tissue-specific 
RNA-seq data to predict the change in percent spliced-in (𝛥𝛹) of an exon given a variant. It would only 
be a small step to supplement these predicted 𝛥𝛹s with experimentally measured 𝛥𝛹s from RNA-seq 
experiments. Observing 𝛥𝛹 through RNA-seq bypasses the difficult problem of explicitly or implicitly 
predicting the effect of a given variant on splicing in a particular cell type, but this is only part of the 
problem. Whether predicted or measured, gene expression and 𝛹 values vary between cell contexts and 
time points and in many cases the most relevant cell population to sequence would not be clear36,56. 
Perhaps even more importantly, molecular phenotypes are multiple steps away from real phenotypic 
change, making it difficult to predict organismal pathogenicity from molecular phenotype57. These 
factors limit the direct applicability of observed or predicted 𝛥𝛹s to cases where there is a good 
understanding of the relationship between a disease, the cell population it affects, and the set of 
potentially causative genes. Many of the features used by S-CAP, such as evolutionary conservation, 
implicitly integrate an allele’s importance over all cell populations and time points, complementing the 
strengths of RNA-seq based methods. Another direction for the integration of S-CAP and experimental 
methods is the use of cheap and fast site-directed sequencing in a diverse array of cell types to validate 
putatively pathogenic sites identified by S-CAP58. 

Eventually, comprehensive analysis of the splicing region will become commonplace in clinical 
settings. This is currently a difficult task given the complexity of splicing and the difficulty in predicting 
whether a change in splicing will result in disease. There are over five hundred rare variants of uncertain 
significance per individual in the splicing region with no clear semantic effect outside of the core splice 
sites and most are not observed in control populations. S-CAP represents an important step towards 
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effectively interpreting splicing variation, but we will have to continue to improve on these methods, 
learning more from RNA-seq experiments, to render this problem more tractable. 

Online Methods 

Variant Processing 

Dataset of pathogenic and benign variants 
Pathogenic variants were obtained from two manually curated databases: the Human Gene Mutation 
Database (HGMD) Professional version 2017.1 and ClinVar release 20170406. Only HGMD variants 
tagged as Disease Mutation (DM) and ClinVar variants with Pathogenic Clinical Significance were 
included in the final set of pathogenic variants. Benign variants were obtained by identifying variants 
observed in individuals from gnomAD38 r2.0.2.  

Variant Annotation 
ANNOVAR59 v527 was used to annotate variants with predicted effect on protein-coding genes using 
gene isoforms from Ensembl60 gene set version 75 for the hg19/GRCh37 assembly of the human 
genome. All coding isoforms were used where the transcript start and end sites were marked as 
complete and the coding span was a multiple of three. 

Variant Filtering 
All variants were filtered so as to only include rare variants in the splicing region that do not directly 
affect the protein coding sequence. Rare variants are defined to be variants with an allele frequency of 
1% or less in all control populations and subpopulations in KGP phase 3, ExAC v0.3.1 and gnomAD r2.0.2. 
Variants in the splicing region that do not affect protein coding sequence are those determined to be 
synonymous or in the core splicing, extended splicing or intronic regions. 

Positional Subsetting of Variants 

Variants at different positions relative to splice sites have different properties, such as distributions of 
sequence conservation and ratio of pathogenic variants to benign variants. To better understand the 
relationship between position relative to splice site and the mechanistic effects on splicing, we 
developed a simple model to assign a putative effect of variants on splicing. To identify variants that 
create cryptic splice sites, we scanned a window the width of the MaxEntScan41 input for the highest 
scoring splice site that is not the reference and reported the variant as creating a cryptic splice site if this 
highest scoring site was stronger than the reference (with the alternative allele included) and is made 
stronger by the variant. Variants that result in a decrease the MaxEntScan score of the reference splice 
site by 1 or more were determined to disrupt an existing splice sites. Finally, variants that have a 
LaBranchoR42 in silico mutagenesis score of less than -0.1 were determined to disrupt a branchpoint. 

This led us to allocate variants into subsets based upon their position relative to splice sites and 
train separate models for each. Subsets were selected so as to group together functionally related 
positions. In total, we constructed 6 subsets (Fig. 1). We created subsets of 3’ and 5’ core (1 or 2 bases 
from the splice site), extended (1-2 bases into the exon on the 5’ side and 3 to 6 bases from the 5’ splice 
site), 3’ intronic (2 to 50 bases from the splice site), 5’ intronic (7-50 bases from the 5’ splice site) and 
exonic (inside the exon but outside the extended region) regions.  
 We associated each variant with a neighboring exon. For variants close to multiple exons, we 
attempted to assign the variant to the exon considered as having the highest chance of a pathogenic 
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effect, which we inferred from the density of pathogenic variants in each bin. Specifically, we favored 
associations in the following order: core, 5’ extended, intronic, and exonic. 

Features 

Our models utilized a diverse library of previously described and novel features (fig. S1). These can be 
divided into gene level, exon level, and variant level features as well as a few features that are specific to 
individual regions. Below, we introduce our novel features and describe how we curated previously 
described features. 

Gene Level 
We obtained RVIS47 scores from, the appropriately named, genic-intolerance.org (see URLs). We used 
the data in column “RVIS[pop_maf_0.05%(any)]” as a feature in our models. We obtained pLI44 scores 
from supplementary table 13 of the original publication on 7 April 2017. We used as a feature the 
column denoted as pLI. We obtained a haploinsufficiency score48 which is a probability of a gene being 
haploinsufficient directly from the publication page on the PLOS website in May 2017. We downloaded 
MPC, a recently proposed regional constraint score49 (see URLs). 

Exon Level 
For each exon, we created splice site features which measure the number of rare and common variants 
observed in gnomAD in the 5’ and 3’ core (0-2) and extended (2-6) regions. This was motivated by the 
desire to share information between functionally similar positions. We take this feature to represent the 
constraint on the exon’s splicing region in the human population. To avoid data leakage, when 
constructing this feature for a particular variant, we masked the effect of the variant itself on this score. 
Specifically, if a given 5’ss had one associated core variant, it was assigned a count of 0. If it had 2, both 
were assigned a count of 1. Additionally, we measured exon identity across vertebrates and found that 
the exon identities in many organisms were highly correlated. Principal components analysis (PCA) of 
the identity scores for all exons showed that 5 components explain the vast majority of variation in the 
data. To prevent overfitting, we included the original exon identities projected onto these first 5 
principal components as features. We also included exon length and exon length mod 3 as features 
associated with each variant. 

Variant Level 
In order to consider the local sequence context of variants, we included spectrum kernel features 
representing the change in trinucleotide content induced by the variant53. For all 64 possible 
trinucleotides, we created a vector counting the number of occurrences in the alternative sequence and 
subtracted an equivalent vector for the reference sequence. The MaxEntScan reference score, 
alternative score and difference between the two were all used as features to quantify the strength of 
each exons’ reference and alternative 5’ and 3’ splice site. SPIDEX scores33 were downloaded directly 
from the Deep Genomics website on 7 April 2017. These scores can now be downloaded from Annovar 
(see URLs). Any variant not assigned a SPIDEX score was assigned a value of 0. We included 8 scores 
measuring evolutionary conservation, specifically, PhyloP 46way vertebrates, placental mammals, 
primates, PhyloP 100way vertebrates, PhastCons 46way vertebrates, placental mammals, primates 
and the PhastCons 100way vertebrates. Any base not annotated with a conservation score was 
assigned a value of 0. We also included the signed distance to the 5’ss and 3’ss splice site of the 
associated exon as features to measure base-pair importance. 

Region Specific features 
The 3’ intronic S-CAP model includes a branchpoint feature modeled using LaBranchoR, a bi-directional 
LSTM (long short-term memory) model trained on the genome sequence surrounding experimentally 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/343749doi: bioRxiv preprint 

https://doi.org/10.1101/343749
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

validated branchpoint sites42. Specifically, we used the in silico mutagenesis scores available online (see 
URLs) as a feature. 

We explicitly represented the strength of cryptic sites created by each variant using 
MaxEntScan41. In 3’ intronic, 3’ core, and exonic bins, we included a 3’ cryptic splice site creation term 
and, in the exonic, 5’ extended, 5’ core, and 5’ intronic bins, we included a 5’ cryptic splice site creation 
term. For each variant, we scanned for the highest scoring splice site motif that overlaps the variant, 
excluding reference splice sites. We used as features the strength of the cryptic site, the change in the 
strength of the cryptic site induced by the variant, the distance from the reference splice site to the 
cryptic site and the difference in strength between the cryptic site and the reference splice site. 

Model Training and Testing 

We performed 5-fold cross-validation to train and identify a generalizable S-CAP model. 5-fold cross-
validation refers to splitting the data into 5 roughly equally sized parts (folds). All variants found in a 
single gene were included in the same fold to ensure that there was no leakage of feature information 
across the training and test sets. We then merged 4 of 5 sets to form a training dataset, trained the 
model on this training dataset and evaluated on the remaining fold to obtain an expected accuracy. We 
performed this process 5 times (each combination of 4 folds was merged together to form the training 
dataset) testing on the fold that was not included in the training dataset. 

To train the S-CAP model, we used a Gradient Boosting Tree model implemented in the python 
2.7.13 sklearn version 0.18.1 library and used the default parameters to reduce the chance of overfitting 
the model. After training 5 models during the cross-validation phase, we picked the median performing 
model as the final classifier. The ROC curves were built based on performance on the test set for this 
specific median model. 

Comparison Metrics 

We sought to compare our performance to those of other methods used to infer the importance / 
pathogenicity of noncoding variants. We evaluated the performance of each of the methods below by 
using the output score directly as a pathogenicity score. For SPIDEX, we negated the score, as is 
consistent with large negative scores having a larger impact on function and constraint, respectively. We 
report performances for all subsets where the method reported scores for at least 50% of variants. 
Variants where a method did not report a score are excluded from evaluation. 

CADD11 v1.3 scores were downloaded from the CADD website (see URLs). SPIDEX33 scores were 
downloaded directly from the Deep Genomics website on 7 April 2017. Any variant not assigned a 
SPIDEX score was assigned a default value of 0. LINSIGHT30 scores were downloaded directly from the 
LINISGHT website (see URLs) on 7 April 2017. Any variants not assigned a LINSIGHT score was defaulted 

to be 0. Eigen v1.0 coding and Eigen v1.0 noncoding29 Phred scores were downloaded from the Eigen 
website (see URLs). MutPredSplice53 score were downloaded from the MutPredSplice website (see 
URLs).  

As MutPred Splice was trained using some of the same data used to build S-CAP, a random train 
and test split of the pathogenic data would have resulted in the inclusion of variants in the test set that 
were used to train the MutPred Splice classifier. To ensure zero information leakage between the 
training and testing datasets, we carefully built a test set that excluded all MutPred Splice training data.  
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Recessive v. Dominant Classifiers 

We developed separate classifiers for recessive and dominant acting variants in the 3’ and 5’ 
core splice site regions. We opted not to include dominant and recessive classifiers for the other 4 
regions as we did not have a sufficient number of pathogenic variants to train and evaluate multiple 
models and, in our exploration, they made less of an impact. Intuitively, for core variants the molecular 
phenotype is obvious, a loss of splicing. This places the full burden on predicting if this change will result 
in disease, a task heavily dependent upon whether the variant acts via a recessive or dominant 
mechanism. Whereas in the other regions, the majority of possible variants have little impact on 
splicing, making predictions as to whether or not the variant will have an effect on splicing is the primary 
challenge, a task unrelated to inheritance mode.  

When evaluating a patient, core variants observed as heterozygous are routed to the dominant 
classifier and variants observed to be homozygous are routed to the recessive classifier. Since there is no 
genotype information available for the labeled pathogenic and benign variants, we developed a 
framework to label variants as dominant or recessive based on their occurrence in a control population. 
We labeled pathogenic variants observed as heterozygous in the control population as likely recessive, 
because a single copy can be harbored with no major issues, and pathogenic variants never observed in 
the control population as likely dominant. Benign heterozygous variants that are never observed as 
homozygous in the healthy control population provide little information regarding their potential to 
cause a recessive acting disease. In this case, we tagged benign heterozygous variants never observed to 
be homozygous as dominant, and benign variants observed as homozygous as recessive. Additionally, as 
any variant on the X chromosome resembles a homozygous autosomal variant in males, all X 
chromosome variants were labelled as recessive. 
 We encoded whether each variant was considered dominant or recessive as a binary feature 
and trained a single gradient boosting tree model for each region. Then, we found two 95% true positive 
rate thresholds separately based on test sets of only dominant-tagged and only recessive-tagged 
variants. 

Patient Datasets 

Sequencing and diagnosis for all patients was performed by other laboratories. All patient data were 
downloaded by requesting access to the European Genome-Phenome Archive (EGA) and the database of 
Genotype and Phenotype (dbGaP) databases. Variant call files (VCFs) for 11 patients were submitted by 
the Deciphering Developmental Disorders (DDD) study in the European Genome-Phenome Archive 
(EGA) study EGAS00001000775. An additional 3 patient VCFs were submitted to the database of 
Genotype and Phenotype (dbGaP) study phs000655.v3.p1.  

Data availability 

S-CAP scores for all rare variants in the predefined splicing region in the human genome, along with the 
source code repository and final trained models for the S-CAP classifier, will be made available via the S-
CAP website upon publication. 
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URLs 

S-CAP website, http://bejerano.stanford.edu/scap (upon publication) 
S-CAP codebase, https://bitbucket.org/bejerano/splicing_classifier (upon publication) 
RVIS, http://genic-intolerance.org/data/RVIS_Unpublished_ExACv2_March2017.txt 
SPIDEX, http://www.openbioinformatics.org/annovar/spidex_download_form.php  
LINSIGHT, http://compgen.cshl.edu/~yihuang/LINSIGHT/ 
Haploinsufficiency, https://doi.org/10.1371/journal.pgen.1001154 
LabranchOR, http://bejerano.stanford.edu/labranchor/ 
ExAC, ftp.broadinstitute.org/pub/ExAC_release/release1/regional_missense_constraint/ 
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Figures and Tables 

Table 1 

 Method 

Region CADD LINSIGHT,EIGEN,SPIDEX Mutpred Splice 

 Author’s Thresholds 

≥ 20 N/A ≥ 0.6 

3’ 
intronic 

99% N/A N/A 

3’ core 4% N/A N/A 

exonic 98% N/A 48% 

5’core 2% N/A N/A 

5’ 
extended 

96% N/A N/A 

5’ 
intronic 

97% N/A N/A 

Table 1. Misclassification rate (low is good) of existing metrics at author-recommended 
thresholds. The two tools that provide classification thresholds, misclassify 48%-99% of known 
pathogenic variants in different regions. Other tools do not provide a threshold. 
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Table 2 

region CADD LINSIGHT EIGEN SPIDEX MutPred 
Splice 

S-CAP 

3’ intronic ≥ 0.709 ≥  0.048 ≥  3.57 ≤ -1.45 N/A ≥ 0.005 

3’ core  ≥  21.50 ≥  0.767 ≥  7.25 ≤ 1.14 N/A Dom.: ≥ 0.031 

Rec.: ≥ 0.144 

Exonic ≥  0.061 ≥  0.086 ≥  3.78 ≤ -2.31 ≥  0.090 ≥ 0.012 

5’ core ≥  22.6 ≥  0.795 ≥  8.381 ≤ 1.65 N/A Dom.: ≥ 0.032 

Rec.:  ≥ 0.357 

5’ extended ≥  7.423 ≥  0.211 ≥  13.80 ≤ -0.910 N/A ≥ 0.003 

5’ intronic ≥  0.852 ≥  0.047 ≥  0.847 ≤ -1.636 N/A ≥ 0.004 

 
Table 2.  High sensitivity thresholds after recalibrating each method. We retuned each existing 
method for each of Figure 1’s six regions by finding the smallest threshold that resulted in the 
correct classification of 95% of pathogenic variants from that region. S-CAP thresholds for all 
regions (including the dominant and recessive modes) are included in the last column. By 
definition with the high sensitivity thresholds each method will misclassify at most 5% of known 
pathogenic mutations, but their effectiveness at correctly classifying benign variants and 
reducing the number of patient VUS will vary greatly. 
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 Table 3 

Table 3. Causative variants in each patient and pathogenicity predictions. Each row describes 
a single patient, their underlying disease, causative variant and its zygosity, the region of the 
genome in which it is located, and the score and percentile each method assigns to the variant. 
The percentile was computed by measuring the fraction of variants in the same region with a 
score less than the score assigned to the causative variant. The 99th percentile denotes that 
99% of variants in that region have a score less-pathogenic than the one we are observing 

Patient_ID Disease 
chr:pos 
(hg19) 

Zygosity Region SCAP (%-ile) SPIDEX (%-ile) CADD (%-ile) LINSIGHT (%-ile) EIGEN (%-ile) 

DDDP102313 
Koolen-de-

vries 
syndrome 

17:44144914 
C>T 

Heterozyg
ous 

5' Core 0.081 (63.3) -14.532(52.6) 25.8 (77.5) 0.978 (65.6) 15.932 (49.0) 

DDDP100243 
Claes-Jensen 
type mental 
retardation 

X:53245380 
C>A 

Hemizygo
us 

3' Core 0.919 (99.1) -1.305 (22.1) 24.8 (65.02) 0.822 (23.2) N/A 

DDDP110794 
Mental 

Retardation 
3:71037144 

C>T 
Heterozyg

ous 
5' Core 0.217 (88.2) -23.241(69.6) 26.4 (86.9) 0.988 (90.8) 20.234 (73.9) 

DDDP111322 
Nephrotic 
Syndrome 

19:36333453 
C>T 

Compoun
d 

Heterozyg
ous 

3' Core 0.629 (38.5) -1.67 (24.2) 25 (69.8) 0.97 (54.8) 14.702 (40.2) 

DDDP102111 
Epileptic 

encephalopa
thy 

2:166165305 
G>A 

Heterozyg
ous 

5' Core 0.348 (93.6) -32.609 (82.8) 25 (59.8) 0.988 (90.8) 26.022 (87.7) 

DDDP108825 
Cohen 

Syndrome 
8:100729602 

G>A 

Compoun
d 

Heterozyg
ous 

5' Core 0.879 (94.2) -7.189 (35.5) 25.1 (62.2) 0.982 (79.2) 25.405 (85.5) 

DDDP100128 
Sotos 

Syndrome 
5:176673677 

A>G 
Heterozyg

ous 
3' Core 0.137 (81.4) -12.574 (61.1) 22.9 (24.8) 0.961 (94.5) 9.876 (18.6) 

DDDP111152 
Ehlers-
Danlos 

Syndrome 

2:189873948 
G>A 

Heterozyg
ous 

5' Core 0.777 (98.6) -5.594 (31.1) 27.9 (97.5) 0.989 (92.9) 29.666 (90.5) 

DDDP102594 
Mental 

Retardation 
X:135095506 

A>G 
Hemizygo

us 
3' Core 0.758 (98.6) -2.955 (31.0) 24.3 (52.9) 0.874 (29.6) N/A 

DDDP111486 
Noonan 

Syndrome 
11:11914887

4 A>T 
Heterozyg

ous 
3' Core 0.539 (97.6) -28.352 (89.7) 24.9 (67.4) 0.982 (79.3) 22.809 (80.2) 

DDDP100281 
Epileptic 

encephalopa
thy 

16:56370773 
G>A 

Heterozyg
ous 

5' Core 0.151 (82.1) -7.739 (37.0) 26.6 (89.2) 0.987 (88.5) 24.055 (84.9) 

C11 

Congenital 
fiber-type 

disproportio
n 

19:38958362 
C>T 

Heterozyg
ous 

Exonic 0.657 (97.8) -0.366 (89.6) 19.430 (97.6) N/A 7.879 (19.8) 

C1 
Dystroglyca

nopathy 

1:46655129 
C>A 

Compoun
d 

Heterozyg
ous 

5' Core 0.817 (77.03)  -52.028 (95.9) 21.500 (14.3) 0.992 (96.8) 
4.976 (7.63) 

 

1:46660532 
G>A 

Exonic 0.095 (83.0) -1.556 (96.4) 12.050 (79.2) N/A 21.658 (76.5) 

E2 
Nemaline 
myopathy 

2:152520057 
C>T 

Compoun
d 

Heterozyg
ous 

5' 
Extend

ed 
0.147 (98.9)  -11.190 (85.4) 19.680 (97.9) 0.981 (79.2) 20.272 (65.0) 

2:152544805 
C>T 

5' Core 0.915 (99.1) -2.970 (22.6) 27.200 (94.1) 0.990 (94.7) 20.384 (74.5) 
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thereby indicating that the variant is considered to be highly pathogenic. Dark and light green 
filled entries have the highest and second highest percentile scores for the given variant, 
respectively. Red entries highlight patients where the causative variant would have been 
classified as benign using the author-recommended thresholds.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2018. ; https://doi.org/10.1101/343749doi: bioRxiv preprint 

https://doi.org/10.1101/343749
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Figure 1 

 
Figure 1. Distribution of rare, noncoding variants in the splicing region. We built two sets of rare 
variants near exon boundaries that have no effect on the annotated coding sequence: (A) a set of likely 
benign variants from the Genome Aggregation Database (gnomAD) and (B) a set of putatively 
pathogenic variants from the Human Gene Mutation Database (HGMD) and ClinVar. We developed a 
simple model to ascertain the effect of these variants on splicing, using MaxEntScan to assess if a variant 
created a cryptic splice site (SS) or disrupted the reference splice site, and LaBranchoR in silico 
mutagenesis scores to assess if a variant disrupted a branchpoint (BPT). In (A) and (B), we plot the 
aggregate counts of each variant set as a function of position relative to the nearest splice site, colored 
by their putative effect. Nearly 97% of pathogenic variants in the splicing region (as defined in the text) 
are predicted to have a putative deleterious effect on splicing, as compared to only 18% of benign 
variants. (C) We split the variants into different regions with largely homogenous function. The majority 
of known pathogenic variants (and the easiest ones to detect) are found in the 3’ and 5’ core splice site 
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regions, whereas the majority of benign variants are found in the 3’ intronic, exonic and 5’ intronic 
regions. In a typical (median) individual from the 1000 genomes project (KGP), the distribution of 
variants is similar to the distribution of gnomAD benign variants.   
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Figure 2 

 
Figure 2. Overall performance per region for splicing pathogenicity classification. For each method, 
1000 threshold points were determined by evenly spanning the range from the minimum to the 
maximum score observed for the method. A true positive rate and false positive rate were determined 
for each threshold value and used to build the receiver operating characteristic (ROC) curve. We 
compared to the next best method in each region and found that S-CAP performs 17.2% better in the 3’ 
intronic region (A), 26.6% better in the 3’ core sites (B), 20.9% better in the exonic region (C), 20.7% 
better in the 5’ core sites (D), 15.5% better in the 5’ extended region (E) and 14.4% better in the 5’ 
intronic region (F). S-CAP outperforms existing metrics in all regions whereas none of the existing 
methods consistently outperforms the others.  
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Figure 3 

 
Figure 3. Overall performance on patient data. We take a weighted sum of the AUC from each of the 6 
regions based on the distribution of variants seen in a typical individual to form an overall receiver 
operating characteristic (ROC) curve representative of the overall performance expected on patients. (A) 
S-CAP improves on the next best method by 21.5% in overall AUC and (B) and by 172% in the hsr-AUC. 
(C) S-CAP reduces the number of splicing related variants of uncertain significance (VUS) from patient 
exomes by 40% while maintaining the pathogenic variants with 95% sensitivity. At the same sensitivity 
requirement, existing methods reduce the VUS by only 4% - 15%. (D) We observe a similar reduction in 
VUS over all (n=2054) Thousand Genomes Project individuals, which conceptually only differ from 
Mendelian disease patients by up to 2 mutations. 
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Supplementary Figures 

Supplementary Table 1 

Feature Category Features Description 
Chromosome Level  X, Y or not XY 3 binary features to indicate whether a variant is found on the 

autosomes or the X or Y chromosome 

Gene Level  RVIS Measure of gene mutability. Observed v. Expected variant 

abundance 

pLI Measure of gene loss of function tolerance.  

haploinsufficiency score Recessive or dominant gene inheritance 

Exon Level  # rare 3’ core variants rare variants observed in 3’ core region 

# rare 5’ core variants rare variants observed in 5’ core region 

# common 3’ core variants common variants observed in 3’ core region 

# common 5’ core variants common variants observed in 5’ core region 

# rare 3’ extended variants rare variants observed in 3’ extended region 

# rare 5’ extended variants rare variants observed in 5’ extended region 

# common 3’ extended variants common variants observed in 3’ extended region 

# common 5’ extended variants common variants observed in 5’ extended region 

exon % identity Measure the % identity of hg19 exon with each of the 99 species 

in the multiz100way. Take top 6 PCA components after fitting a 

PCA to all coding exons.  

exon length Number of bases in the exon 

exon length % 3 Number of bases modulo 3 

MPC Regional mutational constraint score 

Variant Level  Spectrum Kernel Count of all 3-mers introduced and removed by mutation 

MaxEntScan The difference in motif match 

SPIDEX Predicted 𝛥𝛹 (change in exon expression) 

distance to 5’ SS Number of bases to the 5’ splice site 

distance to 3’ SS Number of bases to the 3’ splice site 

CADD Functional data SVM-based classifier 

LINSIGHT Conservation based model to identify variants under negative 

selection. 

PhyloP Base-pair conservation across primates, mammals and vertebrates 

PhastCons Regional conservation across primates, mammals and vertebrates 

3’ Intronic  LaBranchoR Sequence based deep learning branchpoint prediction 

3’ Intronic, 3’ Core, 

Exonic  

3’ cryptic splice site creation terms MaxEntScan based feature to measure cryptic splice creation near 

the 3’ side 

Exonic, 5’ Core, 5’ 

Extended, 5’ Intronic  

5’ cryptic splice site creation terms MaxEntScan based feature to measure cryptic splice creation near 

the 5’ side 

3’ Core, 5’ Core Zygosity Indicate whether the variant is seen in a heterozygous or 

homozygous state. 

 

Supplementary Table 1. Description of features used to build S-CAP. The chromosome, 

gene, exon and variant level features were used in all models for all regions. Additional features 

were specific to certain regions. These are enumerated in the rows below the variant level 

features section.   
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Supplementary Figure 1 

 

 
Supplementary Figure 1. Framework for training and evaluating 6 pathogenicity models. The splicing 
region is split into 6 independent regions as defined in Fig. 1c, and a separate model is trained for 
variants residing in each region. Given a set of variants to be scored, we calculate the S-CAP score for 
each variant by using the corresponding model associated with the region where the variant is found.   
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Supplementary Figure 2 

A                                                                           B 

 
Supplementary Figure 2. Performance of S-CAP compared to MutPred Splice. MutPred Splice is a 
computational method for predicting the pathogenicity of exonic synonymous variants. MutPred Splice 
was trained by its authors using a subset of the pathogenic data used to train/test S-CAP. As a result, we 
need to independently test MutPred Splice on a set of variants that was not used in its training. This test 
set comprises rare synonymous variants from HGMD added to the database in 2013 or later. On this set 
S-CAP improves on MutPred Splice by 5.7% when comparing the overall AUC. S-CAP performs especially 
well in the high sensitivity domain and improves on the MutPred Splice hsr-AUC by 204%. 
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Supplementary Figure 3 

 
Supplementary Figure 3. S-CAP performance in the high sensitivity region. The hsr-AUC curve is formed 
by subsetting the overall AUC to just the region where pathogenic variants are correctly classified over 
95% of the time. An hsr-AUC curve is calculated for each of the regions as defined in Fig. 1c.  S-CAP 
improves on the next best method’s hsr-AUC by 472% in the 3’ intronic region (A), 31.1% in the 3’ core 
sites (B), 61.7% in the exonic region (C), 0.28.2% in the 5’ core sites (D), 70.2% in the 5’ extended region 
(E) and 0.57.1% in the 5’ intronic region (F). None of the existing methods consistently outperforms the 
others. 
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Supplementary Figure 4 

 
Supplementary Figure 4. Performance on recessive and dominant classes. The distribution of the 
underlying features is dramatically different for dominant and recessive variants. This results in a big 
difference in performance when classifying recessive and benign variants in the core splice site regions. 
S-CAP achieves an AUC (A) of 0.779 on dominant tagged variants and (B) of 0.880 on recessive tagged 
variants in the 5’ core region. There is a similar performance difference in the 3’ core region where S-
CAP achieves an AUC (C) of 0.805 on dominant tagged variants (D) and of 0.890 on recessive tagged 
variants. In the high sensitivity region, S-CAP achieves an hsr-AUC (E, F) of 0.222 on dominant tagged 
variants and of 0.518 on recessive tagged variants in the 5’ core region (G, H) and of 0.296 on dominant 
tagged variants and of 0.454 of recessive tagged variants in the 3’ core region. S-CAP AUC and hsr-AUC 
are consistently better than those of all other tools, and no existing method consistently outperforms 
the others. 
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