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Abstract 

Recent studies of bulk microglia have provided insights into the role of this immune cell 

type in central nervous system development, homeostasis and dysfunction. 

Nonetheless, our understanding of the diversity of human microglial cell states remains 

limited; microglia are highly plastic and have multiple different roles, making the extent 

of phenotypic heterogeneity a central question, especially in light of the development of 

therapies targeting this cell type. Here, we investigated the population structure of 

human microglia by single-cell RNA-sequencing. Using surgical- and autopsy-derived 

cortical brain samples, we identified 14 human microglial subpopulations and noted 

substantial intra- and inter-individual heterogeneity. These putative subpopulations 

display divergent associations with Alzheimer’s disease, multiple sclerosis, and other 

diseases. Several states show enrichment for genes found in disease-associated 

mouse microglial states, suggesting additional diversity among human microglia. 
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Overall, human microglia appear to exist in different functional states with varying levels 

of involvement in different brain pathologies. 

 

Introduction 

Our understanding of microglia has evolved rapidly with respect to their ontology, 

role in developmental and physiological plasticity, and involvement in 

pathophysiology1,2. Historically, morphological studies using tissue sections3 led to the 

notion of a linear continuum of cell states from a homeostatic state with a ramified 

morphology to an activated state with globular morphology. Recent transcriptome-wide 

studies of bulk ex vivo human microglia have consistently suggested that microglia 

change with age and have profiles enriched for disease genes4-6.  Further, we observed 

that one microglial transcriptional program contributes to the accumulation of tau 

pathology while two others may relate to β-amyloid pathology7. However, these 

analyses used cortical-level data, and the need for greater resolution led us to 

characterize heterogeneity of human microglia at the single-cell level. 

Genetic studies have highlighted a prominent role for microglia in susceptibility to 

different neurodegenerative diseases, particularly Alzheimer’s disease (AD) and 

multiple sclerosis (MS)6,8. These syndromic diseases are heterogeneous at the clinical 

and pathologic level; for example, in a selection of over 1000 older individuals, more 

than 230 unique combinations of neuropathologic features were observed9. These 

concurrent pathologic processes create a diversity of contexts to which microglia 

respond, suggesting there may be large inter-individual variation in microglial states 

layered onto topological and functional variation of homeostatic microglia.  This diversity 
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of states makes targeting microglia in disease challenging: one has to carefully map 

which microglial subset to modulate and in which direction the immunomodulation must 

be applied.  

To address this diversity, we profiled 15,910 cells isolated from the cerebral 

cortices of 7 aged and 8 young and middle-aged adults. Within the microglial cells 

(>97% of the cells), our data identified substantial heterogeneity in cell states, yielding 

an initial catalog of human microglial subpopulations. Compared to previous reports on 

mouse microglia10,11, the human brain seems to harbor a more nuanced impact of 

different disease processes that suggest an element of specialization of microglial cell 

states to different pathologic contexts.  

 

Results 

 

Nature and distribution of human single cell transcriptomic data 

We elected to include a variety of adult human subjects to ensure that we captured a 

reasonable diversity of cortical microglia. Supplementary data 1 outlines the 

demographic characteristics and provenance of each of the profiled samples. In short, 

we processed 7 fresh autopsy samples from the dorsolateral prefrontal cortex, as well 

as 2 fresh samples of hippocampus and 6 samples of temporal neocortex from epilepsy 

surgeries. All samples were processed in the same manner, as previously described6, 

to extract live microglia: we sorted all CD45+/CD11b+/7AAD- cells from the autopsy 

samples (Figure 1a). In addition, since we observed the presence of rare 

CD45+/CD11b- events in the surgical biopsy samples, these were also included in the 
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sequencing effort to comprehensively capture all viable immune cells in the CNS. The 

purified cell suspension from each processed sample was profiled using the droplet-

based Chromium platform from 10x Genomics (Methods).  

A rigorous pre-processing pipeline (Methods) yielded 15,910 individual cells with a 

median of 1,246 cells sequenced per subject (Supplementary data 2). The mean 

number of Unique Molecular Identifiers (UMIs) and genes detected per cell in each 

subject (Figure 1b,c) was comparable among the different donors and specimen 

(autopsy vs surgical) types. We ran an iterative PCA-Louvain clustering12,13 approach 

with stepwise cluster robustness assessment and identified 23 distinct cell clusters with 

a minimum of 20 cells per cluster (Figure 2a). The number of UMIs and the number of 

detected genes was comparable among the different clusters (Supplementary figure 

1).   

In 16 out of 23 clusters (>98% of cells), we detect known myeloid markers (CD14, 

AIF1/IBA1) (Figure 2a). The remaining cells are distributed among a set of putative T-

cell clusters (12_1 through 12_3), a B cell cluster (12_4), and two minor ambiguous 

clusters (15_1 and 15_2) expressing myeloid markers (such as AIF1/IBA1) as well as 

high levels of GFAP (Figure 2a), MBP and SNAP25 (data not shown). These latter two 

clusters could comprise cell doublets, but we cannot unambiguously call them as such 

based on numbers of genes or UMIs detected (Supplementary figure 1). Additionally, 

we detect 29 cells (cluster 16) that are likely erythrocytes, based on hemoglobin 

expression.  Among the 16 myeloid clusters, we found that clusters 13_1 and 13_2 

expressed (1) C1QA, a microglial marker, at very low levels and (2) high levels of 

monocyte specific genes, such as FCN1, VCAN, and LYZ (Supplementary figure 2a), 
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suggesting these two clusters may represent monocytes or monocyte-derived cells. By 

contrast, the remaining 14 clusters express high levels of microglia-specific genes, such 

as C1QA, C1QB, C1QC and GPR34 (Supplementary figure 2b); we therefore deem 

these 14 clusters to be distinct clusters of microglial cell states.  

Visualization of all the profiled cells in a t-SNE projection (Figure 2b) shows that the 

non-microglial clusters (13_1, 13_2, 15_1, 15_2, 12_1, 12_2, 12_3, 12_4 and 16) 

segregate from the microglial clusters. We assessed inter-cluster relatedness using a 

random forest-based machine learning approach to characterize how well individual 

cells could be unambiguously classified to each cluster14 (see Methods section). We 

generated a “constellation diagram”15 representing the likelihood of each cell belonging 

to any cluster in a given pair (Figure 2c). The top three clusters - accounting for 65% of 

cells – have a large proportion of cells ambiguously classified among them. This 

interrelatedness among clusters 1, 2, and 3 suggests that they comprise cells in closely 

related transcriptomic states. The remaining microglial clusters show more distinct 

signatures, as evidenced by the smaller proportion of ambiguous cells. Interestingly, this 

analysis does not support the concept of a single linear relationship among clusters; 

rather, independent microglial clusters appear to share similarities with cluster 1 but less 

so with each other. Although RNA-seq data alone is not sufficient to distinguish cell 

subtypes from cell states, the degree of similarity between clusters 1, 2, and 3 suggests 

that they might be different states of the same underlying cell subtype, whereas the 

remaining clusters might represent more specialized subtypes of microglia. Finally, 

there are no ambiguous cells between any of the non-microglial and microglial clusters, 

highlighting the clear difference between microglia and other cell classes.  
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We then assessed the extent of inter-individual heterogeneity in our data  

(Supplementary figure 3). First, cluster 1 and 2 are well-represented in most 

individuals (Figure 3a). We therefore propose that cluster 1 may represent “homeostatic 

microglia” which fulfill routine tasks necessary for cortical function. Second, there is 

inter-individual variability in the frequency of other microglial clusters, and a subset of 

clusters (9_1,9_2,14_1,14_2) are present in only two older individuals (95 and 97 years 

old) or a single subject with epilepsy (cluster 11) (Figure 3b).  Further, one subject, 

“Epilepsy 1”, has a different cluster frequency pattern from all other subjects (Figure 

3a): clusters 1 and 2 are relatively small and the majority of microglia are distributed 

across 7 other clusters. For this subject alone, the tissue sample was taken from cortex 

that was monitored using subdural electrodes placed for intracranial 

electroencephalogram monitoring for nine days prior to the resection. The resulting 

distribution of microglia away from cluster 1 could thus represent a relatively non-

specific reaction away from homeostasis, caused by the presence of a foreign object. 

Interestingly, clusters 9_1, 9_2, 14_1 and 14_2 were not induced in this sample, 

suggesting that they may not represent a non-specific reactive phenotype but might 

rather be an age-related state. 

 

Annotating the clusters of human microglia 

We next examined genes showing expression restricted to specific microglial 

subtypes. Unique sets of transcription factors and transcriptional regulators were found 

in clusters 5, 7, 10, 11, 9_1, 9_2, 14_1, and 14_2, but not in clusters 1, 2, 3, 4, 6, and 8 
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(Figure 4a). The same is true for cell surface markers (Figure 4b), with the exception of 

cluster 4. The lack of distinct on-off transcription factors and cell-surface markers 

among the first three clusters (1, 2, and 3) is consistent with our hypothesis that these 

three clusters represent homeostatic microglia from which the other clusters differ by 

the up-regulation of specific genes. From a global perspective (Figure 4c and d), 

cluster set 14 has the largest number of differentially expressed transcription factors 

and cell surface molecule-encoding genes, whereas cluster 10 showed upregulation of 

transcription factors but not cell surface molecule-encoding genes. For a subset of 

clusters with distinct markers (Figure 5a), we confirm that the corresponding protein 

expression is restricted to a subset of microglia in the human brain using 

immunofluorescence staining on tissue sections (Supplementary figure 4). The other 

clusters lack such a unique signature but can be defined by combinations of on-off 

genes or differing expression levels of multiple genes. For example, clusters 1, 2, and 3 

are distinguished from one another by a gradient of expression among multiple genes 

(Figure 5b).   

For functional annotation, we focused on those clusters for which a unique set of 

enriched genes could be identified. Gene set analysis16 (Figure 5c, Supplementary 

data 3) reveals that cluster 4 is enriched in genes related to antigen presentation, while 

cluster 5 and 7 feature genes related to anti-inflammatory responses (IL-10, IL-4 and IL-

13). Cluster 9 is enriched in genes belonging to the interferon signaling pathway, and 

cluster 10 is enriched in genes associated with the cell cycle, suggesting that it may 

constitute a pool of proliferating microglial cells. We extended this analysis by assessing 

which transcription factor binding sites are enriched in the promoters of differentially 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 11, 2018. ; https://doi.org/10.1101/343780doi: bioRxiv preprint 

https://doi.org/10.1101/343780


	
   8	
  

expressed genes among these clusters. Using the PASTAA software17, some of the 

strongest enrichments are observed for CREB in cluster 5, RUNX1 in cluster 10 and 

IRF transcription factors and STAT1 regulated genes in cluster sets 9 and 14 

(Supplementary data 4), prioritizing regulators that may play an important in each 

microglial subset. 

We then turned to the annotation of our microglial clusters using other signatures 

found in the literature. In a recent study of the CKp25 mouse model, a microglial subset 

enriched in interferon response genes was implicated in late microglial responses to this 

in vivo perturbation, and a different subset was implicated in the early response10. In our 

data (Supplementary figure 5), the mouse early response genes were only detected in 

cluster 10, suggesting that the early microglial response in the CKp25 mouse model 

may involve a proliferative reaction. The late response signature appears more nuanced 

in humans, with component genes from the mouse study being found in either all 

human microglial clusters or limited to cluster sets 9 and 14, in line with the enrichment 

of these two sets of clusters in interferon response pathways (Supplementary data 4). 

As mentioned above, these four clusters are found only in 2 aged individuals, 

suggesting that they have a very context-specific function. Similarly, a meta-analysis of 

all of the currently available mouse microglia RNAseq datasets determined gene co-

expression modules with unique functionality18. Here again, we find a co-expression 

module that captures the putative proliferating microglia of cluster 10 (Supplementary 

figure 6a) and an interferon response module (Supplementary figure 6b). The 

modules relating to LPS response (Supplementary figure 6c) or neurodegeneration in 
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this analysis of murine data (Supplementary figure 6d) were not enriched in our 

human clusters.   

We also specifically evaluated our human clusters in regards to a recent report of a 

“disease-associated microglia” (DAM) signature11 (Figure 6 and Supplementary figure 

7). Most of the DAM genes were detected in multiple microglial clusters (Figure 6a, 6b 

and Supplementary figure 7a and 7b). Correlations among DAM genes were weak 

throughout the data set, with the exception of P2RY12 and APOE, which display the 

expected anti-correlation in expression levels. We found that cluster 4 showed the 

strongest enrichment for the DAM expression profile, with clusters 6, 8, 9_1, and 9_2 

also showed higher enrichment for the DAM expression profile than the non-DAM 

expression profile (Figure 6b, Supplementary data 5). Thus, while cluster 4 may be 

the most DAM-like cluster, the function attributed to DAM in mice is more distributed in 

human microglia. This observation probably has multiple contributing factors, including 

the phenotypic diversity of human subjects, the potential specialization of different 

microglial subsets to distinct contexts in humans, and technical factors that may have 

reduced the resolution of the murine data. 

 

Discrete microglial subsets are enriched for MS and AD genes 

Given that we have too few subjects to directly evaluate the association of microglial 

clusters to diseases and human traits, we performed enrichment analyses (Methods) to 

identify clusters that may be implicated in disease. We used the DOSE Bioconductor 

package19 to assess statistical enrichment for disease-related genes (Fig 7a, 

Supplementary data 6). The most striking enrichment is seen for cluster 4 and amyloid 
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and Lewy body pathology as well as multiple sclerosis. Cluster 4 also has a more 

modest enrichment for tauopathy-related genes, as do the peripheral myeloid clusters 

(13_1 and 13_2, Supplementary figure 8), while cluster 5 shows some enrichment for 

motor neuron disease genes. We also see that many individual GWAS identified risk 

genes for AD, MS, PD and ALS (Supplementary figure 9a through d, respectively) are 

expressed in most of the clusters, with a subset strongly expressed in cluster sets 9 and 

14. Interestingly, the TSPO gene, the target for all current microglial markers used in 

positron emission tomography studies, is expressed in all clusters (Supplementary 

figure 9e) and is therefore a good proxy for total microglial count. 

We also used a rank-rank hypergeometric approach20 to explore the relationship 

between the different microglia clusters and aging-related traits (Figure 7b, 

Supplementary data 7). Since many of our samples came from autopsies of older 

individuals, we assessed for enrichment of gene signatures derived from our analyses 

of cortical tissue RNAseq profiles in 541 individuals in each set of cluster-specific 

upregulated genes21. We evaluated genes associated with either a clinical or pathologic 

diagnosis of AD as well as with (1) the molecularly specific measures of β-amyloid and 

PHF-tau tangle accumulation, (2) the slope of cognitive decline before death and (3) a 

measure of resilience to cognitive decline (“residual cognition”)22,23. We find that 

clusters 14_1 and 14_2 (which contain genes related to the interferon response) are 

enriched for all of the investigated traits, while cluster 4 only showed an enrichment for 

Alzheimer’s dementia and cognitive decline but not with the histopathological hallmarks 

of the disease (Figure 7b).  
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We also evaluated modules of co-expressed genes defined in the aging human 

frontal cortex21 that we had previously described as being enriched in microglial genes7. 

These five modules include m116, the cortical module most enriched for microglial 

genes, and m5, which is associated with both accumulation of tau pathology and the 

number of morphologically activated microglia in cortical tissue24. Gene-set enrichment 

analysis (Supplementary figure 10, Supplementary data 8) shows that m116 is 

enriched in almost all microglial clusters while m5 is present in a subset of cell clusters. 

This result suggests that morphologically “activated” microglia may exist in different 

transcriptomic states of activation. That each of these five microglial modules defined in 

tissue-level cortical RNAseq data are enriched in a majority of clusters is not surprising, 

as only those signatures shared by a large number of microglia will emerge in tissue 

level data. The important corollary to this point is that tissue-level data, while rich in 

many respects, is inadequate for the detailed investigation of the role of microglia in 

neurodegenerative diseases and aging. 

  

Discussion  

This manuscript presents a new Resource based on 15,430 individual human 

microglial transcriptomes (from 15,910 total number of profiled cells) which are derived 

from 15 individuals and identify 14 putative clusters of microglia. Our analysis identifies 

the microglia subsets involved in homeostasis, proliferation, interferon response, and 

diseases such as AD and multiple sclerosis. We document inter- and intra-individual 

heterogeneity in microglial states, including intriguing subpopulations with an interferon 
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response present only in 2 older individuals. Our data are searchable at 

https://vmenon.shinyapps.io/microglia. 

This report contains several insights. First, the major populations of microglia are 

found in both autopsy and surgical samples, and their frequencies are similar across 

both types of samples. This suggests that these two sources of primary, live microglia 

do not have large differences arising from technical factors or circumstances 

surrounding the agonal state. We noted the presence of peripheral lymphoid cells in the 

surgical samples and therefore gated on all CD45+ cells for these samples. The total 

number of non-microglial cells is very small, and their provenance is unclear (blood vs. 

infiltrating cells). Second, multiple clusters contain disease-related genes. Thus, the role 

of microglia in human disease is likely to be more nuanced than what has been 

described in the mouse to date, but cluster 4 stands out amongst the other clusters as it 

emerges as disease-related from multiple different analyses. Finally, we find that 

several clusters which are enriched in interferon response genes are only seen in two 

older subjects and another (cluster 11) is seen only in one epilepsy subject, suggesting 

that there may be additional microglial states to discover in other human samples. 

Our study has certain limitations that result from having profiled samples from a 

small number of individuals, given the difficulty in obtaining these samples and the use 

of a multi-step purification pipeline6 to isolate live microglia from human brain tissue. 

First, there may have been a survival bias among microglial subpopulations that are 

successfully profiled. Further, our sample preparation process results in the loss of 

potentially important topological information. Also, we have only sampled three cortical 

regions, and thus profiling a larger number of brain regions and subjects is necessary to 
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improve our reference atlas. Finally, all of the disease analyses reported here are 

indirect, relying on enrichment analyses, and they will need to be confirmed by direct 

analysis as larger sample sizes become available. 

Overall, this Resource opens several avenues of investigation: (1) the exploration of 

functions conducted by the human homeostatic microglial subtype that we have now 

defined molecularly, (2) the generation of more complete transcriptomes, epigenomes, 

and proteomes to elucidate the function of each cluster now that we have markers with 

which to purify them, (3) enhanced in silico analyses of genetic, or tissue-level 

transcriptomic and epigenomic data to assess which microglial subtypes are involved in  

traits of interest, and (4) the identification of the specific subset of microglia to prioritize 

in target validation and clinical development efforts that will lead to therapies that 

modulate microglial function in neurodegenerative diseases.  

Data availability 
The single cell based transcriptomic atlas of human microglia presented here is 
available in the form of a searchable platform at https://vmenon.shinyapps.io/microglia. 
The raw data files are available through Synapse 
(https://www.synapse.org/#!Synapse:syn3219045). 
 
Acknowledgements 
We thank the individuals who have generously donated samples of their brain to 
research either through the RUSH University Alzheimer’s Disease Center, the Brigham 
& Women’s Hospital, the Massachusetts Alzheimer’s Disease Research Center, or the 
Banner Sun Health Research Institute. This research is supported by a fellowship from 
Alzheimer’s Association and by grants from the National Institute of Aging (U01 
AG046152, R01 AG048015, RF1 AG057473) and the National Institute for Neurologic 
Disease and Stroke (R01 NS089674).  
 
Figure legends 
Figure 1. Workflow of human brain myeloid cell scRNAseq study and quality 
control of the resulting dataset. (a) Workflow. Brain myeloid cells were isolated from 
15 donors of both sexes (for a detailed isolation protocol see 6). Autopsy samples 
originated from the DLPFC of deceased aged individuals with various pathologies, while 
surgical biopsy samples were from the temporal neocortex and hippocampus of young 
and middle-aged individuals undergoing temporal lobectomy surgery for intractable 
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epilepsy. Brain myeloid cells were sorted based on their CD11b and CD45 expression 
in autopsy samples. In surgical samples, a CD45 single positive population was 
observed and was included in the purified sample. Each single cell suspension 
preparation of sorted brain myeloid cells was loaded onto one lane of the Chromium 
system (10x Genomics) and the resulting library was sequenced on the HiSeq4000 
platform (Illumina). b-c Quality control of the scRNAseq dataset. The box plots 
represent the median (middle line), 25%, and 75% percentiles. Whiskers extend to the 
most extreme cell no more than 1.5 times the interquartile range, and all cells more 
extreme than the whiskers are represented as circles. Abbreviations: AD, Alzheimer’s 
disease; AF647 (AlexaFluor647) and AF488 (AlexaFluor488), two different 
fluorochromes; DLPFC, dorsolateral prefrontal cortex; FACS, fluorescence activated cell 
sorting; FTD, fronto-temporal dementia; PD, Parkinson’s disease; scRNAseq, single cell 
RNA sequencing; UMI, unique molecular identifier. 
 
Figure 2. scRNAseq identifies unique subsets of human brain myeloid cells. (a) 
Unsupervised iterative PCA-Louvain clustering with a random forest cluster robustness 
assessment identified 23 different clusters of cells in our dataset. Each column 
represents a cell cluster; they are ordered in relation to similarities in their gene 
expression patterns. The number of cells assigned to each cluster is noted at the 
bottom of each column. In rows, we represent the level of expression of selected key 
genes. The size of the dot represents the fraction of cells in a given cluster in which the 
gene was detected (>0 counts per million). The color of the dot represents the average 
expression z-score (calculated over all 15,910 cells) of the cells within a given cluster. 
The bulk of the cells belonged to 16 clusters identifiable as myeloid based on their 
marker gene expression (AIF1/IBA1 and CD14). Of these, 2 clusters (13_1 and 13_2) 
had low expression of C1QA, a microglia marker and probably represent monocytes. A 
small proportion (~2%) of the cells were non-myeloid and belonged to clusters that 
could be characterized by high expression of genes such as GFAP (cluster 15_1 and 
15_2), CD3E (cluster 12_1, 12_2, 12_3), CD79A (cluster 12_4) and HBA1 (cluster 16), 
likely representing astrocytes, T cells, B cells and erythrocytes, respectively. The 
dendrogram at the top represents the hierarchical clustering using the mean expression 
profile of each group. (b) t-SNE plot of the assayed cells. Each dot represents a cell, 
which is color coded based on its cluster identity. The color key is displayed to the right 
of the panel. There is clear segregation of the non-microglial clusters (the monocytic 
cluster in yellow (13_1 and 13_2), the astrocytic cluster in grey (15_1,15_2), the T/B cell 
cluster in teal (cluster group 12), and the erythrocyte cluster in black (16) from the 
microglia clusters, to which the bulk of the cells belong. (c) Constellation diagram 
showing the relationship between the different clusters. For every pair of clusters, a 
bootstrapped random forest approach was run to classify each cell 10 times. Each node 
represents a cluster, scaled by the number of cells that belong to it, and each edge 
represents the fraction of cells that are not 100% classified into a single cluster for each 
pair of clusters. The largest cluster (cluster 1) shares substantial “ambiguously classified 
cells” with clusters 2 and 3, which may suggest a continuum of states among these 
three clusters. The other microglial clusters share fewer cells with cluster 1, with varying 
level of connectivity, while the monocyte and non-myeloid clusters have no edge with 
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the microglial clusters. Abbreviations: tSNE, t-Distributed Stochastic Neighbor 
Embedding. 
 
Figure 3. Cluster distribution within donors and provenance of clusters. (a) 
Distribution of the different cell clusters within donors. Each column represents a 
cluster, and each row represents a subject. The size of the circles corresponds to the 
number of cells present in each cluster for each subject. Cluster 1 is the largest cluster 
in most subjects. The data is normalized by rows. In each row, the different circles add 
up to 100%. Each subject is colored with a different color. (b) Representation of the 
subject-level origin of the cells in each cluster. The size of the circles corresponds to the 
number of cells assigned to each cluster in that subject. The data is normalized by 
columns so that the different circles add up to 100% in each column. Thus, for example, 
while most subjects have cells assigned to Cluster 6, the vast majority of cells assigned 
to Cluster 6 came from subject “Epilepsy 1.” Circles are colored by clusters, following 
the color code outlined in Figure 2.  
 
Figure 4. Identifying potential marker genes for the microglial clusters. . (a) 
Microglial clusters are visualized in columns, and selected transcription factors that are 
enriched in certain clusters are listed in rows. The key code at the bottom of the panel 
illustrates the fact that the size of each dot represents the fraction of cells in a given 
cluster in which the gene was detected (>0 counts per million), and the color of the dot 
represents the mean of the expression z-score (calculated using all 15,910 cells) for the 
cells belonging to that cluster, as in Figure 2.   (b) Same as a), but for cell surface 
genes that are differentially expressed across clusters, which make good targets for 
antibody development. (c-d) Heatmaps representing the number of differentially 
expressed genes in each pairwise comparison between the microglial clusters. In (c), 
we limit the analysis to genes that encode transcription factors and transcriptional 
regulators. In (e), we present the results of an analysis limited to genes encoding cell 
surface proteins. 
 
Figure 5. Functional annotation of the microglial clusters. (a) Heatmap depicting 
the top 20 signature genes of each microglial cluster. Rows represent genes, and each 
cluster is presented in a column. The color coding represents the mean expression over 
the cluster, Z-scored over all the clusters. (b) Violin plot showing the gene expression 
differences between the first four clusters (in columns) for selected genes (in rows) that 
illustrate the relative differences between these four clusters. These four microglia 
clusters contain the majority of cells and are governed by gradients in the expression 
levels of genes such as SPP1 and MS4A4A. (c) Functional annotation of certain 
microglia clusters using REACTOME pathways enriched for their signature genes (top 
50 differentially expressed genes). Pathways are color coded by cluster, and clusters 
are listed to the right of the panel. (d) Predicted transcription factors whose binding sites 
are enriched among the component genes of each microglial cluster. In rows, the 
names of the consensus transcription binding site matrices are shown. Enrichment p 
values were calculated with PASTAA. The transcription factors are color coded by 
cluster, and the clusters are listed to the right of the panel. Abbreviations: TPM, 
transcripts per million; FDR, false discovery rate. 
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Figure 6. Investigation of the murine DAM phenotype in human microglia. (a) 
Heatmap depicting the expression levels of the genes in the murine Disease Associated 
Microglia (DAM) gene set. Each column represents a cell. Cells are ordered based first 
on cluster and then APOE expression within each cluster. The clusters are labeled at 
the top of the panel. Genes (rows) are ordered based on unsupervised hierarchical 
clustering. The color code represents Z-score of expression for each gene (i.e. 
normalized by row). While some of the DAM genes show some correlation in expression 
levels across cells, the gene set does not appear to be as coherent as it is in mice. (b) 
Figure depicting the expression levels of genes related to the DAM phenotype in each 
microglial cluster. Each cluster is found in one column. The selected genes are either 
upregulated (upper set of genes) or downregulated (lower set of genes) in DAM. The 
size of the dots is proportional to the number of cells expressing the given gene in the 
corresponding cluster. The color of the dots represents the mean Z score of expression. 
Bars on the bottom indicate whether the mean cluster expression correlated more 
strongly with the DAM (red) or the homeostatic (blue) murine microglia RNA-seq 
expression profile (from Keren-Shaul et al. 2018). Clusters 6, 8, 4, 9_1 and 9_2 showed 
the strongest enrichment for the DAM phenotype, while clusters 1, 2, 5 and 11 were 
enriched for the homeostatic signature which is downregulated in DAMs. 
 
Figure 7. Disease association in human microglia clusters. (a) Scatter plots 
depicting brain related diseases – using gene sets from the disease ontology database 
(http://disease-ontology.org/) - that are significantly enriched (adjusted p-value <0.01, 
hypergeometric test with BH correction) in a given microglia cluster - using the signature 
gene sets of each microglia cluster. Results for four different clusters are shown; the 
other clusters are included in Supplementary figure 7. In each plot, the y-axis reports 
the p-value of the enrichment analysis while the x-axis reports the number of genes 
which overlap between the cluster and disease gene sets. (b) Panel reporting the result 
of enrichment analyses between the genes defining the microglia clusters and those 
genes that are associated with pathological or clinical traits found in the aging human 
brain. Significant p-values are shown for those cluster/trait combination where they are 
significant, and the color of each box is related to the strength of the association. The 
adjusted p-value shown here are obtained from the rank-rank hypergeometric test. 
Abbreviations: AD Alzheimer’s disease.  
 
Supplementary figure 1. Comparability of the different clusters. a-b The identified 
clusters were comparable in terms of number of detected genes (a) as well as the 
number of detected UMIs (b). Abbreviations: UMI unique molecular identifier. 
 
Supplementary figure 2. Identity of the myeloid clusters. a Violin plots representing 
the gene expression of genes that have been shown to be monocyte specific, when 
compared to microglia in a human study4. b Violin plots depicting the expression of 
genes that were found to be enriched in microglia when compared to monocytes in 
earlier mouse and human studies4,25,26,27. Abbreviations: TPM Transcripts Per Million; # 
cells number of cells.  
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Supplementary figure 3. Cellular makeup of the clusters by donors. Heatmap 
depicting (row-wise) the number of cells each donor contributed to the given cluster; 
(column-wise) the cluster composition of the cells originating from each donor. Please 
note that clusters 1, 2, 3, 6, 8, 4 and 5 were present in all donors, cluster groups 9 and 
14 were only present in some of the samples originating from aged individuals, while 
cluster groups 12 and 13 were only present in the biopsy samples.  
 
Supplementary figure 4. In situ confirmation of the major microglial subsets. a 
Immunofluorescence analysis confirmed that in the human brain the markers unique to 
5, 11, 10 and the cluster groups 9 & 14 marked subsets of microglia (identified by either 
Iba1 or CD45 staining) respectively. b Violin plot depicting the expression of the 
selected markers in the different microglial clusters. AIF1 is the gene encoding the 
protein AIF1, also called IBA1. PTPRC is the gene encoding the surface marker CD45.  
 
Supplementary figure 5. Cluster annotation based on previously published mouse 
studies – part 1. Figure depicting the expression levels of genes related to the early 
and late response mouse microglia phenotypes described in Mathys et al. 2017. The 
size of the dots is proportional to the number of cells expressing the given gene in the 
corresponding cluster. The color of the dots represents the mean Z score of expression. 
Bars on the bottom indicate whether the mean cluster expression correlated more 
strongly with the different murine microglia RNA-seq expression profiles (from Mathys et 
al. 2017). 
 
 Supplementary figure 6. Cluster annotation based on previously published 
mouse studies – part 2. a Violin plots visualizing the genes associated with the 
proliferation related gene co-expression module in Friedman et al. 2018. b Genes 
associated with the Interferon related gene co-expression module from the same study. 
c Violin plot showing the signature genes of the gene co-expression module associated 
with LPS response (Friedman et al. 2018). d Neurodegeneration related genes from 
Friedman et al. 2018. Please note that apart from the proliferation related gene sets 
from both studies (Supplementary figure 5a and Supplementary figure 6a) the other 
gene sets identified in mouse fail to highlight a single human microglia subset. 
Abbreviations: TPM Transcripts Per Million. 
 
Supplementary figure 6. Cluster and donor wise expression of the DAM signature 
in human microglia subsets. a Violin plots depicting the expression pattern of the 
homeostatic and DAM signature genes in the different human microglia subsets. b 
Violin plots showing the expression pattern of the homeostatic and DAM signature 
genes in the microglia of different donors that participated in our study. Please not the 
general expression of the DAM signature genes across the different human microglia 
subsets (a) and across the different donors (b).  Abbreviations: TPM Transcripts Per 
Million. 
 
Supplementary figure 7. Expression of the mouse DAM signature genes in the 
human microglia subsets and donors. Violin plots depicting the expression 
distribution of the different homeostatic genes and DAM genes in the human microglia 
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clusters (a) and across the different donors (b). Please note that the genes that were 
detected in our dataset were present in all the clusters and all the donors. 
Abbreviations: TPM Transcripts Per Million. 
 
Supplementary figure 8. Disease association of the microglial and the non-
microglial subsets. Scatter plots depicting brain related diseases that are significantly 
associated with the different clusters based on an enrichment analysis between disease 
associated gene sets from the disease ontology database (http://disease-ontology.org/) 
and the signature gene sets of each microglia cluster.  
 
Supplementary figure 9. The expression of neurodegenerative disease risk genes 
in the different clusters. Violin plots showing the distribution of expression levels of 
genes associated with LOAD (a), MS (b) and PD (c) and ALS (d) (from the GWAS 
catalog (https://www.ebi.ac.uk/gwas/)), respectively. Only those genes are shown that 
had a detectable level of expression in at least one of the clusters. Abbreviations: TPM 
Transcripts Per Million; LOAD late onset Alzheimer’s disease; MS multiple sclerosis; PD 
Parkinson’s disease; ALS amyotrophic lateral sclerosis.  
 
Supplementary figure 10. Association of microglia subsets with gene co-
expression modules of the aging human brain. Heatmaps showing the association 
between the microglia clusters and the microglia related gene co-expression modules 
described in detail in Ellis et al. The numbers in the boxes represent the adjusted p-
value from standard gene-set enrichment analysis.  
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Methods 
 
Source of human brain specimens. Five autopsy brain specimens originated from the 
Rush University Medical Center/Rush Alzheimer’s Disease Center (RADC) in Chicago, 
IL from our collaborator Dr. Bennett. The one Parkinson’s disease autopsy sample 
originated from Banner Sun Health Research Institute in Phoenix, AZ through our 
collaborator Dr. Beach. The one frontotemporal dementia autopsy sample was received 
from Drs. Hyman and Frosch from Massachusetts General Hospital, Boston MA. The 
seven surgically resected brain tissue specimens originated from the Brigham and 
Women’s Hospital in Boston, MA fromcollaborators Drs. Sarkis, Cosgrove, Helgager, 
Golden, and Pennell. All brain specimens were obtained through informed consent 
and/or brain donation program at the respective organizations. All procedures and 
research protocols were approved by the corresponding ethical committees of our 
collaborator’s institutions as well as the Institutional Review Board (IRB) of Columbia 
University Medical Center. For a detailed description of the brain regions sampled, age 
of the donors, histopathology and clinical diagnosis please see Supplementary data 1.  
 
The ROS and MAP cohorts at RADC. Five out of seven autopsy specimens used in 
this study originated from two prospective studies of aging: the Religious Orders Study 
(ROS)1 and the Memory and Aging Project (MAP)2. Participants to enter these 
prospective studies have to be at least 53 (ROS) or 55 (MAP) years old and non-
demented at the time of enrollment and sign an Anatomical Gift Act agreeing to donate 
their brain and spinal cord at the time of death. Each subject undergoes annual 
neuropsychologic evaluations while alive and a structured, quantitative neuropathologic 
examination at autopsy. Brain specimens were distributed for this project from autopsies 
taking place Sunday morning to Thursday. Only autopsies for which the post mortem 
delay was less than 12 hours were included in this study. 
 
Shipping of brain specimens. After weighing, the tissue was placed in ice-cold 
transportation medium (Hibernate-A medium (Gibco, A1247501) containing 1% B27 
serum-free supplement (Gibco, 17504044) and 1% GlutaMax (Gibco, 35050061)) and 
shipped overnight at 4°C with priority shipping.  
 
Microglia isolation and sorting. The isolation of microglia was performed as described 
elsewhere3. Breifly, upon arrival of the autopsy sample, the cortex and the underlying 
white matter were dissected under a stereomicroscope. The epilepsy surgery samples 
were processed without dissection as in this case the cortical white and grey matter 
were not always distinguishable. All procedures were performed on ice. From the 
autopsy sample only microglia isolated from the grey matter were used in this study. 
The dissected tissue was placed in HBSS (Lonza, 10-508F) and weighed. Subsequently 
the tissue was homogenized in a 15 ml glass tissue grinder - 0.5g at a time. The 
resulting homogenate was filtered through a 70 um filter and spun down with 300g for 
10 minutes. The pellet was resuspended in 2 ml staining buffer (PBS (Lonza, ) 
containing 1% FBS) per 0.5g of initial tissue and incubated with anti-myelin magnetic 
beads (Miltenyi, 130-096-733) for 15 minutes according to the manufacturers 
specification. The homogenate was than washed once with staining buffer and the 
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myelin was depleted using Miltenyi large separation columns. The cell suspension was 
spun down and incubated with anti-CD11b magnetic beads (Miltenyi, 130-049-601) for 
15 minutes. Following a wash with staining buffer the CD11b+ cells were isolated on a 
Miltenyi MS column while the CD11- fraction was cryopreserved using FBS containing 
10% DMSO. The CD11b positive fraction was than incubated with anti-CD11b 
AlexaFluor488 (BioLegend, 301318) and anti-CD45 AlexaFluor647 (BioLegend, 
304018) antibodies as well as 7AAD (BD Pharmingen, 559925) for 20 minutes on ice. 
Subsequently the cell suspension is washed twice with staining buffer, filtered through a 
70 um filter and the CD11b+/CD45+/7AAD- cells (Supplementary figure 1b) were sorted 
on a BD FACS Aria II sorter. Cells were sorted in A1 well of a 96 well PCR plate 
(Eppendorf, 951020401) containing 100 ul of PBS buffer and submitted to single cell 
library construction. 
 
10x Genomics Chromium single cell 3’ library construction. Viability was assessed 
by trypan blue exclusion assay and cell density was adjusted to 175 cells per µl. 7,000 
cells were then loaded on a single channel on the 10x Chromium chip from each 
sample. The 10x Genomics Chromium technology enables 3’ digital gene expression 
profiling of thousands of cells from a single sample by separately indexing each cells 
transcriptome. First, thousands of cells will be partitioned into nanoliter-scale Gel Bead-
In-EMulsions (GEMs). Within one GEM all generated cDNA share a common 10x 
barcode. Libraries are generated and sequenced from the cDNA and the 10x barcodes 
are used to associate individual reads back to the individual partitions. To achieve 
single cell resolution, the cells are delivered at a limiting dilution. Upon dissolution of the 
Single Cell 3’ Gel Bead in a GEM, primers containing (i) an Illumina R1 sequence (read 
1 sequencing primer), (ii) a 16 nt 10x Barcode, (iii) a 10 nt Unique Molecular Identifier 
(UMI), and (iv) a poly-dT primer sequence are released and mixed with cell lysate and 
Master Mix. Incubation of the GEMs then produces barcoded, full-length cDNA from 
poly-adenylated mRNA. After incubation, the GEMs are broken and the pooled fractions 
are recovered. Full-length, barcoded cDNA is then amplified by PCR to generate 
sufficient mass for library construction. Enzymatic fragmentation and size selection are 
used to optimize the cDNA amplicon size prior to library construction. R1 (read 1 primer 
sequence) are added to the molecules during GEM incubation. P5, P7, a sample index, 
and R2 (read 2 primer sequence) are added during library construction via end repair, 
A-tailing, adaptor ligation, and PCR. The final libraries contain the P5 and P7 primers 
used in Illumina bridge amplification. The described protocol produces Illumina-ready 
sequencing libraries. A Single Cell 3’ Library comprises standard Illumina paired-end 
constructs which begin and end with P5 and P7. The Single Cell 3’ 16 bp 10x Barcode 
and 10 bp UMI are encoded in Read 1, while Read 2 is used to sequence the cDNA 
fragment. Sample index sequences are incorporated as the i7 index read. Read 1 and 
Read 2 are standard Illumina sequencing primer sites used in paired-end sequencing. 
Sequencing the generated library produces a standard Illumina BCL data output folder. 
The BCL data will include the paired-end Read 1 (containing the 16 bp 10x Barcode and 
10 bp UMI) and Read 2 and the sample index in the i7 index read.  
 
Batch structure and sequencing 
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The fresh autopsy and surgical resection samples were processed for microglia 
isolation, library construction and sequencing as they were obtained. Accordingly each 
sample constitute one batch for all three procedures. All sequencing was performed on 
an Illumina HiSeq4000 machine. For specifics regarding the generated reads see 
Supplementary data 2. 
 
Computational methods 
Barcoded reads were demultiplexed and aligned to the GRCh38 genome with 
Ensemble transcriptome annotation (downloaded June 2017, GRCh38.85) using 
CellRanger with default parameters. Only cells with >1000 Unique Molecular Identifiers 
(UMIs) were kept for clustering and downstream analysis. Putative cell types were 
identified using an iterative clustering approach; after regressing out batch and total UMI 
number, all genes with variance greater than the mean were used to cluster cells with 
the PCA-Louvain clustering approach, as implemented in the Seurat R package4. After 
clustering, cluster robustness was assessed by training a classifier on half the cells and 
predicting the cluster membership of the remaining half. Any clusters that showed a 
minimum less than 50% accurate prediction over 20 iterations were merged. Each 
cluster was then iteratively subclustered using the same procedure until no further 
robust clusters were found. After clustering, differential genes were identified over all 
pairs of clusters using the edgeR package5.  
Constellation diagrams showing the relationship among different clusters were 
generated using a cross-validation machine learning approach6. For each pair of 
clusters, cells were classified using five-fold cross-validation using a random forest 
classifier (trained on 80% of the cells). This process was repeated 10 times, resulting in 
a membership score for each cell belonging to one or the other cluster in the pair. Cells 
that were not unambiguously classified (10 times out of 10) to the same cluster were 
called “intermediate” cells. For the constellation diagram, the edges between any two 
clusters represent the percentage of total cells (from the pair of clusters) that were 
called “intermediate”, and the size of the nodes represents the total (core+intermediate) 
cells originally assigned to that cluster. 
For dotplot representations, expression values for a given gene were z-scored over all 
the cells belonging to all the clusters visualized, and then per-cluster means of the z-
scored values were calculated and plotted using the color scheme shown in each figure. 
Sizes of the circles represent the number of cells in the cluster in which the gene was 
detected (TPM>0). 
For all gene-based association tests, we first obtained lists of cluster-specific genes; for 
each cluster, this comprised all genes that showed statistically significant up-regulation 
in comparison to at least one cluster, with the constraint that the gene did not show 
significant down-regulation with respect to any other cluster. Using these cluster-specific 
gene lists, we performed gene ontology analysis using the topGO R package7 with 
standard parameters and Benjamini-Hochberg procedure to control the FDR rate. 
Disease ontology analyses were performed using the DOSE R package8, also with 
standard parameters and Benjamini-Hochberg procedure. To assess enrichment 
cluster-specific signatures in previously-reported microglial modules derived from bulk 
data9,10. Gene-set enrichment analyses were performed with Mann-Whitney test to 
assess whether the module-specific genes showed a different distribution of minimum 
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p-values, as compared to non-module-specific genes. Significance of Mann-Whitney p-
values were compared to 10000 random shufflings of the cluster-specific gene p-values, 
and then Bonferroni-corrected to obtain adjusted p-values. For the association of 
cluster-specific genes with the ROSMAP trait-associated genes, we ran rank-rank 
hypergeometric test11, using increments of 20 genes in each list (cluster-specific genes 
and trait-associated genes), finding the minimum p-value for significant overlap. These 
p-values were then compared to the minimum p-values for significant overlap over 
10000 random shufflings of the two gene sets, and Bonferroni-corrected to obtain 
adjusted p-values. 
 
Immunohistochemistry 
Immunohistochemistry was performed as described elsewhere10. Briefly, 6 µm thick 
sections of human pre-frontal cortex were de-paraffinized with Xylene for 20 minutes. 
The sections were put through an ethanol series (ethanol 100%, ethanol 100%, ethanol 
70% - 1 minute for each) and re-hydrated in water (for 1 minute). Subsequently, the 
slides were washed 3 times with phosphate buffered saline (PBS). Antigen retrieval was 
achieved by putting slides in pH 6.0 citrate buffer and using microwave for 25 min at 
400 Watt. The slides were placed in tap water for 5 minutes, washed three times with 
PBS. Unspecific binding of antibodies was blocked with 3% bovine serum albumin 
(BSA) in PBS containing 0.1% TritonX for 20 min. Primary antibody was applied 
overnight. Subsequently the slides were washed with PBS three times and the 
fluorochrome conjugated secondary antibody was applied to the slides for one hour. 
The slides were again washed three  times with PBS. Endogenous autofluorescence 
was quenched with sudan black for 10 minutes. The slides were again washed with 
BPS three times and mounted with ProlongGold containing DAPI. The primary 
antibodies used were rabbit anti-human Iba1 (Wako; 019-19741; at the dilution of 
1:500), mouse anti-human CD45 (Novus; NB500-319; 1:200), rabbit anti-human ISG15 
(Proteintech; 15981-1-AP; 1:100), mouse anti-human EGR2 (OriGene; TA505382; 
1:50), mouse anti-human UBE2C (Proteintech; 66087-1-IG; 1:50), rabbit anti-human 
PDK4 (Proteintech; 12949-1-AP; 1:50). The secondary antibodies used were goat anti-
mouse IgG (H+L) highly cross-adsorbed secondary antibody conjugated to Alexa Fluor 
Plus 488 (ThermoFisher Scientific; A32723; 1:300) or Alexa Fluor Plus 555 
(ThermoFisher Scientific; A32727; 1:300) and goat anti-rabbit IgG (H+L) highly cross-
adsorbed secondary antibody conjugated to Alexa Fluor Plus 488 (ThermoFisher 
Scientific; A32731; 1:300) or Alexa Fluor Plus 555 (ThermoFisher Scientific; A32732; 
1:300). 
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Figure 7 
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