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Abstract: 
 
Background: Breast cancer is a partially heritable trait and over 180 common genetic variants 
have been associated with breast cancer in genome wide association studies (GWAS).  We 
have previously performed breast cancer GWAS in Latinas and identified a strongly protective 
single nucleotide polymorphism (SNP) at 6q25 with the protective minor allele originating from 
Indigenous American ancestry.  Here we report on additional GWAS and replication in Latinas.  
 
Methods: We performed GWAS in 2385 cases and 7342 controls who were either U.S. Latinas 
or Mexican women.  We replicated 2412 cases and 1620 controls of U.S Latina, Mexican, and 
Colombian women.  In addition, we replicated the top novel variants in study of African 
American and African women and in one study of Chinese women.  In each dataset we used 
logistic regression models to test the association between SNPs and breast cancer risk and 
corrected for genetic ancestry using either principal components or genetic ancestry inferred 
from ancestry informative markers using a model based approach.      
 
Results:  We identified 3 SNPs (p=1.9x10-8 - 2.8x10-8) at 6q25 locus not in linkage disequilibrium 
(LD) with variants previously reported at this locus. These SNPs were in high LD with each 
other, with the top SNP, rs3778609, associated with breast cancer with an odds ratio (OR) and 
95% confidence interval (95% CI) of 0.75 (0.68-0.83).  In a replication in women of Latin 
American origin, we also observed a consistent effect (OR: 0.88; 95% CI: 0.78-0.99; p=0.037).  
Since the minor allele was common in East Asians and African American but not European 
ancestry populations, we replicated in a meta-analysis of those populations and also observed a 
consistent effect (OR 0.94; 95% CI: 0.91 – 0.97; p=0.013).   
 
Conclusion: The effect size of this variant is relatively large compared to other common variants 
associated with breast cancer and adds to evidence about the importance of the 6q25 locus for 
breast cancer susceptibility. Our finding also highlights the utility of performing additional 
searches for genetic variants for breast cancer in non-European populations. 
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Introduction: 

Breast cancer is a partially heritable disease.  Mutations in several high penetrance 

genes including BRCA1[1, 2], BRCA2[3] and others[4] are associated with high risk of breast 

cancer among carriers and explain a fraction of the heritability.  Genome-wide association 

studies have identified over 180 common single nucleotide polymorphisms (SNPs) associated 

with risk of breast cancer [5-20].  The majority of these SNPs were identified in European 

ancestry and East Asian ancestry populations, although some unique SNPs have been 

identified in African American populations[21] and in Latina populations[22, 23].      

Several GWAS studies have identified SNPs at 6q25 that are associated with breast 

cancer risk[13, 18, 20, 23-27] and mammographic density[23, 27-30].  The initial report 

identified a SNP in the intergenic region between ESR1 and CDCC170 in an East Asian 

population[24].  The locus was then confirmed in other populations and several additional 

variants were identified[11, 18, 25, 26, 31].  More recently, a fine-mapping and functional 

approach at this locus identified five distinct common variants associated with risk of different 

subtypes of breast cancer[27]. 

Hispanic/Latino populations are the second largest ethnic group in the U.S.[32] and yet 

have been understudied in genome wide association studies[33].  Latinos are a population of 

mixed ancestry with European, Indigenous American and African ancestral contributions[34-37].  

Since there are no large studies of breast cancer in Indigenous American populations, studies in 

Latinos may identify novel variants associated breast cancer unique to or substantially more 

common in this population.  We have previously used an admixture mapping approach to 

search for breast cancer susceptibility loci in Latinas and identified a large region at 6q25 where 

Indigenous American ancestry was associated with decreased risk of breast cancer[22].  

Subsequently, we identified a SNP (rs140068132) that was common (minor allele frequency 

~0.1) only in Latinas with Indigenous American ancestry and was associated with substantially 

lower risk of breast cancer, particularly estrogen receptor (ER) negative breast cancer and with 
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lower mammographic density[23].  However, the variant we identified did not completely explain 

the risk associated with locus specific ancestry at 6q25 in Latinas, suggesting that other variants 

may account for this risk.  We set out to fine-map and identify additional variants at 6q25 

associated with breast cancer risk among Latinas.    

 
  
Methods: 

Populations: 

San Francisco Bay Area Breast Cancer Study (SFBCS): The SFBCS is a population-

based multiethnic case–control study of breast cancer. Cases aged 35–79 years diagnosed 

with invasive breast cancer from 1995 to 2002 were identified through the Greater Bay Area 

Cancer Registry. Controls were identified by random-digit dialing and matched on 5-year age 

groups. Blood collection was initiated in 1999. For this study, we focused only on cases and 

matched controls who self-identified as Latina or Hispanic and included 351 cases and 579 

controls.  Samples from this study were used as part of the initial discovery set.  

GALA1: GALA1 is a family-based study (including children with asthma and their 

parents) of pediatric asthma in Latino Americans. We included 112 females of self-reported 

Mexican origin from the GALA1 study to our set of population controls. The individuals are 

between 11 and 42 years of age (85% are older than 20 years). Samples from this study 

were used as part of the initial discovery set. 

Breast Cancer Family Registry (BCFR): The BCFR is an international, National 

Cancer Institute (NCI)-funded family study that has recruited and followed over 13,000 breast 

cancer families and breast cancer cases with strong likelihood of genetic contribution to 

disease45. The present study includes samples from the population-based Northern 

California  site of the BCFR. Cases aged 18–64 years diagnosed from 1995 to 2007 were 

ascertained through the Greater Bay Area Cancer Registry. Cases with indicators of 
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increased genetic susceptibility (diagnosis at the age of <35 years, bilateral breast cancer 

with the first diagnosis at the age of <50 years, a personal history of ovarian or childhood 

cancer and a family history of breast or ovarian cancer in first-degree relatives) were 

oversampled. Cases not meeting these criteria were randomly sampled46. Population 

controls were identified through random-digit dialing and frequency-matched on 5-year age 

groups to cases diagnosed from 1995 to 1998. We included 641 cases and 61 controls who 

self-identified as Latina or Hispanic from this study. Samples from this study were used as 

part of the initial discovery set. 

Multiethnic Cohort (MEC): The MEC is a large prospective cohort study in California 

(mainly Los Angeles County) and Hawaii. The breast cancer study is a nested case–control 

study including women with invasive breast cancer diagnosed at the age of >45 years and 

controls matched on age (within 5 years) and self-identified ethnicity47. For the current 

study, we used data and genetic data from 546 Latina women with breast cancer and 558 

matched Latina controls. We also included an additional 1,941 controls who self-identified as 

Hispanic/Latino from this study (935 of these controls are men) selected as part of a GWAS 

of type 2 diabetes[38]. Samples from this study were used as part of the initial discovery set. 

Research Project on Genes Environment and Health (RPGEH): The RPGEH is a large 

cohort study of over 100,000 men and women of all racial/ethnic groups who are members of 

the Kaiser Permanente Health Plan (additional recruitment criteria?).  This analysis focuses only 

on women who are of self-reported Latina/Hispanic ethnicity (N=3801).  We included both 

incident and prevalent cases (total N=225) in our analyses.  We identified 44 women who were 

also included the SFBCS.  The genetic data from these participants were included as part of the 

RPGEH since we considered the Affymetrix Lat array as a more comprehensive array.  

Samples from this study were used as part of the initial discovery set. 

 Cancer de Mama (CAMA) Study: This study is a population-based case–control study 

of breast cancer conducted in Mexico City, Monterrey and Veracruz. Cases aged 35–69 
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years diagnosed between 2005 and 2007 were recruited from 11 hospitals (three to five in 

each region). Controls were recruited based on membership in the same health plan as the 

cases and are frequency-matched on 5-year age groups. For the current study, we used data 

and DNA samples from 1008 women with breast cancer and 1,063 controls.  Of these 698 

cases and 599 controls were genotyped with Oncoarray and included in the discovery.  An 

additional, 310 cases and 464 controls were included as part of the replication dataset.  A 

subset of the samples from this study were used as part of the initial discovery set and 

another subset were used as part of the replication. 

 Colombian Study of Environmental and Heritable Causes of Breast Cancer 

(COLUMBUS): COLUMBUS is a population-based case–control study of breast cancer 

conducted in four cities: Bogota, Ibague and Neiva, from the Central Colombian Andes 

region, and Pasto, from the Colombian South. Incident cases with invasive breast cancer 

aged 18–75 years have been recruited in two population registries and two large cancer 

hospitals. Recruitment started in 2011. Cancer-free controls were recruited through the same 

institutions and were matched on education, socioeconomic status and local origin using a 

genealogical interview. In the current study, we used data from 954 cases and 769 controls 

for the replication study.  

Hereditary Cancer Registry of City of Hope (HCRCOH): (Southern California; PI Jeffrey 

Weitzel).  Latina breast cancer cases are part of the HCRCOH through the Clinical Cancer 

Genetics Community Research Network (CCGCRN). The CCGCRN includes cancer center and 

community-based clinics that provide genetic counseling to individuals with a personal or family 

history of cancer [39]. All patients are invited to participate in the HCRCOH at the time of 

consultation (>90% participation). Starting in May 1998 and continuing to present,  female 

breast cancer cases with self-reported Latino origin were seen for GCRA, enrolled in the 

Registry and underwent BRCA1/2 testing after informed consent.  In the current study we 

genotyped 1148 cases.  The 347 unaffected female Latina controls were from Southern 
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California and were invited to participate at community health fairs, flyers, and at City of 

Hope.  These samples were used as part of the replication study.  

African American Breast Cancer GWAS (AABC): The GWAS includes African American 

participants from 9 epidemiological studies of breast cancer, comprising a total of 3,153 cases 

and 2,831 controls (cases/controls: The Multiethnic Cohort Study (MEC), 734/1,003; The Los 

Angeles component of The Women's Contraceptive and Reproductive Experiences (CARE) 

Study, 380/224; The Women's Circle of Health Study (WCHS), 272/240; The San Francisco Bay 

Area Breast Cancer Study (SFBCS), 172/231; The Northern California Breast Cancer Family 

Registry (NC-BCFR), 440/53;The Carolina Breast Cancer Study (CBCS), 656/608; The 

Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) Cohort, 64/133; The 

Nashville Breast Health Study (NBHS), 310/186; and, The Wake Forest University Breast 

Cancer Study (WFBC), 125/153). Additional details can be found in [21, 40].  These samples 

were used as part of the replication study.  

The ROOT consortium included six studies and a total of 1,657 cases and 2,029 controls 

of African ancestry: The Nigerian Breast Cancer Study (NBCS), 711/624; The Barbados 

National Cancer Study (BNCS), 92/229; The Racial Variability in Genotypic Determinants of 

Breast Cancer Risk Study (RVGBC), 145/257; The Baltimore Breast Cancer Study (BBCS), 

95/102; The Chicago Cancer Prone Study (CCPS), 394/387; and The Southern Community 

Cohort (SCCS), 220/430. Additional details can be found in [21]. These samples were used as 

part of the replication study.  

Shanghai Breast Cancer Study: The SBCS is a population-based, case-control study 

conducted in urban Shanghai. Subject recruitment in the initial phase of the SBCS (SBCS-I) 

was conducted between August 1996 and March 1998. The second phase (SBCS-II) of 

recruitment occurred between April 2002 and February 2005. Breast cancer cases were 

identified through the population-based Shanghai Cancer Registry and supplemented by a rapid 

case-ascertainment system. Controls were randomly selected using the Shanghai Resident 
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Registry. Approximately 3500 cases and 3500 controls were recruited in the study.  A subset of 

these including  with GWAS data including 2731 cases and 2135 controls were used as part o 

the replication study.   

 
Genotyping: 

Genome wide association:  The SFBCS, NC-BCFR, and GALA samples were all genotyped 

with Affymetrix 6.0 arrays at UCSF.  The MEC samples were genotyped with Illumina 660 array 

at USC (546 Latina women with breast cancer and 558 matched Latina controls) and an 

additional 1941 controls were typed on an Illumina 2.5M array at the Broad Institute 

(Cambridge, MA).  The RPGEH samples were typed on an Affymetrix LAT array at UCSF.  

The CAMA samples were typed on an Ilumina Oncoarray at the Quebec Genome Center.  

The COLUMBUS samples were typed on an Affymetrix Biobank Array.  Genotyping in the 

AABC consortium was conducted using the IlluminaHuman1M-Duo BeadChip.  Genotyping in 

the ROOT consortium was conducted using the Illumina HumanOmni2.5-8v1 array at Johns 

Hopkins University Center for Inherited Disease Research. The Shanghai Breast Cancer Study 

samples were typed on on an Affymetrix Genome-Wide Human SNP Array 6.0.  After quality 

control exclusions, the final data set included 2731 cases and 2135 controls for 668 499 

markers.   

Replication genotyping:  The CAMA samples which were not included in the GWAS 

and the CCGRN samples, were genotyped using Taqman probes for rs3778609 .  The CAMA 

samples included 106 ancestry informative markers from genotyped on a Sequenome platform as 

previously described[41].  CCGRN samples included 100 ancestry informative markers that were included 

as part of a sequencing project.  The sequence data were aligned to Hg37 using Burrows-Wheeler 

Alignment and genotype calls were made using Haplotypecaller which is part of the GATK platform. 

Analysis:  
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Genotyping Quality Control and Imputation: Samples with >5% missing genotypes were 

removed from each dataset. We dropped variants with >5% missing data from each dataset.  

Since excess homozygosity is more common in populations with substructure, particularly with 

ancestry informative markers, we did not use deviation from Hardy-Weinberg equilibrium as a 

criteria for excluding markers.  All datasets were entered mapped to Hg19.  Each dataset was 

then phased using SHAPEIT and imputed using the Haplotype Reference Consortium (HRC) 

with Minimac3 [45].   For the MEC datasets which included both 660K and 2.5M arrays, we 

used the overlapping SNPs (N=192,795) and imputed from those since we found that if we 

imputed them separately and then analyzed them together we got a large number of false 

positives.   Each of the remaining GWAS datasets was submitted to the HRC server individually 

for imputation.   Only variants with imputation quality scores of R2>0.5 were selected for 

additional analysis. 

Genotype imputation for the ROOT consortium was conducted using the IMPUTE2 

software  [42] with the 1000 Genomes Project phase I cosmopolitan variant set as the reference 

panel (October 2011 release). Genotype imputation in AABC was conducted using IMPUTE2 

software [42] to a cosmopolitan panel of all 1000 Genome Project subjects (March 2012 

release). Variants with imputation score >0.3 were included in the analysis.  

The Shangai Breast Cancer Study GWAS data were phased with Minimac2 and imputed 

with SHAPEIT using 1000 Genomes Project Phase 3.  Only SNPs with an MAF�≥�0.01 and 

high imputation quality (RSQR�≥�0.5) in three GWAS in the analyses.  

We used KING[43] to identify relative pairs either within the RPGEH cohort or between 

the RPGEH and SFBCS and/or NC-BCFR and performed the same analysis within the MEC 

and the CAMA study.  We identified pairs of individuals with kinship coefficient >0.2 and 

dropped one from each of these pairs. If a relative pair included a case and control then we 

excluded the control.  If a relative pair includes two cases or two controls we randomly dropped 
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one of them.  We dropped 127 individuals to eliminate all closely related individuals from the 

combined RPGEH, SFBCS and NC-BCFR.   

Empirical Assessment of Imputation accuracy: We genotyped rs3778609, the top novel 

SNP, in the CAMA study in samples that also had GWAS data and checked the concordance 

between genotyped and imputed results.  We found excellent concordance between the 

imputed and genotyped data with 1361/1369 (99.4%) concordance between the genotyped and 

imputed datasets.    

Genetic Ancestry Inference  We implemented principal component analysis to assess 

genetic ancestry in each of the discovery datasets in unrelated individuals. To do so, we first LD 

pruned typed SNPs with r2 > 0.2 in PLINK. With the remaining data, we determined the principal 

components (PC) using EIGENSTRAT[44] within smartpca. For the replication datasets, we 

used ancestry informative markers and used the program ADMIXTURE[45] to calculate genetic 

ancestry, assuming a 3 population model with ancestry from African, European and Native 

American populations.  

Association Testing:  We performed single variant association testing using logistic 

regression models and adjusting for PC’s 1-10 in PLINK[46].   For the replication datasets we 

entered ancestry into the model as covariates. We also performed association testing 

separately for estrogen receptor (ER)-positive and ER-negative breast cancer using this 

approach.  In each analysis we also included study as a covariate.  

To calculate linkage disequilibrium (LD), we calculated R2 in the controls in our dataset 

using PLINK.  We then performed conditional analyses by entering the most significant SNP in 

the model as a covariate in addition to PC’s 1-10.  

Power: Based on the sample size for discovery (2396 cases and 7468 controls) we had 

~80% power to detect an odds ratio of 1.25, 1.355 and 1.475 with allele frequencies of 0.4, 0.2, 

and 0.1 respectively.   
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Results: 

Individual Association Analyses:  We conducted a meta-analysis across four GWAS 

discovery studies (Table 1) and identified 28 variants with genome-wide significant p-values at 

the 6q25 susceptibility region(Supplementary Table 1). No additional genome wide significant 

SNPs were identified. The top variants in the region included rs140068132 and rs147157845 

which are in near perfect LD (r2=0.96) and which we have previously reported as genome-wide 

significant in this population[23]. Of the 28 top variants, 25 were in strong linkage disequilibrium 

(r2>0.4) with rs140068132, and 3 were in low LD (r2<0.2).  These SNPs, rs3778609, rs7771984 

and rs6914438 have a minor allele frequency of 0.19 and are in near perfect LD (r2=0.99).  The 

minor allele of these SNPs are associated with lower risk of breast cancer, and the odds ratio 

(OR) for rs3778609 was 0.75  (95% CI: 0.68 – 0.93, p=1.9x10-8; Table 2).  These SNPs are also 

independent (r2<0.2) of previously reported SNPs at this locus (Supplementary Table 2).  

Another SNP, rs851983, was associated with a near genome-wide significant level of 

association (MAF=0.35; OR: 1.24, 95% CI: 1.25-1.34, p= 5.6x10-8 Table 2).  However, this SNP 

is in strong LD with SNPs that were previously reported (Supplementary Table 2).  

Table 1: Discovery and Replication Samples Used 
 

Discovery: Latinas 
Study Genotyping Platform Cases Controls 
BCFR/SFBACS  Affy 6.0 942 699 
RPGEH Affy Axiom 225 3574 
MEC Illumina 1M, 2.5M 520 2470 
CAMA Illumina Oncoarray 698 599 
Total  2385 7342 

Replication: Latinas 
COLUMBUS  

Affy Axiom 
954 769 

CCGRN Taqman 1148 387 
CAMA Taqman 310 464 
Total Latina replication  2412 1620 

Replication: African American  
AABC Illumina 1M 3153  2831  
ROOT Illumina 2.5M 1657   2029  
Total African ancestry replication  4810 4860 

Replication: East Asian ancestry 
Shanghai Breast Cancer Study Affymetrix 6.0 2731  2135 
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We performed conditional analyses by entering rs140068132 and other top SNPs at this 

locus in joint models.  We found that rs3778609, rs7771984 and rs6914438 all remained 

nominally significant in joint models adjusting for rs140068132 (Table 2), although the adjusted 

odds ratios for these 3 SNPs were attenuated (OR~0.81-0.84; p<=0.001).  We also found that 

rs851983 remained nominally significant in joint models with rs140068132 with mild attenuation.  

When we included 3 SNPs that best represent each of the signals from each set of associated 

variants (rs140068132, rs3778609 and rs851983) in the same model all of the SNPs remained 

nominally significant with minimal attenuation of the odds ratios (compared to models including 

just pairs of variants; Table 2). 

Table 2: Representative SNPs and association statistics from each of 4 different SNP 
clusters/regions that are genome wide significant.   
 

SNP/Risk 
allele 

Position 
(BP, Hg19) 

Odds Ratio 
(95% CI) P value 

Conditional 
OR* 

p value 

Joint 
OR** 

P value 

rs140068132-G 6:151954834 0.58 (0.51-0.67) 1.2x10
-13

  
0.66, 5.1x10-8 

rs3778609-T 6:152133187 0.75 (0.68-0.83) 1.9 x10
-8
 0.83, 0.0009 0.87, 0.007 

rs7771894-T 6:152145916 0.76 (0.68-0.83) 2.3x10
-8
 0.84, 0.001  

rs6914438-T 6:152129588 0.73 (0.65-0.81) 4.3x10-8 0.81, 0.001  
rs851983-G 6: 152024415 1.24 (1.15-1.34) 5.6 x 10

-8
 1.17, 0.0007 1.15, 0.001  

 
*Conditional on rs140068132 
** Joint model with rs140068132, rs3778609 and rs851983 

 

Technical Validation and Replication:  We used data from the portion of the CAMA study 

that did not have GWAS data, The COLUMBUS study and the CCGRN to replicate the 

association with rs3778609.  We found a consistent direction in all 3 studies and a nominally 

significant association in a meta-analysis of the 3 studies (n= cases; n=controls; OR=0.88, 95% 

CI: 0.78-0.99, p=0.037, Table 3). 
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Table 3: Replication of rs3778609 in other Latina datasets 
 
Study Odds Ratio (95% Cl) P value 

COLUMBUS 0.87(0.73 -1.04) 0.119 

 CCGRN 0.89(0.70 -1.14) 0.375 

CAMA (excluding GWAS) 0.88(0.69 -1.13) 0.314 

Meta-analysis  0.88(0.78 -0.99) 0.037 

 
Association of Previously Identified SNPs at 6q25: We examined previously reported 

SNPs in our discovery dataset (Supplementary Table 3). Only rs851984 was significant in our 

study.  However, nearly all of the others were directionally consistent and the 95% confidence 

intervals overlapped with the results from previous studies.   

Association with Estrogen receptor subtypes:  We analyzed the association for each of 

the top SNPs separately and jointly by ER-status.  As we have previously reported the minor 

(low risk) allele of rs140068132 is associated with a significantly lower odds ratio for ER-

negative than for ER-positive breast cancer.   We also found a significantly stronger effect size 

for ER-negative breast cancer for rs3778609.  The effect size for rs851983 is also greater for 

ER-negative breast cancer; however, there is no significant difference between ER-negative 

and ER-positive breast cancer for this SNP.  

 
Table 4: Association by Estrogen Receptor Status 
 

 ER-positive ER-negative P value for ER-
positive vs. ER-
negative 

SNP Odds Ratio (95% CI) P value Odds Ratio (95% CI) P value  
rs140068132-G 0.57 (0.46-0.72) 1.0x10-6 0.35 (0.23-0.54) 2.2x10-6 0.033 
rs3778609-T 0.75 (0.65-0.86) 6.7x10-5 0.59 (0.46-0.75) 2.7x10-5 0.037 
rs851983-G 1.22 (1.10-1.36) 2.4x10-4 1.36 (1.15-1.62) 4.6x10-4 0.33 

  
Replication in non-Latinas:  The cluster of new SNPs we identified in this locus 

represented by rs37786109 are common in East Asians (minor allele frequency 0.27) and 

African (minor allele frequency 0.3) ancestry populations (Supplementary table 4), but not in 

European populations (minor allele frequency 0.019 in 1000 Genomes). Therefore, we 
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evaluated the association with this SNP in several additional populations in patients of these 

ancestries including the African American Breast Cancer study, the ROOT study, and the 

Shanghai Breast Cancer Study.  We found a consistent effect for of these studies with a 

significant effect in a meta-analysis of rs3778609, rs7771894 and rs6914438 (Supplementary 

table 4).  We also examined rs3778610 which is in strong LD with these SNPs and had near 

genome-wide significant associations in our discovery sample (Supplementary Table 1).   The 

strongest association in non-Latina populations was with rs3778610 which was particularly 

stronger in African ancestry populations (Supplementary table 4).   

 
Discussion: 

We have previously reported on a SNP at 6q25 associated with a minor allele that is 

unique to Indigenous American populations and associated with decreased risk of breast cancer 

[23].  Here, we investigate this locus in greater depth in an expanded sample size of Latina 

breast cancer cases and controls, the largest sample size of this population analyzed for breast 

cancer risk to date.  We have identified several SNPs that are genome-wide significant and 

associated with breast cancer at this locus independently of other SNPs at this region previously 

reported by us and those previously reported by other groups at this locus.  These SNPs are 

located in the region of ~152.13 – 152.14 MB (Hg19).  Replication in African American and 

Asian samples supports the association with this SNP.  In addition, we have also shown that 

these novel variants at this locus have significantly stronger effect sizes on ER-negative breast 

cancer. Prior studies have also demonstrated a stronger effect size with ER-negative breast 

cancer for most variants at the 6q25 locus, consistent with our data [18, 27]. 

Prior studies in other populations have reported a series of independent SNPs affecting 

breast cancer risk [11, 18, 24-27, 31].  The variants previously reported in other populations are 

not significant in our studies but most are directionally consistent.  A combined fine-mapping 

and functional study of SNPs mapped in other populations at this locus found that they affect 
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expression of ESR1, RMND1 and CCDC170[27].  Since the new variants we report are 

common only in non-European ancestry populations, there is limited data to explore the 

potential effects of these variants on gene expression.  

Our study is limited by sample size. Therefore, it is possible that we have missed other 

variants at this locus. In fact, several previously reported variants have odds ratios with point 

estimates that are close to the previously reported results, but have 95% confidence intervals 

that include 1, as would be expected with insufficient power.   The effect size we observed in the 

replication dataset is substantially lower than in the discovery dataset, likely due to winner’s 

curse.  However, even if we take the replication odds ratio (0.88) as the closest to the true effect 

size of these SNPs, this is still a relatively large effect for a common variant.  It is likely that 

there are other variants that have not yet been identified in European GWAS due to low allele 

frequency and that could be identified in Latinas where they are more common. Larger studies 

of Latina women are needed to identify these variants. 

 

Conclusion 

Our study demonstrates additional unique associations with variants at 6q25 and breast 

cancer risk.  This further highlights the important contribution of this locus to breast cancer 

susceptibility, particularly ER-negative breast cancer susceptibility.  Additional fine- mapping 

and functional studies are needed to elucidate all of the causal variants in our population.  

However, the variants we identified in this study can be useful to add to the increasing pool of 

common variants coming from GWAS and will be particularly useful to risk stratify women of 

Latin American ancestry for breast cancer risk.   
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GWAS: Genome wide association study 
SNP: Single nucleotide polymorphism 
OR: odds ratio 
CI: confidence interval 
PCA: Principal components analysis 
PC: Principal component 
ER: Estrogen receptor 
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