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Abstract

Measuring gene expression of genomically defined tumour clones at single cell resolution
would associate functional consequences to somatic alterations, as a prelude to elucidating path-
ways driving cell population growth, resistance and relapse. In the absence of scalable methods
to simultaneously assay DNA and RNA from the same single cell, independent sampling of cell
populations for parallel measurement of single cell DNA and single cell RNA must be computa-
tionally mapped for genome-transcriptome association. Here we present clonealign, a robust
statistical framework to assign gene expression states to cancer clones using single-cell RNA-seq
and DNA-seq independently sampled from an heterogeneous cancer cell population. We apply
clonealign to triple-negative breast cancer patient derived xenografts and high-grade serous
ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible
using either DNA-Seq or RNA-Seq alone.

Recent advances in genomic measurement technologies have allowed for unprecedented scal-
able interrogation of the genomes and transcriptomes of single-cells (Zahn et al., 2017; Zheng
et al., 2017). Such technologies are of particular interest in cancer, enabling measurement of cell-
autonomous properties which constitute tumours as a whole. Molecular phenotyping at the single-
cell level enables reconstruction of tumour life histories through phylogenetic analysis (Jahn et al.,
2016; Smith et al., 2017), assessment of cell types in the tumour microenvironment (Schelker et al.,
2017), and quantification of intra-tumoural heterogeneity and its clinical implications (Tellez-Gabriel
et al., 2016; Mitra et al., 2014).

Theoretically, combined assays sequencing both RNA and DNA from the same single cell will pro-
vide a measurement of genomic alterations impacting transcriptional programmes. This would yield
a powerful single-cell level genotype-phenotype read out, encoding relevant malignant properties
of clonal expansion, proliferation and metastasis. Moreover, drug responses in cancer are com-
monly driven by positive and negative evolutionary selection of mutation-induced phenotypes, but
genome-independent responses via dynamic epigenetic re-wiring of transcriptional programs have
also been observed (Shaffer et al., 2017). Thus, multimodal approaches assaying both DNA and
RNA are essential for comprehensive study of drug response. While pioneering technologies such
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as G&T-seq (Macaulay et al., 2015) and DR-seq (Dey et al., 2015) sequence both the DNA and
RNA from single-cells, they measure few cells compared to assays that sequence DNA or RNA
alone such as Direct Library Preparation (DLP, Zahn et al. (2017)) or 10X genomics single-cell
RNA-seq (Zheng et al., 2017), and thus provide only a limited view of each tumour’s genomic and
transcriptional heterogeneity.

Independent analysis however, introduces a new analytical challenge in how to associate cells
from independently measured experiments. Assuming a population structure with a fixed number
of clones, this can be expressed as a mapping problem, whereby cells measured with transcrip-
tome assays must be aligned to those measured with a genome assay. To address this problem
we introduce clonealign, a statistical method to assign cells measured with single-cell RNA-seq
to clones derived from low-coverage single-cell DNA-seq (figure 1A). In our approach, clones are
defined at the genomic level by building a phylogenetic tree using single-cell copy number measure-
ments. In order to relate the independent measurements (figure 1B), we assume that an increase
in the copy number of a gene will result in a corresponding increase in that gene’s expression and
vice versa (figure 1C), a relationship previously observed in joint RNA-DNA assays in bulk tissues
(Curtis et al., 2012) and at the single-cell level (Macaulay et al., 2015; Dey et al., 2015; Han et al.,
2018). Based on this relationship we formulate a statistical model that explains the observed gene
expression pattern in terms of the copy number profile of a clone present in the scDNA-seq data
and thus assigns each cell to a clone (methods).

To test the robustness the clonealign model, we performed comprehensive simulations (methods)
where a certain proportion of genes were simulated assuming no CN-expression relationship and
clone assignments re-inferred using clonealign assuming all genes had CN-dependent expres-
sion. We found that clonealign is highly robust to variation in the underlying proportion of genes
with CN-dependent expression (figure 1D and supplementary figure 1), even when up to 50% of
genes do not exhibit CN-dependent expression.

We next investigated the capacity of our approach to reveal clone-specific phenotypic properties in
real cancer data, using the serially passaged triple-negative breast cancer patient derived xenograft
SA501 as a substrate. SA501 exhibits a complex clonal architecture and reproducible clonal dy-
namics over successive xenograft passages (Eirew et al., 2015). Thus it is an ideal model system
to exemplify clone-specific gene expression. We previously described single-cell DLP DNA-seq
for SA501X3F (Zahn et al., 2017), a copy number analysis of which identified three genotypically-
distinct clones (A, B, & C) with prevalences 82.3%, 10.8%, and 6.9% respectively, with clone A
further expanding in subsequent passages.

We linked gene expression to clones in SA501 by generating single-cell RNA-seq from the SA501X2B
xenograft passage using 10X genomics (methods) and assigned each cell to a clone (A, B or C)
using clonealign. 1152 single-cells post-QC (methods) were assigned to clones A, B, and C with
prevalence of 80.6%, 13.8%, and 5.6%, closely matching the expected proportions inferred from
the single-cell DNA-seq (82.3%, 10.8%, and 6.9%). A genome-wide view of the clone-specific copy
number and expression profiles reveals a strong dosage effect as modelled by clonealign in all
but one region (figures 2A&B). The clone assignments are highly confident for clone A but some
cells exhibit uncertainty of assignment between clones B & C (figure 2C), reflecting a combination
of having more cells in clone A as well as more similar expression profiles of B & C but distinct
expression profiles of (B or C) relative to A. This latter explanation is further supported in a t-SNE
analysis (Maaten and Hinton, 2008) using only genes residing in chromosome regions with variable
copy number between clones (figure 2D).

We next sought to validate the clonealign assignments by both testing the internal consistency
of our model and with a held out, orthogonal data source. We re-inferred the clones for SA501X2B
using genes from all chromosomes except 8 and 18. If both the clone assignments and the
expression-CNA assumption are correct then the expression of genes on the held-out chromo-
somes (8 & 18) should closely correlate with the copy number profiles of those chromosomes. In
all-but-one copy number segments of the held-out chromosomes, congruency between copy num-
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Figure 1: Assigning single-cell RNA-seq to clone-of-origin using clonealign. A Given in-
dependently sampled single-cell DNA- and RNA-seq from the same tumour, we would to assign
each cell in RNA-seq space to its clone-of-origin in DNA-space and thus infer clone-specific gene
expression. B The current scalable measurement technologies do not allow for simultaneous mea-
surement of RNA and DNA in the same cell, meaning although the same clones will be present we
will never encounter the same cell in different sequencing assays. C To relate cells as measured
in RNA-space to their clones measured in DNA-space we assume a relationship between gene
copy number and gene expression. D Comprehensive simulations demonstrate the robustness of
clonealign to the underlying proportion of genes exhibiting a copy number dosage effect. If more
than 40% of gene expression has a copy number dependence clone assignment is significantly
better than random, while at more than 50% clone assignment is close to perfect.

ber levels and normalised gene expression was observed: where the copy number profile of a clone
was higher, the normalized gene expression in that chromosome was also higher and vice-versa
(figure 2E). We formulated this into a statistical test asking if given the clone assignments and
copy number profiles we can predict the expression of genes on the held-out chromosomes better
than can be expected at random, with a null distribution established over permuted clone assign-
ments. Comparing clonealign clone assignments to the null distribution with RMSE of predictions
showed significantly better predictive accuracy than could be expected at random (p < 10−3, sup-
plementary figure 2). We then added a further validation measure using a loss-of-heterozygosity
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Figure 2: Inferring clone-dependent gene expression in SA501 triple-negative breast cancer
xenograft. A Clone-specific copy number for ground truth clones in scDNA-seq (bottom) and clone-
specific z-score expression for clonealign inferred clones in scRNA-seq (top) for regions exhibiting
inter-clone copy number aberrations. In every copy number segment except one, when the copy
number for a given clone is higher than others then on average the normalized gene expression is
also higher. B The mean log expression as a function of copy number across all clones. C Clone
assignment probabilities for 1152 single-cell RNA-seq profiles across three clones. clonealign
confidently assigns cells to clone A, with some cells exhibiting high assignment uncertainty be-
tween clones B & C. D A tSNE analysis using only genes residing in copy number regions shows
the cells clustering by clone. E z-score normalized gene expression and copy number profiles for
held-out data on chromosomes 8 & 18 as a function of genomic position (gene index along chro-
mosome). In all but one copy number segment, when the copy number profile of a clone is higher
the normalized gene expression in that chromosome is also higher on average. F Differential ex-
pression analysis for genes residing in regions whose copy number is identical between clones
highlights downregulation of MHC class I proteins.

(LOH) analysis (methods) to discover if clone-specific LOH events observed in DNA space were
also observed in RNA space. A single allele resulting from a genomic LOH event can only yield
mono-allelically expressed transcripts (Ha et al., 2012). Although the allele frequency data were
sparse and low coverage at germline heterozygous sites, we observed an LOH event on chromo-
some 18 in clone B which was mono-allelically expressed in the scRNA-seq (supplementary figure
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3). Finally we quantified the robustness of clonealign to input gene selection by incrementally
reducing the number of input genes and comparing the consistency in clone assignment to the
assignments using all genes (methods), finding up to 60% of genes could be retained and the
resulting clone assignments remain highly consistent (supplementary figure 4).

Having established the validity of the clone assignments, we next sought to determine clone-specific
phenotypes using gene expression as a proxy. We performed a differential expression analysis
comparing cells assigned to clone A to those assigned to clones B & C using Limma voom (Law
et al., 2014). 47% of genes (510/1084) residing in clone-specific copy numbers (CSCN) regions
were differentially expressed compared to 23% of genes in regions with identical copy number
(ICN) regions (1905/8201). Clone A is distinguished by loss of an entire X-chromosome, but it
was previously unknown whether the loss constituted the active or inactive copy. We observed
downregulation of X-inactive specific transcript XIST (supplementary figure 5) - expressed only on
the inactive X chromosome - in clone A, implying the retained chromosome is the active copy.

We next examined the differential expression of genes residing in regions with identical copy num-
ber between clones. By construction these genes would not be impacted by gene dosage in cis, but
may be altered through signalling networks in trans where upstream transcriptional regulators lie
in copy number altered regions. We found systematic downregulation of the MHC class I cell sur-
face proteins in clone A (figure 2F and supplementary figure 6) along with β2 microglobulin (B2M),
suggesting a clone-specific deficiency in presenting intra-cellular proteins to cytotoxic T cells, and
therefore a putative mechanism by which clone A progressively dominates the SA501 xenograft
tumours in subsequent passages. Loss of MHC expression is a mechanism of tumour immune
escape (Garrido et al., 2016, 2012) and our results indicate this may be selected for despite the
immune-deficient environment of the murine host. Importantly, clone A did not exhibit LOH in any
HLA gene in clone A (supplementary figure 7), implying MHC class-I downregulation is due to
transcriptional pathway alterations.

We supplemented our differential expression analysis with a variance components analysis (Arnol
et al. (2018) & methods) to partition gene expression variation into either clone-specific or intrinsic
/ residual. This revealed genes whose expression variation was governed by genomic state (clon-
ality), such as CD44 antigen - a marker of tumorigenic cancer cells (Al-Hajj et al., 2003) - of which
around a quarter of expression variation is clone-specific (supplementary figure 8). To elucidate
which pathways show clone-dependent regulation, we performed a gene set enrichment analysis
(Subramanian et al., 2005) on all genes ranked by proportion of regulation explained by genomic
state. Clone-specific immune response (figure 2F), including pathways involved in MHC class I
mediated antigen presentation were highly ranked. To discover if any transcriptional states existed
within clone assignments, we performed an intra-clonal clustering of the scRNA-seq data using
SC3 (Kiselev et al., 2017) with k = 2 clusters and called cell cycle states using Cyclone (Scialdone
et al., 2015). We found clusters within each clone largely separated based on G2M score ( sup-
plementary figure 9 ), implying the largest source of intra-clonal variation corresponds to cell cycle
stage.

We next applied clonealign to DLP scDNA-seq and 10X genomics scRNA-seq data from two clon-
ally related high grade serous carcinoma (HGSC) cell lines, derived from both ascites (OV2295R)
and solid tumour (TOV2295R) at relapse from the same patient (Létourneau et al., 2012). We con-
structed a single-cell phylogeny on the derived copy number profiles from DLP+ using a Latent
Tree Model (Farahani, 2018), yielding four distinct clades (figure 3A). We assigned the cells as
measured using scRNA-seq to the DLP+ clones using clonealign, and found 1356 (40.9%) map-
ping to TOV2295R_A, 1960 (59.1%) to TOV2295R_B, 490 (33.6%) to OV2295R_C, and 970 (66.4%)
to OV2295R_D (figure 3B, top). To ensure the clone assignments were accurate we tested whether
predicted clone-specific expression of genes on held out chromosome segments correlated well
with the copy number profiles of those genes (figure 3C & supplementary figures 10-12), and found
these assignments to be robust to the choice of input gene (supplementary figures 13-14). Differen-
tial expression analysis on OV2295R identified 267/1122 (23.8%) in CSCN regions and 893/4455
(20.0%) as differentially expressed in ICN regions (supplementary figure 15), while a similar anal-
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Figure 3: Clone-specific gene expression in high-grade serous ovarian cancer cell lines. A
Single-cell phylogeny for the OV2295R and TOV2295R HGSC cell lines inferred using a Latent
Tree Model divided into four clones (TOV2295R_A, TOV2295R_B, OV2295R_C, OV2295R_D). B The
scRNA-seq clone assignments for the four clone model (top), then sub-divided into eight clones
(bottom). C Expression-CNA relationship on two held out chromosomes for TOV2295R validates
the clonealign fit. D Clone-dependent gene expression across OV2295R and TOV2295R.

ysis in TOV2295R identified 953/1504 (63.4%) and 2423/5720 (42.3%) in CSCN and ICN regions
respectively (supplementary figure 16).

We next examined the ability of clonealign to resolve mappings as a function of phylogenetic
distance between clones. In this analysis, higher levels of uncertainty in mappings between closely
related clones is expected, assuming more closely related cells harbour more similar expression
programs. Genomically defining a clone ultimately depends on clade-level groupings of cells that
are approximately similar as a function of phylogenetic distance. We assembled a second set of
clones from the OV2295R-TOV2295R phylogeny by sub-dividing each of the initial 4 clones into
two (supplementary figure 17), and re-assigning each scRNA-seq cell to one of the 8 clones (figure
3B, bottom). We then computed Euclidean distance of each clone to its nearest neighbour and
clone assignment probability for each cell. We found - as expected - a strong anti-correlation
between the similarity of clones in genome space and the certainty with which cells are assigned to
them (supplementary figure 18), demonstrating the analytical challenges of segregating cells into
highly similar clones based on gene expression data alone. We further repeated the intra-clonal
clustering analysis (as above for SA501), clustering each clone into two distinct groups separately
and computing cell cycle phases. As with SA501, we found that in three of the four clones resultant
clusters corresponded to cell cycle phase (supplementary figures 19 & 20), implying the largest
genome-independent source of expression variation corresponds to cell cycle stage.
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Our results establish a scalable statistical framework for assigning cells measured using scRNA-
seq to cancer clones measured independently using shallow scDNA-seq. We expect this approach
can be used ubiquitously in the field of single cell biology including extensions for other multi-
modal approaches such as methylation-transcription and chromatin accessibility-transcription. At
the edge of the field, sparse in situ measurements of transcription integrated with independent dis-
aggregated sampling of single cell genomes are providing a route to studying spatial context of co-
located cell populations. Finally, emergence of commercial platforms whereby single cell, kit-based
assays for methylation, transcription and genome copy number are becoming widely available to
the research community. In all of these settings, clonealign and future derivatives will provide
a statistical framework to help interpret the cellular constituents of cancer, their fitness, and their
phenotypes.

METHODS

CLONEALIGN: MODEL FORMULATION & INFERENCE

We begin with an N × G matrix of expression raw read counts Y for N cells and G genes, and
a G × C matrix Λ = (λgc) of clone specific copy numbers for C clones and G genes. Such a
copy number matrix is typically obtained by phylogenetic analysis of single-cell CNV data, followed
by cutting of the phylogenetic tree to produce C clones or clades. The goal of inference is to
assign each of the N cells as measured in RNA-space to one of the C clones as measured in
DNA-space.

For each cell n = 1, . . . , N we introduce a categorical assignment variable zn defined such that

zn = c if cell n is assigned to clone c (1)

for c = 1, . . . , C. Our assumption is that yng - the expression of gene g in cell n - will be dependent
on the copy number of the gene in the clone to which n is assigned, ie E[yng|zn = c] ∝ µgf(λgc)
where µg is the per-chromosome expression of gene g and f is a dosage function that maps
the copy number of a gene to a multiplicative factor of expression. While this function is a priori
unknown and joint estimation with clonal populations would lead to an unidentifiable model, we can
encode some basic assumptions about gene dosage into our specification of f . We assume that
if the copy number change is small it will lead to a proportional change in expression, e.g. a copy
number of 3 could conceivably lead to 3

2×more expression. Conversely, we assume that if the copy
number change is large, e.g. if a clone has copy number 12 in a particular region, the cells will have
a compensatory mechanism such that fewer than 12

2 × transcripts are produced, and that this is

capped at an upper limit. With these considerations in mind we specify f as f(λ) =

{
λ if λ < ζ

ζ if λ ≥ ζ,
where in our analyses we fix ζ = 4. We leave as future work more sophisticated approaches
such as inferring f from joint genomic-transcriptomic assays or marginalizing out ζ in Bayesian
models.

We next consider specifying the exact likelihood model for clonealign. There is a subtlety in
modelling RNA-seq data as outlined in Robinson and Oshlack (2010) in that the expression of each
gene is measured relative to all other genes in a given library multiplied by the sequencing depth of
that library. Taking this into account is of critical importance to our problem as if a highly expressed
gene sits in a high copy number region in a clone it will cause a decrease in expression of all other
genes. Therefore, the expected count of gene g in cell n conditional on that cell being assigned to
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clone c is given by

E[yng|zn = c] = sn︸︷︷︸
Cell read

depth

Per-chromosome
expression︷︸︸︷
µg × f(

Copy
number︷︸︸︷
λgc )×

Residual
expression︷ ︸︸ ︷
eψn·wg

G∑
g′=1

µg′f(λg′c)e
ψn·wg′

︸ ︷︷ ︸
Total RNA normalization

(2)

where sn is the total library size of cell n. We have introduced a N × Q matrix Ψ with row vectors
ψn and a G × Q matrix W with row vectors wg that we multiply together to produce a low-rank
matrix of random-effects that helps explain residual gene expression variation in a similar manner
to factor analysis. We set Q = 1 and ensure the model is weakly identifiable by imposing priors
zn ∼ N (0, 1) ∀n.

We use a negative binomial likelihood as is commonly used to model both RNA-seq (Robinson and
Oshlack, 2010; Love et al., 2014) and single-cell RNA-seq data (Risso et al., 2017). The mean of
the negative binomial is given by Equation (2) with gene and clone specific dispersions φcg, g =
1, . . . , G, c = 1, . . . , C. Estimating Negative Binomial dispersions can be unstable for low sample
sizes which depends on clonal frequencies and is therefore unknown a priori. To increase the
robustness of this estimation to the presence of rare clones we incorporate a hierarchical shrinkage
prior log φgc ∼ N (ηg, σ

2) for σ2 > 0, where η is inferred from the data and σ2 is set by the user (we
set σ2 = 1 for SA501 and TOV2295R while σ2 = 0.1 for OV2295R). The model as defined in 2 is
invariant to rescalings of all µ so we fix µ1 = 1 and the interpretation of the remaining µ2, . . . , µG

is the per-chromosome expression relative to gene 1. The total library size sn can either be jointly
inferred with the model or fixed beforehand. In all our analyses we set sn as the total counts of
the genes considered multiplied by the TMM normalization (Robinson and Oshlack, 2010) factor
calculated using the total library (across all measured genes).

We perform maximum a-posteriori inference of the model parameters s,µ,φ,Ψ,W,η as well as
the clone assignment probabilities γnc , p(zn = c|Y,Λ, ŝn, µ̂, Φ̂, η̂, Ψ̂,Ŵ) using an Expectation-
Maximization algorithm (Dempster et al., 1977). Given θ(t) denotes the value of parameter θ and
EM iteration t, for each E-step we compute the clone assignment probabilities

γnc , p(zn = c|µ(t−1),α(t−1),Φ(t−1), s(t−1)n ,ψ(t−1)
n ,W(t−1),Y,Λ)

=
αc

∏
gNB(yng|µ

(t−1)
g , s

(t−1)
n , φ

(t−1)
gc , λgc,ψ

(t−1)
n ,w

(t−1)
g )∑

c′ αc′
∏

gNB(yng|µ
(t−1)
g , s

(t−1)
n , φ

(t−1)
gc′ , λgc′ ,ψ

(t−1)
n ,w

(t−1)
g

)
(3)

and form the Q-function

Q(µ,α,Φ, s,η,Ψ,W|µ(t−1),α(t−1),Φ(t−1), s(t−1),η(t−1),Ψ(t−1),W(t−1))

=Ez|µ(t−1),Φ(t−1),s(t−1),α(t−1),η(t−1),Ψ(t−1),W(t−1) [log p(Y, z|Λ,µ,Φ, s,Ψ,W)] + log p(Φ|η) + log p(Ψ)

=
∑
n

∑
c

γnc

[
logαc +

∑
g

log [NB(yng|µg, sn, φg, λgc,ψn,wg)]

]
+
∑
g

∑
c

N (log φgc|ηg, σ2) +
∑
n

N (ψn|0, 1).

(4)
We typically set αc = 1

C for both simulations and real data (where αc is the marginal proba-
bility that a cell originates from clone c), though such parameters may also be jointly inferred.
The M-step involves the optimization of the Q-function with respect to the model parameters for
which there is no analytic solution. Given the high dimensional nature of the optimization problem
(2G+GC +N +Q(N +G) ≥ O(103) parameters) we turn to state-of-the-art high-dimensional opti-
mization techniques designed for deep neural networks, using the Adam optimizer (Kingma and Ba,
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2014) as implemented in Tensorflow. Convergence is assessed by monitoring the log marginal likeli-
hood L =

∑
n log

[∑
c αc

∏
gNB(yng|µg, sn, φcg, λgc)

]
. We found through emprical experimentation

that model convergence is fastest using only a single ADAM update at each EM iteration, equiv-
alent to performing gradient descent on the log marginal likelihood (Berg-Kirkpatrick et al., 2010).
clonealign is open source and available online at http://www.github.com/kieranrcampbell/
clonealign.

SIMULATIONS

To ensure the simulations were as realistic as possible clonealign was fitted to the SA501 dataset
giving an empirical distribution of the model parameters and data p(Φ,µ,Λ)p(s). We then simu-
lated from the clonealign model, sampling from the empirical distribution of model parameters for
N = 500, 1000 cells and G = 500, 800 genes for genes with copy number ∈ 1, 2, 3, 4. For each
simulation, a certain proportion π = 0.3, 0.4, . . . , 0.9 of genes were simulated with a CN-expression
dependency, while the expression of the remaining 1−π proportion had an expression independent
of copy number, achieved by setting the copy number to 2 for all clones during simulation of the
expression, but providing the true copy number during inference as clonealign does not know a
priori which genes exhibit a CN-expression dependency. Datasets were simulated for two clones
corresponding to the A and B clones from SA501 with minor clone frequency uniformly simulated
from [0.1, 0.5). Although clonealign infers clone-specific dispersion parameters these were set to be
equal across clones in simulations (corresponding to the median dispersion inferred across clones
from the joint density) to give a lower bound on model performance (though dispersions were al-
lowed to be clone-specific during inference and σ2 was set to 1). During inference with clonealign
all parameters were set to the defaults, with the metrics of accuracy (mean number of clone calls
correct) as well as the area under the receiver-operator curve (AUC) being reported.

BIOINFORMATICS ANALYSIS

For all scRNA-seq data expression estimates were obtained from raw read counts using CellRanger
(version 2.0.1 for SA501X2B and version 2.1.0 for (T)OV2295R) aligned to hg19. Quality control
of SA501X2B cells removed those with fewer than 1000 counts or 350 expressed genes in regions
of distinct copy number between clones A, B & C. Clone specify copy number calls were created
according to Zahn et al. (2017). X-chromosome genes were removed prior to clonealign analysis
as the expression-copy number assumption will be violated if the deleted/amplified X copy is inac-
tive. For OV2295R and TOV2295R cells were retained with total counts greater than 20000, and
total number of genes detected between 3000 and 7500. Copy number calls for scDNA-seq were
performed using HMMCopy version 1.22.0 and a phylogeny constructed using a latent tree model.
The clone-specific copy number was constructed as the median copy number of all cells in a clone
at a given position. Genes on the X-chromsome were removed as before.

Differential expression (DE) analysis was performed using Limma Voom (Law et al., 2014) version
3.36.0. For SA501X2B genes with greater than 100 total counts were retained for DE. For both
OV2295R and TOV2295R genes with greater than 500 total counts were retained for DE as up to
this threshold the mean-dispersion relationship reported by Limma Voom was visually a poor fit.
All p-values were corrected for multiple hypothesis testing using the Benjamini-Hochberg proce-
dure.

For the SA501 LOH analysis bulk whole-genome DNA sequencing as previously described in Eirew
et al. (2015) was aligned to hg19 using BWA aln version 0.7.10 after which germline LOH alle-
les were identified using samtools 1.7 mpileup followed by VarScan 2.3.9 (Koboldt et al., 2012)
mpileup2snp command (default settings). Single-cell RNA and DNA-seq profiles were merged into
pseudobulk clones using samtools version 1.7 and reads mapping to ref and alt alleles at positions
identified as germline heterozygous called using Varscan mpileup2cns command with default set-
tings other than setting -min-avg-qual 5 on the merged scRNA-seq to increase the number of
callable positions. Regions in the pseudobulk pileups were called LOH using Titan version 1.16.0
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(Ha et al., 2014). We compared the major allele frequency in the region of chromosome 18 from
position 5.5× 107 onwards, finding a significantly reduced major allele frequency in clone A in both
DNA (p = 3.7 × 10−51) and in RNA (p = 5.9 × 10−4), both using one-sided Wilcoxon rank-sum
test.

The results of the simulations in figure 1D suggest that the higher the latent proportion of genes
that exhibit CN-gene dependency, the more accurate our inference. While the set of genes that
exhibit such dependency is unknown a priori and most likely cancer and even patient specific, we
can select a set of genes that are more likely to exhibit such interactions based on previous studies.
Specifically, we took the copy number and expression data from both the BRCA and OV cohorts
from The Cancer Genome Atlas (TCGA, Weinstein et al. (2013)) and regressed log-expression on
logR (relative copy number). We found the vast majority of genes exhibited a positive correla-
tion with logR (supplementary figures 21 & 22). For each cancer type we selected genes with a
multiple-testing adjusted p− value less than 0.05 as putative CN-expression interacting genes, and
used these for the SA501X2B analysis though not for OV2295 as it left too few genes for stable
inference.

To test the robustness of clonealign to input gene selection for the SA501, TOV2295R and OV2295R
datasets we re-fitted clonealign excluding the bottom p% of least variable genes (as defined in log-
expression space), for p ∈ {10, 20, 40, 60, 80, 90}, and compared the concordance in clone assign-
ments between fits. The results can be seen as alluvial plots in supplementary figures 4, 12 & 13,
demonstrating that clonealign is highly robust to the input gene selection and that in general up to
60% of the least variable genes may be removed before the clone assignments begin to significantly
change.

To rank genes by proportion of variance explained by clonality in SA501 the full dataset was subset-
ted to remove any ribosomal genes and those on the X chromosome (due to entire chromosome
loss). We further only considered genes whose variance in log-expression was greater than the
mean variance over all genes to avoid spurious associations (ie if a gene is expressed only in a
single-cell, its entire expression variation is trivially explained by clonality). The proportion of ex-
pression variation was calculated using the aov function in R. Gene Set Enrichment Analysis was
then performed using the fgsea package (Sergushichev, 2016) using all ReactomeDB pathways
with genes ranked according to proportion of expression variance explained by clonality.
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