
 

1

2

3

4

5

6

7

8

9

10

11

12

13

Designing Minimal Genomes Using Whole-Cell Models 

Joshua Rees 1,2^  and Oliver Chalkley 1,3,4^ , Sophie Landon 1,3 , Oliver Purcell 5 , 

Lucia Marucci 1,3,6+  and Claire Grierson 1,2+ * 

 

1 BrisSynBio, University of Bristol, Bristol BS8 1TQ, UK; 

2 School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall 

Avenue, Bristol, BS8 1TQ, UK; 

3 Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK;  

4 Bristol Centre for Complexity Science, Department of Engineering Mathematics, University of 

Bristol, Bristol BS8 1UB, UK; 

5 Prospect Bio, 150 N Hill Drive, Ste 14, Brisbane, CA 94005, USA; 

6 School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, UK;  

 

^Co-first authors  +  Co-last authors  *  Corresponding author  

Corresponding author: Prof. Claire Grierson (claire.grierson@bristol.ac.uk) 

   

1 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/344564doi: bioRxiv preprint 

https://doi.org/10.1101/344564
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Abstract 

In the future, entire genomes tailored to specific functions and environments could be designed using 

computational tools. However, computational tools for genome design are currently scarce. Here we 

present algorithms that enable the use of design-simulate-test cycles for genome design, using 

genome minimisation as a proof-of-concept. Minimal genomes are ideal for this purpose as they 

have a simple functional assay, the cell either replicates or not. We used the first (and currently only 

published) whole-cell model, for the bacterium  Mycoplasma genitalium . Our computational 

design-simulate-test cycles discovered novel  in-silico  minimal genomes smaller than  JCVI-Syn3.0 , a 

bacteria with, currently, the smallest genome that can be grown in pure culture. In the process, we 

identified 10 low essentiality genes, 18 high essentiality genes, and produced evidence for at least 

two  Mycoplasma genitalium   in-silico  minimal genomes. This work brings combined computational 

and laboratory genome engineering a step closer. 

 

Introduction 

For genome-scale engineering and design, minimal genomes are currently the best proof-of-concept 

1 .   These are reduced genomes containing only genes essential for life, provided there is a rich growth 

medium and no external stressors  1,2 . The largest scale efforts in genome minimisation to date 

include:  JCVI-Syn3.0 , a 50% gene reduction of  Mycoplasma mycoides   2 ; several strains of 

Escherichia coli  reduced by 38.9%  3  and 35%  4  of their base pairs  in-vivo ; an  E.coli  gene reduction of 

77.6% in  Saccharomyces cerevisiae   5 ; and two 36% gene reductions of  Bacillus subtilis   6 .  

Initially, these were either prescriptively designed, with requirements based on current biological 

knowledge, or based on extensive laboratory testing of individual genes. These were then developed 

iteratively in the lab, a time consuming and expensive process due to the limitations of current 

techniques and unexpected cell death, likely caused by unknown genetic interactions. This hinders 

progress as laboratories can only follow a small number of high-risk research avenues with limited 

ability to backtrack  1 . 

Another approach, building novel organisms from the bottom-up, is currently infeasible in the 

majority of bacteria due to technological and economic constraints. Megabase sized genomes can 
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be constructed within yeast  5,7 , but one of the most promising approaches, genome transplantation, 

has only been demonstrated in a subset of  Mycoplasmas   8–10  and is mutagenic  9 . 

 

A further barrier to genome minimisation is the dynamic nature of gene essentiality. A simple 

definition of a cell as “living” is if it can reproduce, an  “ essential ”  gene being indispensable for cell 

division. A  “ non-essential ”  gene can be removed and leave division intact  1,11 . But a cell’s need for 

specific genes (and their products) is dependent on the external cellular environment and on the 

genomic context  1  (the presence or absence of other genes, and resulting gene products, in the 

genome), which can change each time a gene is removed. Some essential genes can become 

dispensable with the removal of a particular gene (i.e. a toxic byproduct is no longer produced, so its 

removal is unnecessary), referred to as “protective essential” genes  1,12,13 .  Likewise, some 

non-essential genes become essential when a functionally equivalent gene is removed, leaving a 

single pathway to a metabolite (a “redundant essential” gene pair). Additionally, gene products can 

perform together as a complex, with individually non-essential genes involved in producing an 

essential function  14 ; when enough deletions accumulate to disrupt the group, the remaining genes 

become essential. The cellular death that occurs when redundant essential genes are removed 

together, or complexes are disrupted, is referred to as synthetic lethality     2,15,16 . A recent review  1 

updates gene essentiality from a binary categorisation to a gradient with four categories: no 

essentiality (if dispensable in all contexts), low essentiality (if dispensable in some contexts, i.e. 

redundant essential and complexes), high essentiality (if indispensable in most contexts, i.e. 

protective essential), and complete essentiality (if indispensable in all contexts). These broad labels 

describe an individual gene’s essentiality in different genomic contexts, and are compatible with 

other labels that explain underlying mechanisms and interactions in greater levels of detail.  

 

To overcome the above, large-scale problems we used existing computational models with novel 

genome design algorithms to investigate 10,000s of gene knockout combinations  in-silico , with rapid 

feedback and iteration. Testing potential genome reductions at scale for lethal interactions should 

produce functional  in-silico  genomes, which can be implemented  in-vivo  with a lower risk of failure. 
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This generation of non-prescriptive designs, with no assumed biological requirements outside those 

inherent in the model, increases the likelihood of novel findings.  

 

We used the  Mycoplasma genitalium  ( M.genitalium ) whole-cell model  17 , which describes the 

smallest culturable, self-replicating, natural organism  18  (at the time the model was built). It is the only 

existing model of a cell’s individual molecules that includes the function of every known gene 

product (401 of the 525  M.genitalium  genes), making it capable of modelling genes in their genomic 

context  17 . A single cell is simulated from random initial conditions until the cell divides or reaches a 

time limit. The model combines 28 cellular submodels, with parameters from >900 publications and 

>1,900 experimental observations, resulting in 79% accuracy for single-gene knockout essentiality  17 . 

Outside of single-gene knockout simulations, it has been used to investigate discrepancies between 

the model and real-world measurements  17,19 , design synthetic genetic circuits in the context of the 

cell  20 , and make predictions about the use of existing antibiotics against new targets  21 .  

 

We produced two genome design algorithms (Minesweeper and the Guess/Add/Mate Algorithm 

(GAMA)) which use the  M.genitalium  whole-cell model to generate minimal genome designs. Using 

these computational tools we found functional  in-silico  minimal genomes, between 33 and 53 genes 

smaller than the most recent predictions for a reduced  Mycoplasma  genome of 413 genes  2,15,16 . 

These  in-silico  genomes are ideal candidates for further  in-vivo  testing. 

 

   

4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2019. ; https://doi.org/10.1101/344564doi: bioRxiv preprint 

https://paperpile.com/c/E4OO5p/lRapA
https://paperpile.com/c/E4OO5p/AGlfc
https://paperpile.com/c/E4OO5p/lRapA
https://paperpile.com/c/E4OO5p/lRapA
https://paperpile.com/c/E4OO5p/lRapA+7XtJg
https://paperpile.com/c/E4OO5p/VWXjS
https://paperpile.com/c/E4OO5p/4ZYSi
https://paperpile.com/c/E4OO5p/CWw2o+i9Jj6+ql5Ai
https://doi.org/10.1101/344564
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Results 

Genome Design Tools: Minesweeper and GAMA  

Minesweeper and GAMA conduct whole-cell model simulations in three step cycles: design 

(algorithms select possible gene deletions); simulate (the genome minus those deletions); and test 

(analyse the  in-silico  cell produced). Simulations that produce dividing cells go through to the next 

cycle of simulations. The number of gene deletions increases in each cycle, producing progressively 

smaller genomes. Minesweeper and GAMA have generated 2157 and 53,451 of  in-silico  genomes 

respectively to date, but for brevity only the smallest genomes are presented here. 

 

Minesweeper is a four stage algorithm inspired by divide and conquer algorithms  22 , initially 

investigating genes individually to identify complete/high essentiality genes, before breaking the 

genome into differently sized subsets to broadly test, then accumulating deletions and identifying low 

essential genes as they appear. It deletes genes in groups that get progressively smaller until it 

reaches individual gene deletions, and only deletes non-essential genes (as determined by 

single-gene knockout simulations, see Initial Input below). By not considering essential genes the 

search area is reduced, which makes it capable of producing minimal genome size reductions 

quickly (within two days). It uses between 8 and 359 CPUs depending on the stage, with data 

storage handled by user submitted information and simulation execution conducted manually. 

 

GAMA is a biased genetic algorithm  23 . It first conducts two stages (Guess and Add) of only 

non-essential gene deletions, which form a biased initial generation for the next (Mate) stage. The 

latter follows a standard genetic algorithm process. GAMA produces deletion segments that vary by 

individual genes, requiring 100s-1000s of CPUs. It takes two months to generate minimal genome 

size reductions as it uses between 400 and 3000 CPUs depending on the stage. Custom 

management code is used to coordinate and execute simulations, and store data. 

 

Initial Input 

To generate an initial input for Minesweeper and GAMA we simulated single-gene knockouts in an 

otherwise unmodified  M.genitalium   in-silico  genome (as previously reported  17,19 , Supplementary 
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Information A). The 359 protein-coding genes were simulated individually (10 replicates each), with 

152 genes being classified as non-essential and 207 genes classified as essential (i.e. producing a 

dividing or nondividing  in-silico  cell, respectively). The majority of genes (58%) are essential; this was 

expected, as  Mycoplasmas  are obligate parasites with reduced genetic redundancy  24 . 

 

318 genes showed consistent results across knockout replicates, the same phenotype in 10/10 

cases, with 41 showing inconsistent results. Statistical analysis (binomial proportion confidence 

interval, Pearson-Klopper, 95% CIs for: one 6/10 replicate [5.74, 6.87], 7/10 replicates [6.66, 7.93], 

8/10 replicates [7.56, 8.97], 9/10 replicates[8.45, 9.99]) resulted in the genes being classified by the 

majority phenotype (see Methods and Supplementary Information B & N). Overall, our results agree 

97% with Karr et.al  17 , see Supplementary Information C.  

 

Minesweeper Method and Results 

The first stage of Minesweeper conducts individual gene knockouts  in-silico  to identify complete/high 

essentiality genes, removing them as gene deletion candidates.  

 

The second stage sorts the remaining non-essential genes into deletion segments (from 12.5 to 

100% of the remaining genes (Figure 1) resulting in 26 segments, broadly sweeping for potential low 

essential genes. The deletion segments that produce a dividing  in-silico  cell are carried forward to 

the next stage.  

 

The third stage progresses with the largest deletion segment that produced a dividing cell, which is 

matched with other dividing, non-overlapping segments. A powerset (all possible unique 

combinations of the matched segments) is generated, and each combination of deletion segments is 

simulated in an  in-silico  cell.  

 

The fourth stage is cyclical. The largest deletion combination that produces a dividing cell is used to 

generate a remaining gene list, those yet to be deleted, which narrows down potential conditional 

essential genes. It splits the remaining genes into eight groups (see Methods) and a powerset is 
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generated. Each combination is individually appended to the current largest deletion combination 

and simulated. Again, the largest deletion combination that produces a dividing cell is used to 

generate a remaining gene list, which is used to start the next cycle of the stage.  

 

If none of the combinations produces a dividing cell, the remaining genes are singly appended to the 

largest deletion combination and simulated. The individual remaining genes that don’t produce a 

dividing cell are temporarily excluded and a reduced remaining gene list is produced, which is used 

at the start of the next cycle.  

 

The fourth stage continues until there are eight or less remaining genes (where a final appended 

powerset is run) or all individually appended remaining genes do not produce a dividing cell. Both 

outcomes result in a list of deleted genes and identified low essential genes. 

 

Minesweeper produced results quickly, within two days the third stage removed 123 genes (a 34% 

reduction) comparable to current lab-based efforts in other species  3,4,6 . The repeating fourth stage 

increased the overall number of deletions.  

 

In total, Minesweeper deleted 145 genes (Figure 1), creating an  in-silico M.genitalium  cell containing 

256 genes (named Minesweeper_256), which replicates DNA, produces RNA and protein, grows, and 

divides. 

 

GAMA Method and Results 

The first and second stages of GAMA (Guess and Add) are pre-processing stages that provide input 

for the third stage (Mate), a genetic algorithm. Typically a genetic algorithm would start with random 

gene knockouts, but to reduce the number of generations required to produce minimal genome size 

reductions, the Mate stage starts with large gene knockouts produced by Guess and Add (Figure 2).  

 

In the first stage, Guess, all the non-essential genes from the initial input are segmented into four 

sets, to reduce the size and number of combinations to search through. Each set is then used to 
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generate ~400 subsets, by randomly choosing combinations of 50 - 100% of the genes (~40) in the 

set to delete. The build and test steps are then conducted. If a cell divides, the deletion subset is 

labelled “viable” and carried forward to the next stage. 

 

During the second stage, Add, a number of “viable” subsets are randomly selected from two, three 

or four of the sets, which are combined into a larger set. Being able to select smaller numbers of 

subsets reduces the chance of only producing non-dividing cells. ~3000 combined subsets are 

created, simulated and tested. Those producing a dividing cell are ranked based on the number of 

genes deleted. The 50 smallest genomes are taken forward to the mate stage.  

 

During the third stage, Mate, the 50 smallest genomes are used to speed up the discovery of minimal 

genomes. The mate stage is cyclical, consisting of generations containing 1000 simulations. Each 

simulation in a generation combines two of the 50 smallest  in-silico  genomes at random, and 

introduces random gene knockouts and knock-ins from a pool of all protein-coding genes (including 

complete and high essentiality genes). The genomes produced are ranked and compared to the 

smallest 50 genomes, with the new smallest 50 being carried through to the next generation. The 

mate step automatically stops after 100 generations, but was manually stopped at 46 generations, 

after 20 generations without producing a smaller genome.  

 

In total, the smallest GAMA-reduced  in-silico  genome deleted 165 genes, creating an  in-silico 

M.genitalium  genome of 236 genes (named GAMA_236). GAMA removed more genes than the 

Minesweeper method, while still producing a simulated cell which replicates DNA, produces RNA 

and protein, grows, and divides.  

 

GAMA_236 and Minesweeper_256 Genomes  

We investigated the characteristics of our two minimal genomes in terms of how consistently they 

produced a dividing  in-silico  cell, and the range of possible behaviour they displayed. We simulated 

100 replicates of an unmodified  M.genitalium   in-silico  genome, Minesweeper_256, GAMA_236, and a 

single-gene knockout of a known essential gene (MG_006) to provide a comparison (see 
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Supplementary Information G). The rate of division (or not in the MG_006 knockout simulations) was 

analysed to assign a phenotype penetrance percentage, quantifying how often an expected 

phenotype occurred. The unmodified  M.genitalium  and MG_006 knockout  in-silico  genomes 

demonstrated consistent phenotypes (99% and 0% divided, respectively). Minesweeper_256 was 

slightly less consistent (89% divided), while GAMA_236 was substantially less consistent, producing 

a dividing  in-silico  cell 18% of the time. This is not entirely unexpected given the greater number of 

gene deletions affecting essential gene functions (according to the GO term analysis). 

 

The 100 replicates for the unmodified  M.genitalium  genome, Minesweeper_256, and GAMA_236 

were plotted to assess the range of behaviour (Figure 3). The unmodified  M.genitalium  whole-cell 

model (Figure 3, top row) shows the range of expected behaviour for a dividing cell (in line with 

previous results  17 ). Growth, protein production, and cellular mass increase over time, with most cells 

dividing at around 10 hours, though division can occur between 6 and 11 hours. RNA production 

fluctuates but increases over time. DNA replication follows a characteristic shape, with some 

simulations delaying the initiation of DNA replication past ~9 hours.  

 

By comparison, Minesweeper_256 (Figure 3, middle row) displays slower, and in some cases 

decreasing, growth over time which is capped to a lower maximum. Protein production and cellular 

mass are generated more slowly and present some erratic behaviour. The range of RNA production is 

narrower compared to the unmodified  M.genitalium  whole-cell model. DNA replication takes longer 

and initiation can occur later (at 11 hours). Cell division occurs later, between 8 and 13.889 hours. A 

number of simulations can be seen failing to replicate DNA and divide. 

 

Compared to the other genomes, GAMA_236 (Figure 3, bottom row) shows a much greater range of 

growth rates. Some grow as fast as the unmodified genome, some are comparable to 

Minesweeper_256, and some show very low or decreasing growth. Observable protein levels appear 

between 2 and 5 hours, followed by a slower rate of protein production in some simulations. Cellular 

mass is either similar to Minesweeper_256 or slower. The range of RNA production is reduced and 

the rate of RNA production is slower. 
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Some simulations replicate DNA at a rate comparable to the unmodified genome, others replicate 

more slowly, and some do not complete DNA replication. Cell division occurs across a greater range 

(6 - 13.889 hours). A number of simulations showing metabolic defects can be seen. These do not 

produce any growth, and can also be seen failing to replicate DNA and divide. 

We investigated what processes were removed in the creation of Minesweeper_256, using gene 

ontology (GO) biological process terms (see Methods and Supplementary Information I-K). The 

baseline  M.genitalium  whole-cell model has 259 genes of 401 genes (72% coverage) with GO terms 

on UniProt  25 . Minesweeper_256 has 186 (73%) genes with GO terms and 70 (27%) genes without. 

The 140 gene deletions reduced 22 (14%) GO categories, and removed 41 (27%) GO categories 

entirely, of which 29 (70%) were associated with a single gene (see Supplementary Information L).  

 

The GO categories reduced include: DNA (replication, topological change, transcription regulation 

and initiation); protein (folding and transport); RNA processing; creation of lipids; cell cycle; and cell 

division. As the  in-silico  cells continue to function, we can assume that these categories could 

withstand low-level disruption.  

 

Removed GO categories that involved multiple genes include: proton transport; host interaction; DNA 

recombination and repair; protein secretion and targeting to membrane; and response to oxidative 

stress.  

Removed GO categories that contain single genes include: transport (proton, carbohydrate, 

phosphate and protein import, protein insertion into membrane); protein modification (refolding, 

repair, targeting); chromosome (segregation, separation); biosynthesis (coenzyme A, dTMP, dTTP, 

lipoprotein); breakdown (deoxyribonucleotide, deoxyribose, mRNA, protein); regulation (phosphate, 

carbohydrate, and carboxylic acid metabolic processes, cellular phosphate ion homeostasis); 

cell-cell adhesion; foreign DNA cleavage; SOS response; sister chromatid cohesion; and uracil 

salvage.  

 

These deletions reduce the ability of  M.genitalium  to interact with the environment and defend 

against external forces. This results in a reduction in control, from transport to regulation to genome 
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management, and pruned metabolic processes and metabolites. This leaves Minesweeper_256’s 

in-silico  cell alive, but more vulnerable to external and internal pressures, less capable of responding 

to change, and more reliant on internal processes occurring by chance. 

 

In comparison, GAMA_236 has 163 genes (69% coverage) with GO terms on UniProt  25 , with 73 

genes with no GO terms. The 165 genes deleted reduced 17 (11%) GO categories, and removed 55 

(35%) GO categories, 38 (69%) of which were associated with a single-gene (see Supplementary 

Information M).  

8 unaffected and five reduced GO categories in Minesweeper_256 were removed in GAMA_236, with 

one unaffected GO category unique to GAMA_236 (phosphate ion transmembrane transport). Four 

GO categories were reduced further in GAMA_236: DNA (transcription, transcription regulation, 

transport) and glycerol metabolic process. 

 

The 13 additional GO categories removed include: DNA (transcription (termination, regulation of 

elongation, antitermination, initiation)); RNA (processing (mRNA, tRNA, rRNA), rRNA catabolic 

process, tRNA modification, pseudouridine synthesis); thiamine (biosynthetic process, diphosphate 

biosynthetic process); and protein lipoylation. 

 

GO analysis of GAMA_236, when compared to Minesweeper_256, suggests a further reduction of 

both internal control and reactivity to external environment. 

 

Genes with Low and High Essentiality  

We analysed Minesweeper_256 and GAMA_236 to determine whether these were different minimal 

genomes, or GAMA_236 was an extension of Minesweeper_256. We conducted a gene content 

comparison of an unmodified  M.genitalium , Minesweeper_256, and GAMA_236 genomes (Figure 4, 

Supplementary Information F), highlighting gene deletions unique to each minimal genome. We took 

this a step further and compared Minesweeper_256 to all of the GAMA genomes 256 to 236 genes in 

size. Figure 5 shows the GAMA algorithm’s avenue of gene reductions converging to a minimal 

genome, but Minesweeper_256 is not on the same path of convergence. 
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Our comparison of the genomes found 18 genes knocked out in GAMA_236 that have high 

essentiality  1 . They were defined as essential by single knockout in an unmodified  M.genitalium 

whole-cell model, but could be removed in the genomic context of GAMA_236 without preventing 

division (see Supplementary Information A & E). We also found that four of these 18 genes could be 

removed as a group in the genomic context of Minesweeper_256, but doing so greatly increased the 

number of non-dividing cells produced (see Supplementary Information E).  

 

Our genome comparison also found that Minesweeper_256 removed four genes, and GAMA_236 

removed five genes (Table 1), which could not be removed either individually or as a group from its 

counterpart, without causing cellular death or mutations that prevented cellular division. We 

confirmed that these nine genes were individually non-essential. One additional gene, MG_305, 

could not be additionally removed in both GAMA_236 and Minesweeper_256. Our results 

demonstrate that these nine genes have low essentiality  1 .   To identify the cause of this synthetic 

lethality we attempted to match the functions of these low essentiality genes (Table 1), as we 

anticipated finding redundant essential gene pairs or groups. We found two genes in GAMA_236 

(MG_289, MG_291) had matching GO terms with the gene MG_411 in Minesweeper_256. These, and 

three other adjacent genes on the genome, were tested by combinatorial gene knockouts in an 

unmodified  M.genitalium  whole-cell model genome (see Supplementary Information H). MG_289, 

MG_290, MG_291 were found to form a functional group, as were MG_410, MG_411, MG_412. 

These genes could be deleted individually and in functional groups from an otherwise unmodified 

M.genitalium  whole-cell genome, and produce a dividing  in-silico  cell. However, any double gene 

deletion combination that involved one gene from each functional group resulted in a cell that could 

not produce RNA, produce protein, replicate DNA, grow or divide.  

 

M.genitalium  only has two external sources of phosphate, inorganic phosphate and phosphonate. 

MG_410, MG_411, and MG_412 transport inorganic phosphate into the cell, with MG_289, MG_290, 

and MG_291 transporting phosphonate into the cell  18,26 . These phosphate sources proved to be a 

key difference between our minimal genomes. Minesweeper_256 removed the phosphate transport 
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genes, relying on phosphonate as the sole phosphate source. GAMA_236 removed the phosphonate 

transport genes, relying on inorganic phosphate as the sole phosphate source. This can be seen in 

the GO term analysis, the phosphate ion transmembrane transport is still present in GAMA_236 but 

not in Minesweeper_256. 

 

It has previously been theorised that individual bacterial species will have multiple minimal genomes 

27,28 , with different gene content depending on the environment and which evolutionary redundant 

cellular pathways were selected during reduction. We would argue that one of these selected 

pathways is phosphate source, with minimal genomes differing by choice of phosphate transport 

genes and associated processing stages, equivalent to the  phn  gene cluster in  Escherichia coli  29 . We 

could not however find any annotated phosphonate processing genes that had been subsequently 

removed in GAMA_236. We suspect that further “pivot points”, the selection of one redundant 

cellular pathway over another during reduction, will be identified in future  in-vivo  and  in-silico 

bacterial reductions increasing the base number of minimal genomes per bacterial species. 
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Discussion  

We created two genome design algorithms (Minesweeper and GAMA) that used computational 

design-simulate-test cycles to produce  in-silico   M.genitalium  minimal genomes (achieving 36% and 

41% reductions, respectively). Our minimal genomes are smaller than  JCVI-syn3.0  (currently the 

smallest genome that can be grown in pure culture  2 )     and 33 - 53 genes smaller than the most recent 

predictions for a reduced  Mycoplasma  genome  16 .  

Additionally, we identified 10 low essentiality genes, 18 high essentiality genes  1 , and produced 

evidence for at least two minima for Mycoplasma genitalium  in-silico . We plan to test these results 

experimentally to ascertain the accuracy of the model and the functionality of our minimal genomes.  

 

We believe that single-gene knockout classifications are unreliable for genome minimisation, as they 

fail to take into account genomic context. Single-gene knockout studies will underestimate minimal 

genome size as low essentiality genes will be scored as non-essential  2,15,16 , but they will also 

overestimate minimal genome size as high essentiality genes will be scored as essential. We found 

10 low essential genes within 358 protein-coding genes. As a single synthetic lethality event will 

prevent a genome from surviving, this gives a 3% chance of error for untested genome designs in 

even this evolutionarily reduced genome. Additionally, single-gene knockout studies narrow the 

scope of genome design; the 18 high essentiality genes identified as dispensable within GAMA_236 

would not have been traditionally targeted by laboratory methods.  

 

There are limitations to the approach presented here. Models are not perfect representations of 

reality: through necessity this model bases some of its parameters on data from other bacteria  17 ; 

multi-generation simulations are only possible by isolating one submodel from the rest of model 

(which loses genomic context); and  M.genitalium  has genes of unknown function that the model 

cannot account for.  

The success of our  in-silico  genomes  in-vivo  is dependent on the accuracy of the model, which is 

untested at this scale of genetic modification. Minesweeper_256 and GAMA_236 may only function 

in the first generation of cells and the impact of the unmodelled genes is unknown. These genes may 
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change the genomic context such that our minimal genomes are not successful, or as found with 

JCVI-Syn3.0 the genes of unknown function will be required for viability  2 . 

 

Our algorithms are currently adaptable to future, under development whole-cell models, as the 

algorithms interact with the models only via the input of gene deletion lists and analysing the output. 

This includes the  E.coli  whole-cell model at the Covert Lab, Stanford and the  Mycoplasma 

pneumoniae  whole-cell model at the Karr Lab, Mount Sinai, New York  30 .  

 

We believe that a hybrid of computational and lab based genome design and construction is now 

possible. This could produce quicker and cheaper laboratory results than currently possible, opening 

up this research to broader and interdisciplinary research communities. It also expands our research 

horizons raising the possibility of building truly designer cells, with increased efficiency and functional 

understanding. 
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Methods 

Model Availability 

The  M.genitalium  whole-cell model is freely available:  https://github.com/CovertLab/WholeCell . The 

model requires a single CPU and can be run with 8GB of RAM. We run the  M.genitalium  whole-cell 

model on Bristol’s supercomputers using MATLAB R2013b, with the model’s standard settings.  

However, we use our own version of the SimulationRunner.m. MGGRunner.m is designed for use 

with supercomputers that start hundreds of simulations simultaneously, artificially incrementing the 

time-date value for each simulation, as this value is subsequently used to create the initial conditions 

of the simulation. This incrementation prevents the running of multiple simulations with identical initial 

conditions.  

Our research copy of the whole-cell model was downloaded 2017-01-10. 

 

Code Availability 

The code used for this research is openly available on Github (public code provided on publication). 

This includes the code for Minesweeper and GAMA genome design tools, scripts for statistical 

analysis, scripts for analysing GO terms, our custom simulation runner, analysis scripts, a template 

bash script, as well as the bash scripts and text files used to generate the simulations in this paper. 

 

Statistics 

We used the R binom package ( https://www.rdocumentation.org/packages/binom ) to conduct 

one-tailed binomial proportion confidence intervals on our 41 genes showing inconsistent results 

(success ranging from 6 to 9 replicates, out of a total of 10 replicates). We used binom.confit.exact 

(Pearson-Klopper) using 95% CIs, producing for: 6/10 replicates [0.26, 0.87], 7/10 replicates [0.34, 

0.93], 8/10 replicates [0.44, 0.97], 9/10 replicates[0.55, 0.99]). We graphed these results in R and in 

Python using Seaborn ( https://seaborn.pydata.org/ ), the exact values, code, and graphs produced 

are available in Supplementary Information B & N.  

Figure 5 was generated by creating a similarity matrix between all of the 2955 genomes, with the 

gene information represented in a binary format (present or absent). The matrix calculated a distance 

metric (1 - Adjusted Rand Index), with each genome comparison given a normalised score (0 = the 
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genomes were identical, 1 = as different as would be expected if each genome was generated 

randomly, 2 = completely different). The resulting 2955 x 2955 matrix was then reduced to two 

dimensions with a standard PCA.  

 

Minesweeper 

Minesweeper is written in Python3 and consists of four scripts (one for each stage). It uses no 

external libraries, so should be able to be run on any modern operating system (as they come with 

Python preinstalled) via a terminal. Each stage/script requires a text file(s) as input, with each stage 

outputting simulation files. These are run on a supercomputer and the automatically produced 

summary file is used as input for the next stage. Stages one to three are sequential, with stage four 

repeating until Minesweeper stops. Detailed instructions are provided in the README and progress 

is recorded in the deletion log in /OUTPUT_final. 

The first stage of Minesweeper is optional, if you already have single gene knockout simulation 

results, you can proceed to the second stage. The second stage creates 26 deletion segments: 

100%, 90%A, 90%B, 80%A, 80%B, 70%A, 70%B, 60%A, 60%B, 50%A, 50%B, 33%A-C, 25%A-D, 

12.5%A-H. The A segments start from the top of the list of genes, whereas the B segments start 

from the bottom of the list of genes. The third stage progresses with the three largest deletion 

segments that produced a dividing cell, these three variants are referred to as red, yellow, blue. 

These perform as replicates and as a check on if the results are converging. The three variants are 

matched with smaller, dividing, non-overlapping segments using a list of allowed matches 

(implementation is detailed in third stage script), and unique combinations generated using a python 

implementation of powersets. The fourth stage splits the remaining genes into eight groups. The 

reason for selecting eight groups and three variants, is that a set of eight produces 256 unique 

combinations. Three variants each with 256 simulations (768 total) is 85% of the capacity of 

BlueGem. A set of nine groups with three variants (1536 simulations total) is 170% the capacity of 

BlueGem. Queueing systems mean that you don’t require this number of CPUs in total, but the 

execution time is multiplied as you wait for the simulations to process. The number of variants and 

groups can be lowered or increased depending on the number of CPUs you have available. 
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GAMA 

GAMA is written in Python3 and relies on a variety of different packages. These dependencies can be 

easily taken care of by installing it from PyPI using either ‘pip install genome_design_suite’ or ‘conda 

install genome_design_suite’ (it is recommended that you do this from within a virtual environment 

since this is pre-alpha and has not been extensively tested with different versions of all the libraries). 

A dependencies list is available in the main directory of the github repository if you would like to do 

this manually. The main dependency is the ‘genome_design_suite’ which is a suite of tools created 

by Oliver Chalkley at the University of Bristol which enables it to be easily run on different (or even 

multiple) clusters and well as enabling automatic data processing and database management. Due to 

the large amount of data produced by the Whole-Cell model, the simulation output data was reduced 

to essential data, converted into Pandas DataFrames ( https://pandas.pydata.org/ ) and saved in 

Pickle files. GAMA would have produced 100s of TBs of data in the model’s native output format 

(compressed matlab files) which we are not able to store so this was an essential step. In order to run 

this code you must have a computer dedicated to remotely managing the simulations. A PC with a 

quad-core Intel(R) Xeon(R) CPU E5410 (2.33GHz) and 1GB of RAM running CentOS-6.6 was used as 

our computer manager, which is referred to as OC2. GAMA was run on OC2 using the scripts 

contained in gama_manamgement.zip Each stage of GAMA was run individually and manually 

updated as it was in proof-of-concept stage when GAMA_236 was found. ko.db is an SQLite3 

database used to stored key information about simulations like average growth rate and division 

time. 

 

The guess stage splits the singularly non-essential genes in roughly equally sized partitions. The four 

files, focus_on_NE_split_[1-4].py, run the exploration of each of the four partitions of the guess stage 

from OC2 - after unzipping gama_management.zip these can be found in gama/guess. The 

submission scripts and other files automatically created to run the simulations on the cluster can be 

found in gama_run_files.zip -> gama_run_files/guess. The simulation output is saved in Pickle files 

and can be found in gama_data/guess. Due to a technical problem the growth rate and division time 

of the genomes simulated in this stage are not in ko.db. viability_of_ne_focus_sets_pickles.zip 

contains the viability data of these simulations and the Python script used to collect it. 
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The add stage was executed on OC2 by running the files in gama_management.zip -> gama/add. 

The submission scripts and other files automatically created to run the simulations on the cluster can 

be found in gama_run_files.zip -> gama_run_files/add. The simulation output can be found in 

gama_data/add and an overview of the simulation results can be found in ko.db where the 

batchDescrription.name is some derivative of ‘mix_ne_focus_split’. 

 

The mate stage was executed on OC2 by running the file in gama_management.zip -> gama/mate. 

The submission scripts and other files automatically created to run the simulations on the cluster can 

be found in gama_run_files.zip -> gama_run_files/mate. The simulation output can be found in 

gama_data/mate and an overview of the simulation results can be found in ko.db where 

batchDescription.name is some derivative of ‘big_mix_of_split_mixes’. 

  

Equipment 

We used the University of Bristol Advanced Computing Research Centres’s BlueGem, a 900-core 

supercomputer, which uses the Slurm queuing system, to run whole-cell model simulations. GAMA 

also used BlueCrystal, a 3568-core supercomputer, which uses the PBS queuing system. 

We used a standard office desktop computer, with 8GB of ram, to write new code, interact with the 

supercomputer, and run single whole-cell model simulations. We used the following GUI software on 

Windows/Linux Cent OS: Notepad++ for code editing, Putty (ssh software)/the terminal to access the 

supercomputer, and FileZilla (ftp software) to move files in bulk to and from the supercomputer. The 

command line software we used included: VIM for code editing, and SSH, Rsync, and Bash for 

communication and file transfer with the supercomputers.  

 

Data Format 

The majority of output files are state-NNN.mat files, which are logs of the simulation split into 

100-second segments. The data within a state-NNN.mat file is organised into 16 cell variables, each 

containing a number of sub-variables. These are typically arranged as 3-dimensional matrices or time 
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series, which are flattened to conduct analysis. The other file types contain summaries of data 

spanning the simulation.  

 

Data Analysis Process 

The raw data is automatically processed as the simulation ends. runGraphs.m carries out the initial 

analysis, while compareGraphs.m overlays the output on collated graphs of 200 unmodified 

M.genitalium  simulations. Both outputs are saved as MATLAB .fig and .pdfs, though the .fig files 

were the sole files analysed. The raw .mat files were stored in case further investigation was required. 

To classify our data we chose to use the phenotype classification previously outlined by Karr (Figure 

6B  17 ), which graphed five variables to determine the simulated cells’ phenotype. However, the script 

responsible for producing Figure 6B, SingleGeneDeletions.m, was not easily modified. This led us to 

develop our own analysis script recreating the classification: runGraphs.m graphs growth, protein 

weight, RNA weight, DNA replication, cell division, ands records several experimental details. There 

are seven possible phenotypes caused by knocking out genes in the simulation: non-essential if 

producing a dividing cell; and essential if producing a non-dividing cell because of a DNA replication 

mutation, RNA production mutation, protein production mutation, metabolic mutation, division 

mutation, or slow growing.  

For the single gene knockout simulations produced in initial input, the non-essential simulations were 

automatically classified and the essential simulations flagged. Each simulation was investigated 

manually and given a phenotype manually using the decision tree (see Supplementary Information D).  

For simulations conducted by Minesweeper and GAMA, simulations were automatically classified 

solely by division, which can be analysed from cell width or the endtime of the simulation. 

Further analysis, including: cross-comparison of single-gene knockout simulations, comparison to 

Karr et al’s  17  results, analysis of Minesweeper and GAMA genomes (genetic content and similarity, 

behavioural analysis, phenotypic penetrance, gene ontology), and identification and investigation of 

high and low essentiality genes and groupings, were completed manually. The GO term analysis of 

gene deletion impacts was processed by a created script (see Github for code), then organised into 

tables of GO terms that were unaffected, reduced, or removed entirely. 
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Modelling: Scripts, Process and Simulations 

Generally, there are six scripts we used to run the whole-cell model. Three are the experimental files 

created with each new experiment (the bash script, gene list, experiment list), and three are stored 

within the whole-cell model and are updated only upon improvement (MGGrunner.m, runGraphs.m, 

and compareGraphs.m). The bash script is a list of commands for the supercomputer(s) to carry out. 

Each new bash script is created from the GenericScript.sh template, which determines how many 

simulations to run, where to store the output, which analysis to run, and where to store the results of 

the analysis. The gene list is a text file containing rows of gene codes (in the format ‘MG_XXX’,). Each 

row corresponds to a single simulation and determines which genes that simulation should knockout.  

The experiment list is a text file containing rows of simulation names. Each row corresponds to a 

single simulation and determines where the simulation output and results of the analysis are stored.  

In brief, to manually run the whole-cell model: a new bash script, gene list, and experiment list are 

created on the desktop computer to answer an experimental question. The supercomputer is 

accessed on the desktop via ftp software, where the new experimental files are uploaded, the 

planned output folders are created, and MGGRunner.m, runGraphs.m, compareGraphs.m files are 

confirmed to be present. The supercomputer is then accessed on the desktop via ssh software, 

where the new bash script is made executable and added to the supercomputer’s queuing system to 

be executed. Once the experiment is complete, the supercomputer is accessed on the desktop via 

ssh software, where the results of the analysis are moved to /pdf and /fig folders. These folders are 

accessed on the desktop via ftp software, where the results of the analysis are downloaded. More 

detailed instructions are contained within the template bash script. 

Each wild-type simulation consists of 300 files requiring 0.3GB. Each gene manipulated simulation 

can consist of up to 500 files requiring between 0.4GB and 0.9GB. Each simulation takes 5 to 12 

hours to complete in real time, 7 - 13.89 hours in simulated time. 
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Data Availability 

The databases used to design our  in-silico  experiments, and compare our results to, includes Karr et 

al  17  and Glass et al  24  Supplementary Information, and Fraser et al  M.genitalium  G37 genome  18 

interpreted by KEGG  26  and UniProt  25  as strain ATCC 33530/NCTC 10195.  

Minesweeper simulations raw and transformed output (.mat files) are available upon request, as the 

they require 4.2 TB of storage. The output .fig files (10 GB) are available for download from the our 

group’s Research Data Repository at the University of Bristol. GAMA simulations transformed output 

is available in ko.db. 
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Figures 

 

 

Figure 1. Minesweeper Algorithm for Genome Design  

(i)  in-silico  single gene knockouts are conducted to identify low / no essentiality genes (whose 

knockout does not prevent cell division). (ii) 26 deletion segments, ranging in size from 100% to 

12.5% of the low / no essentiality genes, are simulated. Grey indicates a gene deletion, white 

indicates a remaining gene. Deletion segments that do not prevent division go to the next stage. (iii) 

The largest deletion segment is matched with all dividing, non-overlapping segments. A powerset (all 

possible unique combinations of this set of matched deletion segments) is generated and each 

combination simulated. Deletion segments that do not prevent division go to the next stage. (iv) The 

largest deletion segment determines the remaining low / no essentiality genes that have been 

deleted. These remaining genes are divided into eight groups (see Methods), a powerset generated 
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for these eight groups, and each member of the powerset individually appended to the current 

largest deletion combination and simulated. If none of these simulations produces a dividing cell, the 

remaining genes are appended as single knockouts to the current largest deletion combination and 

simulated. The individual remaining genes that don’t produce a dividing cell are temporarily excluded 

and a reduced remaining gene list produced. Details of simulations settings are available in the 

Methods. Powerset* = the complete powerset is not displayed here. 
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Figure 2. GAMA Algorithm for Genome Design  

(i) Only non-essential genes whose knockout does not prevent cell division are deletion candidates 

and are equally divided into Sets A - D. 400 random subsets are produced and simulated per set, 

each containing 50-100% of the genes within the set. Deletion segments that do not prevent division 

(“viable”) go to the next stage. (ii) 3000 combinations are generated and simulated. (iii) Is a cyclical 

step. The mutation pool targets a random number of genes for alteration (both knockins and 

knockouts), including essential genes. Details of simulations settings are available in the Methods. 
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Figure 3. Comparison of unmodified  Mycoplasma genitalium  whole-cell model, 

Minesweeper_256, and GAMA_236 outputs  

100  in-silico  replicates, with second-by-second values plotted for 6 cellular variables over 13.89 

hours (the default endtime of the simulations). Top row is unmodified genome, showing the expected 

cellular behaviour (previously show by Karr et al  17 ) and is used for comparison. Minesweeper_256 

and GAMA_236 show deviations in phenotype caused by gene deletions. Non aggregated data for 

each  in-silico  simulation is available (see Methods). 
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Figure 4. Comparing the genomes of the  Mycoplasma genitalium  whole-cell model, 

Minesweeper_256, and GAMA_236  

The outer ring displays the  M.genitalium  genome (525 genes in total), with modelled genes (401) in 

navy and unmodelled genes (124, with unknown function) in grey. The middle ring displays the 

reduced Minesweeper_256 (256 genes) genome in light blue, with genes present in 

Minesweeper_265 but not in GAMA_236 in dark blue. The inner ring displays the reduced GAMA_236 

(236 genes) genome in light yellow, with genes present in GAMA_236 but not in Minesweeper_265 in 

dark yellow. Figure produced from published  M.genitalium  genetic data  17,18 , with genetic data for 

Minesweeper_256 and GAMA_236 available in the Supplementary Information.  
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Figure 5. Comparing the genomes of Minesweeper_256 and 2954 GAMA genomes 

The genome of Minesweeper_256 and all the genomes found by GAMA (that were the same size or 

smaller) were collated. Each point represents a single genome and is plotted based on a similarity 

metric (see Methods). The circled genome in the top right is Minesweeper_256 and the circled 

genome in the bottom left is GAMA_236. The key difference between the genomes is  phosphate 

sources, with   Minesweeper_256 using phosphonate and the GAMA genomes using inorganic 

phosphate.  
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Gene 

 

Annotation 

GO Term  

(Biological Processes) 

 

Non Essential In 

 

Essential In 

MG_039  N/A  N/A  GAMA_236  Minesweeper_256 

MG_289  p37  transport  GAMA_236  Minesweeper_256 

MG_290  p29  N/A  GAMA_236  Minesweeper_256 

MG_291  p69  transport  GAMA_236  Minesweeper_256 

MG_427  N/A  OsmC-like protein  GAMA_236  Minesweeper_256 

MG_033  glpF  glycerol metabolic process  Minesweeper_256  GAMA_236 

MG_410  pstB  N/A  Minesweeper_256  GAMA_236 

MG_411  pstA  phosphate ion 

transmembrane transport 

process 

Minesweeper_256  GAMA_236 

MG_412  N/A  N/A  Minesweeper_256  GAMA_236 

MG_305 

dnaK  protein folding 

M.g*  whole-cell model  GAMA_236 and 

Minesweeper_256 

Table 1. Low Essentiality Genes from Minesweeper_256 and GAMA_236 genomic contexts  

Protein annotation and GO term obtained from KEGG  26  and UniProt  25 , based on Fraser et al’s 

Mycoplasma genitalium*  G37 genome  18 .  
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