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ABSTRACT 
 
Bundles of actin filaments are central to a large variety of cellular structures, such as filopodia, 
stress fibers, cytokinetic rings or focal adhesions. The mechanical properties of these bundles are 
critical for proper force transmission and force bearing. Previous mathematical modeling efforts 
have focused on bundles’ rigidity and shape. However, it remains unknown how bundle length 
and thickness are controlled by external physical factors, and how the attachment of the bundle to 
a load affects its ability to transmit forces. In this paper, we present a biophysical model for 
dynamic bundles of actin filaments that takes into account individual filaments, their interaction 
with each other and with an external load. In combination with in vitro motility assays of beads 
coated with formins, our model allowed us to characterize conditions for bead movement and 
bundle buckling. From the deformation profiles, we determined key biophysical properties of 
tethered actin bundles, such as their rigidity and filament density. Our model also demonstrated 
that filaments undulate under lateral constraints applied by external forces or by neighboring 
filaments of the bundle. Last, our model allowed us to identify optimum conditions in filament 
density and barbed end tethering to the load for a maximal yield of mechanical power by a 
dynamic actin bundle.  
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INTRODUCTION 
 

Bundles of actin filaments are involved in a large variety of cellular structures, such as 
filopodia (1), the cytokinetic ring (2, 3), auditory hair cells (4), actin cables (5, 6), stress fibers (7, 
8), focal adhesions (9), adherens junction (10),  and are hijacked by some pathogens for their 
propulsion within and between host cells (11). Bundles also determine the shape of macroscopic 
structures like Drosophila bristles (12) and are the core of microvilli (13, 14).  

 
In motile cells, bundles of actin filaments can develop large amounts of force that deform 

the cell membrane at the leading edge (13, 15, 16), and are used to generate tension in stress 
fibers (17). Filopodial bundles are created by formin- and Ena/Vasp- mediated assembly of 
parallel actin filaments. In the lamella, actin filaments from the lamellipodium are condensed into 
bundles under the action of the retrograde flow and motor proteins. Through these bundles, cells 
optimize and adapt their response to mechanical stress and disassemble the actin skeleton at their 
trailing edge (18–20).  

 
Experimental evidence has shown that the force exerted by an untethered bundle of actin 

filaments against a wall is virtually equal to the force exerted by a single filament (16). This 
surprising result was attributed to a rapid switch between the leading filaments at the tip of the 
bundle, such that only one filament at a time contacts the load. We speculate that this result 
would have been different if all filaments were tethered to the wall. In addition to filament-load 
interactions, another limiting factor for force production is filament buckling (20–22). Buckling 
occurs when the force exerted between the ends of the filament reaches a critical value, which 
depends on the mechanical properties of the filament and the attachment conditions of its ends 
(23, 24). When buckling occurs the force produced by a filament (or a bundle) vanishes.  
 

Previous theoretical and in vitro biophysical studies have determined the mechanical 
properties of bundles of actin filaments (15, 25, 26), and determined the effects of crosslinkers 
(27), motor proteins (21, 22, 28) or active transport (29). These studies essentially focused on the 
effect of bundle rigidity on its stability and shape, and how filament dynamics and membrane 
tension control the bundle length.  However, it remains unknown how bundle length and 
thickness are controlled by external physical factors, such as bulk viscosity or the spatial 
constraints applied on the bundle by its attachment to a load and to other filaments, or by other 
cytoplasmic structures.  
 

In this paper, we present a biophysical model for bundles of dynamic actin filaments 
taking into account individual filaments and their interactions with a load and with other 
filaments of the bundle. The model is supported by experimental in vitro reconstitution of bead 
motility powered by bundles of actin filaments, which are nucleated on the bead surface by 
formins. Here, formins also play the role of tethers that maintain filament barbed ends on the 
bead. Using our experimental data we quantified the bead movement and correlated it with the 
elongation and deformation of filament bundles. This allowed us to determine bundle’s rigidity 
and average number of filaments. Thus, using these two experimentally-measured constraints, we 
propose an original, simple and robust model for the movement and deformation of actin 
filaments that predicts how filament density and tethering of to the load tune the mechanical 
power produced by dynamic actin filament bundles.  
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MATERIALS AND METHODS 
 
Experimental data 
 
Motility assay 
Experiments performed in this study were carried out according to the procedure described in 
(30). In brief, beads grafted with the FH1-FH2 domains of mDia1 were mixed with a motility 
medium containing 8 M F-actin, 4 M profilin, and 10 M human cofilin in X buffer (10 mM 
HEPES pH 7.8, 0.1 M KCl, 1 mM MgCl2, 1 mM ATP, and 0.1 mM CaCl2), supplemented with 
1% BSA, 0.2% methylcellulose, 3 mM DTT, 1.8 mM ATP, and 0.1 mM DABCO.  
 
Microscopy 
Motility assays were acquired with a Zeiss Axioplan microscope (Jena, Germany) equipped with 
a 63x/1.5NA Plan-APOCHROMAT objective lens, a Hamamatsu ORCA CCD camera 
(Hamamatsu Photonics Deutschland GmbH) and Metavue version 6.2r6 (Universal Imaging, 
Media, PA). 
Buckles of filaments were imaged using Total Internal Reflection Microscopy (TIRFM). Glass 
flow cells were cleaned and prepared according to (31). Rhodamine-actin and Alexa-532-labeled 
actin-filament polymerization was observed and acquired as specified in (32). 
  
Theory and simulations 
 We present below the 3D model for elastic filaments (Eqs. 1-2). In the supplementary material, 
we simplify this 3D model to develop a general method for the analysis of filaments or bundles of 
filaments considered as elastic structures in 2D (Eqs. S1-S12). We estimate the relative 
importance of the polymerization and drag force (Eqs. S13-S15) involved in the bead movement 
(Eqs. S16-S20). Finally, we use the 3D model (Eqs. 1-2) to analyze the role of attachment and 
compressive forces due to filament packing to determine the mechanical power produced by 
individual filaments (Eqs. S21-S36). 
 
Mechanical equilibrium equations for an actin filament 
We developed a model for the mechanical equilibrium of elastic filaments subjected to external 
forces and constraints based on a model we previously developed (33). In this section, we present 
the definitions of variables and the equations for force and moment balance. The orientation of 
the filament cross-section at any point along the filament is given by a set of three unit vectors 
𝐝 , 𝐝 , 𝐝  which define the material frame associated with position r(s) (Fig. S1A).  The 

filament bending or twisting strain , the density of force f, and moment m vectors are defined in 
the material frame as 𝛋 𝜅 𝐝 𝜅 𝐝 𝜅 𝐝 , 𝐟 𝑓 𝐝 𝑓 𝐝 𝑓 𝐝 , 𝐦 𝑚 𝐝 𝑚 𝐝
𝑚𝐝 . The moment is proportional to the filament bending strains κm B  where B is the 
bending rigidities diagonal matrix 𝑑𝑖𝑎𝑔 𝐶 , 𝐶 , 𝐶  . The balance of force and moment reads  

𝐟 𝛋 𝐟 𝐟
𝐦 𝛋 𝐵𝛋 𝐝𝟑 𝐟 𝐦

, Eq. 1 

where fext and mext are the external force and moment densities applied to the filament at position 
s.  All filament-filament or filament-medium interactions are modeled by adapting the expression 
for fext in Eq. 1. The unit tangent vector, denoted d3, is given by 

𝐫 𝐝   ,        Eq. 2 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/344671doi: bioRxiv preprint 

https://doi.org/10.1101/344671
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

where r is a point along the filament (Fig. S1A).  Since filaments move at low Reynolds number 
(~ 10-5), all force and moment terms proportional to linear or angular acceleration were 
eliminated from Eq. 1 (33). The components of the material frame 𝐝 , 𝐝 , 𝐝  vectors are 
parametrized by Euler parameters (unit quaternions), which couple the change of the cross 
section orientation to the force-moment applied at s.  
 
 
Microscopic model for buckling 

We used the 3D model for actin filaments (Eqs. 1-2) to analyze the role of 1) attachment 
conditions (tethered vs. non-tethered filaments) and 2) filament density in the emergence of an 
optimum for mechanical power production. For both attachment conditions, the actual filament 
elongation rate depends on the force component FN normal to the bead surface through the 
empirical relation 

exp .   Eq. 3 

In the simulations, we neglected the depolymerization at the barbed end.  
 
Boundary conditions for tethered filaments. The boundary condition at the pointed end specifies 
the position r of the filament and its orientation q (a total of  3+4 conditions) 

𝐫 0 0,     𝐪 0 𝐪 𝜃 ,  Eq. 4 
where 𝐪 𝜃  gives the direction of the filament at the pointed end. At the barbed end, we impose 
zero bending-twisting strains (a total of 3 conditions) 

𝛋 𝐿 0 ,  Eq. 5 
and the position of the barbed end is fixed in space 

𝐫 𝐿 𝐌 ,    Eq. 6 
where MLoad is a point at the load surface.  
 
Boundary conditions for non-tethered filaments. The boundary conditions at the pointed end are 
similar to the boundary conditions for tethered filaments (Eqs. 4 and 5). At the barbed end, only 
the horizontal position of the barbed end is constrained (one condition) 

𝑥 𝐿 𝐌 .    Eq. 7 
We complete the set of boundary conditions for non-tethered filament by imposing zero tangential 
force at the barbed end to model the absence filament slippage on the bead (2 conditions) 

𝐅 𝐿 0  Eq. 8 
Finally, for both types of attachment, we end up with 13 boundary relations which are used to 
simulate the equilibrium of filaments with Eqs. 1-2.  The constraints exerted on a filament due to 
the environment are imposed via the right hand side of Eq. 1a, which reads  

𝐟 𝑓 , , 𝑓 , , 0 , Eq. 9 
where fext,12 are, respectively, the components of the force density along the first and second director 
vectors. The expression of fext on the surrounding filament density and other geometric factors is 
given in the Result section and by Fig. S10. 
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RESULTS 
 
Buckling of actin filament bundles limits the motility of formin-grafted beads 
 
When placed in a motility medium containing actin monomers, profilin and cofilin (30, 34), 
beads coated with formin mDia1 nucleate actin filaments at their surface (Fig. 1A). These 
elongating filaments rapidly form long bundles of actin filaments, which propel the bead at a 
constant velocity about 0.25 µm.min-1 for a duration that varied from a few minutes to over one 
hour, when the experiment was stopped (Fig. S5). In most cases, beads eventually stalled and 
remained permanently stuck to the coverslip (Figs. 1A and S2). During the motility phase, bead 
trajectories were rectilinear, their bundle remained straight (Fig.1A), and the bead velocity and 
the bundle elongation rate were identical (Fig. S2). After beads stalled, bundles continued 
growing at the same elongation rate while deforming to eventually form a large buckle (Fig. 2).   
 
What is the cause of bead movement and why do beads stall? Since filaments in bundles grow at 
the same rate when beads are moving and when beads are stalled, we deduced that actin 
monomer concentration and viscosity of the motility medium remained constant (Fig. S5).  In 
consequence, these two factors cannot account for the changes of the bead velocity. We 
hypothesized that the variety of motility behavior observed experimentally is due to the variations 
in the mechanical properties of the bundle of actin filaments over time. 
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Figure 1. Bead motility mediated by bundles of actin filaments nucleated by processive 
formins (mDia1). Panel A: Beads coated with formins mDia1 (20 to 160 formins/bead) are 
added to a F-actin motility medium (8 µM F-actin, 4 µM profilin and 10 µM ADF/cofilin.) Actin 
filaments are arrayed in parallel bundles with their barbed at the bead surface. In some cases, the 
force developed by actin polymerization propels the bead at constant velocity (~ 0.25-0.27 
µm.min-1) for up to one hour (bundle and bead at the top). In other cases, the driving force fails to 
move the bead after a certain time of steady displacement (e.g. 30 min for the bead at the bottom) 
while polymerization continues, as demonstrated by bundle deformation. Panel B: Schematic of 
the mechanical model for bead motility and bundle deformations. We combine the mechanics of 
bundle with elongation at the barbed end. The polymerization rate is corrected by a term 
depending on 𝛥E, the mechanical work necessary to insert a monomer. 
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Determination of bundle rigidity from loop geometries 
 
To test our hypothesis, we took advantage of loops formed by long filaments (Fig. 2A) and 
bundles of filaments (Fig. 2C) at the end of our experiments. We assumed that these loops are 
elastic structures at equilibrium, where the elastic bending force of the filament (or bundle) which 
tends to open the loop, and the attractive depletion forces that keep the stem of the loop closed, 
balanced each other (Fig. 2B, Eqs S1-S2, and Supplemental text, section A). 

The persistence length of bundles can be directly deduced by fitting the shape of the loops 
to our model (Eqs. S5-S6 and Figs. S2D, and S6). As expected, the apparent persistence length of 
bundles increased with the number of formin molecules bound to the bead and the nature of 
filament-filament interactions within the bundle (Figs. 2D and S7). However, our results show 
that the number of filaments is significantly smaller than the number of formins on the bead 
estimated experimentally, and plateaus for beads with more than ~100 formins. This discrepancy 
can be partly explained by the fact that not all the adsorbed formins are functional. This argument 
can also explain the large variability in the number of filaments nucleated by a bead (Figs. 2D 
and S7). In addition, as we show below, the number of filaments attached to the bead is limited 
by mechanical stress applied by elongating filaments on the formins. Overall, the variability in 
the number of filaments in bundles likely explains the diversity of bead trajectories or loops 
observed in the same experimental conditions (Figs. 1A and S2).   
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Figure 2. Formation of loops by individual filaments and bundles of filaments. 
Panel A: Single filament can form a loop, which can be fitted with our 2D model for elastic 
filaments. Bar: 5 µm. Panel B: Cartoon showing how attractive forces along the loop stem (blue 
arrows) balance the elastic forces caused by filament bending (green arrows). Panel C: 
Superposition of a loop formed by a bundle of filaments and the associated solution from our 2D 
model. Bar: 5 µm. Panel D: Number of actin filaments in bundles estimated from rigidity 
measurement assuming sliding conditions (=1, blue dots) or no sliding conditions (=2, red 
dots).  
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Bead stalling as a transition between polymerization-dominated to elasticity-dominated 
regimes 
 
To test whether the difference in the mechanical properties of the bundle can explain our 
experimental results, we developed a model for bundle mechanics and bead movement (Fig. 1B), 
where the bundle is modeled as a single elastic rod with bending rigidity LP and contour length L 
(Supplemental data, section B). The bundle elongates from its barbed end which is attached to the 
bead via formins. The other end of the bundle is assumed to have a fixed position and orientation 
on the coverslip, as experimentally observed. The transition between bead movement and bundle 
deformation depends on the balance between two antagonistic forces, namely 1) the force 
produced by actin polymerization and 2) the viscous drag due to the viscosity of the medium on 
the bead (Fig. 3A). The physical origin of these forces and their order of magnitude are given in 
Table 2. If the force required to deform a bundle is higher than the drag force, the bead is steadily 
pushed forward while the bundle remains straight (Fig. 3A, left). Conversely, when the viscous 
drag is larger than the critical buckling force of the bundle, the bead stalls, and the force 
generated by the elongation deforms the bundle (Fig. 3A, right). This critical buckling force 
scales as the reciprocal of the square bundle length (Eqs. S13). Therefore, in conditions of 
constant elongation, the bundle length will eventually meet the condition for buckling, and the 
exact time for this transition to occur depends on the bundle rigidity or, equivalently, the number 
of filaments in the bundle (Eq. S11). 
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Figure 3. Motility and bundle deformation. Panel A: The balance between polymerization and 
drag forces on the bead controls the transition from bead movement to bundle deformation. Panel 
B: The bundle rigidity controls the transition between bead movement and bundle deformation. 
Shaded areas give conditions for which bundles generate enough force to propel the bead.  
 
 Our mathematical model for bead movement (Eqs. S16-20) reproduces the transitions 
between both kinds of movement (Figs. 3B and S5, left column) and shows the dependence of 
this transition on bundle rigidity LP. Bundles with relatively low persistence lengths (e.g. 
Lp=50µm) cannot propel the bead throughout the medium over a long period of time (Fig. 3B). 
Once the critical buckling condition is reached, i.e. when the bundle reaches the critical length 
(Eq. S15), the bead stops while the bundle continues its growth. This situation is persistent over 
time, since the elastic force produced by the bent bundle diminishes with the bundle length as 

𝐹
𝐾
𝐿

 

where K is a constant (see Eq. S13). In the case of high bundle rigidity (e.g Lp=150µm), the 
bundle stays straight for about one hour during which the bead moves at a constant velocity 
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without bending the bundle (Figs. 3B and S5, bottom right).  The shape of the bundle when the 
bead is stalled (Fig. 3B) is in very good agreement with experimental data (Fig 1A).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Phase diagram for bead movement and bundle deformation.  Panel A: Transition 
between bead motility and bundle deformation in the parameter space (bundle length vs bundle 
rigidity) corresponding to simulations in Fig. 3. The dashed and solid arrows illustrates the 
typical trajectory in the phase diagram space associated with, respectively, a stalling bead (Fig. 
1A, bottom, Figs. S5A and S5C) and a moving bead (Fig 1A, top, Figs. S5B and S5D). Panel B: 
Increasing the viscous drag force controls the position of the transition curve separating motility 
and bundle deformation.  
 

Our model also allowed us to compute the critical length (LCrit, Eq. S15) at which a 
bundle undergoes the transition from force transmission to the bead to bundle deformation. This 
critical length scales as the square root of the persistence length (Fig. 4A, red curve), since the 

ratio   0
2

PCrit LkTL is constant (Eq. S15). This simple equation allows us to draw a boundary 

between bead motility and bundle deformation (Fig. 4A). During a typical experiment, the 
persistence length of the bundle for a given bead remains constant while its length increases. 
Therefore, it is represented by a trajectory along a vertical arrow in the phase diagram (Fig. 4A). 
The bead starts with a short bundle (under the phase transition boundary), then elongates while 
pushing the bead forward, until the bundle eventually reaches the critical length. Above this 
critical value, the bundle bends and the bead stalls (Figs. 1A and 4A, dashed arrow). Increasing 
viscosity of the medium increases the resistance to movement and shifts the phase transition 
boundary downwards in the phase space without altering its shape (Fig. 4B, Eq. S15).  
 
 
Emergence of optimal conditions for mechanical power yield 

 
In vitro, the force production is limited by the elasticity of the bundle (Figs.1 and 4), 

which is under the control of the filament interactions in the bundle. To better understand the 
relationship between bundle organization and the resulting mechanical work, we used the 3D 
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model (Eqs. 1-9) to simulate a population of short actin filaments whose pointed ends are 
immobile and oriented with Tilt , the angle between the filament and the horizontal axis (Fig. 5).   

 

 
Figure 5. Microscopic 3D model for buckling of filaments in a bundle. The barbed ends of a 
short actin filament within a bundle (2 µm) pushes against a load (vertical line on the right) while 
its pointed ends is maintained at a fixed position and orientation (grey box on the left). Lateral 
interactions between filaments result into elastic compressive forces on individual filaments 
(vertical blue arrows) preventing the formation of a large buckle. Panel A: Tethered barbed ends 
exert normal and tangential forces FN and FT pushing the load at velocity V (magenta arrow). 
Bottom: side and perspective drawing of buckled filaments (red) tethered (blue points) to a load. 
Panel B: Non-tethered barbed ends exert a normal force FN only, with zero tangential component. 
The bottom cartoon shows the non-tethered filaments pushing against a load. 
 
The barbed ends of all filaments are either bound to the bead by a link (e.g. a formin) (Fig. 5A) or 
freely pushing against the load (Fig. 5B), which, for simplicity, is modeled as a flat surface. Note 
that tethered filaments exert both a normal and a tangential force (Fig. 5A), whereas non-tethered 
filaments exert a normal force only (Fig. 5B). In addition, filaments are subjected to lateral 
constraints resulting from other surrounding filaments in the bundle (Fig. 5, small blue arrows). 
The lateral constraints prevent the buckling of individual filaments in the bundle and coerce the 
filament to stay in the bundle.  
 
Filament confinement changes the waviness of filaments and the force they exert along the 
end-to-end axis. 

We assumed that the lateral constraints in dense networks coerce the filament to remain in 
a cylinder whose radius decreases with the filament density (Fig. 6, top panel). To get a semi-
analytical expression of the filament shape under compressive lateral load mimicking the 
presence of surrounding filaments, we simplified Eqs. 1-9 into a 2D model (Supplemental text, 
section C). 
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When filaments are isolated, they form a single buckle. However, when they are 
constrained to grow in a cylinder (which mimics the presence of surrounding filaments), they 
adopt a wavy shape (Figs. 6A and S11). These filament undulations are described by a single 
parameter,  , the wavelength of the filament. Here, the wavelength is defined as the distance 
between two successive bumps (Figs. 6A, S8A and S11). The implicit equations for the filament 
wavelength (Eqs. S28 and S34) admit an infinity of solutions (Fig. S9), but only solutions of 
minimal energy (the so-called ground state) associated with the maximal wavelength can be 
observed. The equation also shows that high lateral force density correlates with highly wavy 
filaments, i.e. with a short wavelength (see Eq. S24). 

The wavelength of the ground state solution for tethered filaments is large (~5µm) and 
independent from the lateral compression exerted on the filament (Fig. 6, bottom panel, green 
curves). Therefore, the force fx exerted by non-tethered filaments (Eq. S24) is always low and 
does not depend on the presence of surrounding filaments. In marked contrast, the wavelength of 
ground state solutions corresponding to tethered filaments decreases dramatically with increasing 
lateral constraints (Fig. 6, bottom panel, red curve). In consequence, tethered conditions favor 
highly tortuous filament configuration with high magnitude longitudinal force fx (Eq. S3). Note 
also that the filament wavelength has jump transitions (Fig. 6 bottom panel) as the lateral force is 
increased continuously.  Because of the boundary conditions (Eqs. S26, S28, S30 and S34), the 
number of waves along a filament is always an integer (resonance condition, see Fig. S8A). 
Therefore, by increasing the lateral force fx, one diminishes the wavelength λ (see Eq. S24). In 
consequence, the resonance condition imposes that the change in λ should be at least half an 
undulation (see Fig. S8B); hence the discontinuities observed in Fig. 6. 
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Figure 6. Filament shape is controlled by lateral constraints  
Panel A: Shapes of a typical tethered filaments for increasing lateral force density (0, 20, 40, 60 
and 80 pNµm-1 from left to right) which coerces filaments into cylindrical boxes with 
diminishing radius. Panel B: The wavelength λ, associated with ground state solutions (solutions 
of minimal elastic energy) are extracted from Fig. S9. Red (resp. green) curve corresponds to 
tethered (resp. non-tethered) conditions.  All curves are obtained for a 2-µm filament that is 
moderately compressed along its end-to-end axis (end-to-end distance: 1.6 µm). 
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Using the full 3D model (Eqs. 1-2), we show that tethered filaments generate high 
magnitude force at the filament end whereas non-tethered filaments exert very little force (Figs. 
7A and B). In addition to filament density, the orientation of the filament relatively to their 
attachment sites towards their pointed end, Tilt, plays also a significant role in the level of the 
force reached at large density (Figs. 7A and B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Force developed by a bundle of filaments. Panels A and B: 2-µm long tethered (A) 
or non-tethered (B) filaments exert a force which scales with filament density in the bundle. Note 
that attachment conditions yield a difference of ~two orders of magnitude for the force exerted by 
the filaments. Panels C and D: The bead velocity rapidly decreases with the filament density for 
tethered conditions, whereas it remains virtually constant for non-tethered conditions.  For all 
panels: red curve, tilt = 0°, blue curve, tilt = 35°. 

 
Because a net force applied on the barbed end reduces the polymerization rate (Eq. 3), the large 
difference in the force produced by tethered and non-tethered filaments has dramatic 
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consequences for the velocity of the load (Figs. 7C and D). Indeed, tethered filaments have a 
reduced polymerization rate and move the load at lower velocity. At high filament density, the 
velocity represents only a fraction of the maximal possible speed (Fig. 7C). Conversely, non-
tethered barbed ends experience very low force, and their elongation is almost unaltered by the 
mechanical constraints. Non-tethered filaments are constrained to push the load even though they 
may slide on the load (Fig. 5B). In consequence, the load velocity is close to the maximal limit 
(Fig. 8D).  
 
Mechanical power developed by actin filaments embedded in large filament populations 

It might seem paradoxical that non-tethered filaments produce forces 2 orders of 
magnitude smaller than tethered filaments but move beads one order of magnitude faster (Fig.7). 
The mechanical power delivered by a single filament to the load, i.e. the product of velocity by 
force, is a more relevant metric to characterize the capacity of filaments to convert chemical 
energy into mechanical work (Fig. 8). The magnitude of the power and its dependence on 
filament density and force are dramatically different for tethered and non-tethered filaments. 
Non-tethered filaments have a power at least one order of magnitude smaller than tethered ones 
(~0.8 kT.s-1 vs. ~4 kT.s-1, Fig. 8).  In addition, tethered filaments exert maximum power when the 
filament density is low (from 0 to 500 filament.µm-2) and is virtually independent from filament 
orientation (Figs. 8A and C), whereas the power of non-tethered filaments increases with both 
filament density and filament orientation (Figs. 8B and D). Strikingly, the force-power 
relationship for tethered filaments presents an optimal regime when filaments exert force around 
1.5 pN and supply 4 kT J.s-1 to the load. Increasing the tilt angle does not change the maximal 
power and the force level at which this maximum is reached (4 kT.s-1 and ~2 pN, Fig. 7 left 
bottom panel). In sharp contrast, non-tethered filaments do not present an optimal regime and 
their force-power relationship increases linearly with filament densities (Figs. 8B and D), and, 
surprisingly, does not depend on the orientation of filament pointed ends. In this respect, the 
force-power relationship of filaments in a bundle present universal features that depend on the 
attachment conditions at the barbed end only (Figs. 8C and D). 
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Figure 8. Mechanical power developed by a bundle of actin filaments. Panels A and B: 
Mechanical power transferred from the actin polymerization machinery to the load for tethered 
filaments (A) or non-tethered filaments (B) versus filament density in the bundle. Panels C and 
D: Mechanical power in function of the force produced by tethered (C) or non-tethered filaments 
(D). For all panels, simulation uses Eqs. 1-2 and 20-29 with 2-µm long filaments and persistence 
length of 10 µm; the free monomer concentration is 1 µM; red curve, tilt = 0°, blue curve, tilt = 
35°. 
 
 
Filament density and barbed-end attachment conditions control the bundle size 
 For non-tethered filaments, the physical interactions between the filament and the load 
remain unchanged, whatever the magnitude of the longitudinal force. Conversely, tethered 
condition requires tangent forces necessary to constrain the barbed end at a fixed position (Fig. 
9A), and the tangent force magnitude TF  varies moderately with the tilt angle (Fig.9, red and 
blue curves). If we model the tether as a spring with stiffness parameter kStiff and zero equilibrium 
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length, its extension under load is given by 𝑋 𝐹 𝑘⁄  (Fig. 9B). When the tether is in a 
thermal bath, the probability for such an extended link to exist is (see Fig. 10C) 
 

𝑝 exp 𝑘 𝑋 2𝑘𝑇⁄ exp 𝐹 2𝑘 𝑘𝑇 . 
 
By combining this probability with the density of filaments, we computed the average size of a 
bundle for a test attachment area of 1 µm2 (Fig. 9D). Our data show that bundle of tethered 
filaments can exist at low filament density only, and coincides with the densities where the 
transformation of chemical energy into mechanical power is maximal (Fig. 8). In these 
conditions, the average number of filaments per bundles remains quite low (~20 to 50) and 
compares well with values found in our experiments (Fig. 2). For higher filament densities, the 
formation of stable bundles of tethered filaments is greatly inhibited by the very large constraints 
put on the tethers, which easily break them.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/344671doi: bioRxiv preprint 

https://doi.org/10.1101/344671
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Average number of filaments in bundles when barbed ends are tethered.  
Panel A: Tangent force exterted on the barbed end of actin filaments for 0° tilt (red curve) and 
35° tilt (blue curve). Panel B: Link extension at equilibrium for a link stiffness 𝑘
4 10 𝑁. 𝑚 . Panel C: Probability for a given link to remain attached. Panel D: Average 
number of filaments per bundle. (C) and (D) insets: log-scale representation of the probability (C) 
and the average number of filaments per bundle (D) for lower filament densities.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/344671doi: bioRxiv preprint 

https://doi.org/10.1101/344671
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

DISCUSSION 
 

In this study, we have found simple, robust and universal mechanisms underlying the 
organization of bundles of actin filaments, their production of mechanical forces and their 
dynamical adaptation to external constraints. We demonstrated that lateral filament-filament 
interactions and the tethering of the filament to the load control the emergence of optimal 
conditions for force generation.  
 
Confinement, filament density and attachment of barbed ends control the force generated by 
filaments and creates the conditions for optimum mechanical power 
 

We showed that the limitation of the amplitude of filament displacement favors wavy 
shapes and high magnitude force at the filament ends (Figs. 6, 7 and 8). However, this force 
increase upon confinement only happens for tethered filaments but not for untethered filaments.  
By preventing the filaments to slide on the load and to straighten their shape, the attachment 
constraint selects filament configurations that exert a high force onto their ends. Similar behavior 
has been demonstrated experimentally for intermediate filaments (35) and microtubules (36).  

We also showed that confined bundles of filaments with tethered barbed ends have an 
optimal regime for the transformation of chemical energy into mechanical work (Fig. 8). This 
optimum, which is independent of the bundle orientation, occurs at moderate filament density 
where the lateral constraint is high enough to amplify the force exerted by the filament but 
sufficiently low to prevent a large reduction of the polymerization rate.  

A simple calculation allows us to estimate the maximum efficiency of power production 
by filaments in a tethered bundle. In the ideal case where there is no viscous drag and no bending, 
the maximal filament elongation velocity is 𝑉 𝑘 𝐺 𝛿, and the polymerization force 
generated by the addition of a single subunit is 𝐹 𝑘𝑇 𝛿⁄ 𝑙𝑜𝑔 𝐺 𝐺⁄ . Hence, assuming a 
concentration of G-actin of 1 μM, the maximal power per filament is (Fig. 9C) 𝐹𝑉
𝑘𝑇𝑘 𝐺 𝑙𝑜𝑔 𝐺 𝐺⁄ 23 𝑘𝑇. 𝑠  (see Table 2), which implies that a single tethered 

filament works at 15% of the maximal yield only. 
Our model also showed that tethered filaments are optimized to work at low filament 

density (Fig. S12, red curve) whereas non-tethered filaments develop their mechanical power 
when embedded in dense networks (Fig. S12, blue curve). Tethered and non-tethered conditions 
are mechanically equivalent at filament density of ~ 400 Fil.µm-2. Therefore, tethered and non-
tethered actin filament networks represent two optimal solutions to generate mechanical power 
over a broad spectrum of filament densities found in sub-cellular structures. 
 
Self-regulation of bundle size and organization 
 

In physiological conditions, when a bundle of filaments is tethered to a load, the forces 
applied on each tether increases with the filament density in the bundle (Fig. 9), and tethers break 
if their deformations become too large. In consequence, the size of the bundle is self-regulated by 
the filament density in the network and is maximum at moderate network density (Figs. 9 and 
S12).  

The prediction of an optimum for the mechanical yield and the bundle size (Fig. 9) are 
two independent outputs of our biophysical analysis. It is important to stress that both optima 
occur for tethered filaments embedded in networks of moderate density (100 to 500 filaments per 
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µm2), in close agreement with densities present in cells estimated at 400 to 1000 filament per 
µm2, as measured in electron micrographs (37).  
 
Buckling as a mechanism to control filopodia length 
 

Our results suggest that formin-driven extension of bundles, similar to the bundles in 
filopodia, is mainly controlled by bundle rigidity (Figs. 3 and 4), which is proportional to the 
number of active barbed ends. For example, when a filopodia reaches a critical length, which is 
determined by its filament density and attachment to the plasma membrane via formins and/or 
Ena/VASP, it stops pushing the membrane and buckles. This transition between extension and 
buckling (Fig. 4) yields a simple and robust way to control the extension of filopodia in cells, as 
seen in vivo (13, 38). This mechanism is also important for the creation and stability of cell-cell 
junction in cell tissues, particularly in the formation of villi of same size that ensure tissue 
coherence (13, 14). 
 
Buckling is a way to release elastic energy in networks and accompany cytoskeleton 
deformation 
 

Both in vitro experiments and models have shown the importance of buckling in the 
contraction of disordered stress fibers (21) and in the final dismantling of the network (20). Our 
study suggests this principle may be extended to the whole cell itself. When a bundle of filaments 
is subjected to mechanical forces, from other cells, obstacles or external forces for example, its 
buckling under a critical load may constitute an initial response that could trigger a more complex 
signaling pathway in the cell. Then, differences in the bundle composition (e.g. by modulating 
the nature or amount of crosslinks, motor proteins, number of filaments), geometry (e.g. by 
modulation bundle length, anchoring at the plasma membrane or on an organelle) and/or 
mechanics would modulate the cell response and yield different fates for the cell cytoskeleton.  
When bundles are stiff (e.g. if they are crosslinked or composed of a large number of filaments), 
the elastic restitution of the energy stored in bundle buckling could allow cells to resist external 
constraints. For soft bundles (long ones, without crosslinkers or made of severed filaments), the 
stressed cytoskeleton would fall in rapidly. For example, it has been shown that spatial 3D 
distribution of bundles and their interactions (either bundle-bundle  or bundle-rest of the 
cytoskeleton junctions) is crucial for cells (39). Last, bundles are part of the fiber system allowing 
cells to communicate with other cells (e.g. bundles in villi), to sense the extracellular space (e.g. 
filopodia) or to couple to focal adhesions. Therefore, any biological condition that change either 
the geometry or the mechanics of bundles could exert control over cell dynamics.  
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SUPPLEMENTARY MATERIAL 
 
A. Simplified model for the analysis of the experiments 
 
Correct interpretation of experimental observations in Fig. 1 requires the determination of actin 
filament bundle rigidity. We limit our model for bundle mechanics and deformations to 2D-
bending strain. This simplification is dictated by the available experimental data (TIRF 
microcopy images, Fig. 2) which give access to 2D bundle deformations only.  Therefore, we 
assume that bundle rigidity is given by a single parameter, the apparent rigidity modulus (or 
persistence length) which depends on two quantities: the bending rigidity of a single filament and 
the number of filaments in a bundle (1). We focus our analysis on bundles which self-interact to 
form a stem and a loop (Fig. 2). These configurations represent structures at mechanical 
equilibrium when elastic forces, which tend to straighten the bundle, are balanced by attractive 
(or depletion) forces that keep distant sections of the bundle to form a stem (Fig. 2).  
 

a. 2D equations for the mechanical equilibrium of filaments lying in a plane 
 

To determine the rigidity of filament bundles (Fig. 1A), we adapt Eqs. 1-2 to 2D actin filament 
bundles as observed in  TIRF microcopy (Fig. S1B). The material frame vectors 𝐝 , 𝐝  are in 
the plane (

2d  points out of the plane). The orientation of the material frame 𝐝 , 𝐝  requires a 
single parameter, θ, the angle between d3 and the horizontal axis. The filament strain or curvature 

𝑑𝜃 𝑑𝑠⁄  enters in the definition of bending strain vector as 𝜅 𝐝 . From Eq. 1, we derive the 

force and moment balance equation in its component-wise form  
 

𝑓 𝑓 ,

𝑓 𝑓 ,

𝐶 𝑓 0,

  Eq. S1 

 
where fi is the component of the internal force along the director di, i=1, 3, and CB is the bending 
rigidity. Note that the bending rigidity parameter, CB, and the persistence length, Lp, are related 
by 𝐶 𝑘𝑇𝐿  where k is the Boltzmann constant and T the temperature in Kelvin. The twist 
strain, which is proportional to CT in Eq. 1, is absent from Eq. S1. This approximation is valid 
since twist energy is always lower than bending energy (2) and that 2D filament mechanics is 
controlled by filament bending curvature (3). The inextensibility condition (Eq. 2) gives two 
equations for the horizontal and vertical components of r(s): 
 

cos𝜃,     sin𝜃.  Eq. S2 

 
For filaments or bundles forming a loop (Fig. S2), the right hand side (rhs) of Eq. S1 (two first 
lines) models the filament-filament interactions responsible for loop formation and its 
stabilization (Figs. S2A and S2B). Because a loop is symmetric, we assume that the force 
between two points on the filament, M and M’, is directed along the line MM’ and proportional 

to x'MM  (Fig. S2C). The force is attractive as long the points are within a distance 
1r  from 
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each other and repulsive if the distance is smaller than 0r (hard core repulsion). The force 

vanishes for inter-filament distance 𝑥 larger than 
1r . Using these assumptions, Eqs. S1a and S1b 

are changed into: 

𝑓 2𝑘 sin 𝜃 |𝑥|𝐹 𝑥

𝑓 2𝑘 cos 𝜃 |𝑥|𝐹 𝑥
  Eq. S3 

with 

𝐹 𝑥
1 0 𝑥 𝑟

1 𝑟 𝑥 𝑟
exp |𝑥 𝑟 | 𝑟⁄ 𝑟 𝑥

  Eq. S4 

After normalization of the position (x, y) and arc length variable s by the filament length L, the 
final equations read 

̅

̅
cos 𝜃

̅
sin 𝜃

̅
𝛼 𝑛

  Eq. S5 

and 
𝑑𝑛
𝑑�̅�

𝑑𝜃
𝑑�̅�

𝑛 𝛼 sin 𝜃 |�̅�|𝐹 �̅�

𝑑𝑛
𝑑�̅�

𝑑𝜃
𝑑�̅�

𝑛 𝛼 cos 𝜃 |�̅�|𝐹 �̅�
 

where �̅�, 𝑦 𝑥 𝐿, 𝑦 𝐿⁄⁄ , �̅� 𝑠 𝐿⁄ , 𝛼 𝑁 𝐿 𝐶⁄  and 𝛼 2 𝑘 𝐿 𝑁⁄ , L is the total loop 
contour length, 𝑁 𝑘𝑇 𝐿⁄  is the natural force unit for the system ( N15104.1  ) with L0=1 
µm, n1 and n2 are the force components normalized by N0. Note that 1 and 2 are dimensionless 
parameters. All the variables and parameters are summarized in Table S1. The vertical symmetry 
of the configuration (Fig. S2C) gives additional relationships  

𝑥 1 𝑠 𝑥 𝑠 , 𝑦 1 𝑠 𝑦 𝑠 ,
𝜃 1 𝑠 𝜃 𝑠 ,
𝑛 1 𝑠 𝑛 𝑠 , 𝑛 1 𝑠 𝑛 𝑠 ,

     Eq. S6 

 All these conditions are a direct consequence of the loop symmetry with respect to the vertical y-
axis. 
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Variables Definition Dimension Typical value 

s Arc-length L 20 to 100 µm 
(x,y) Point coordinates on the filament L  

θ Angle between the tangent and the 
horizontal axis 

  

(f1, f3) Force along d1 and d3. M.L.T-2  
Parameters    

kT Thermal energy M.L2.T-2 4.1 10-21 J 
kS Self-interaction force density M.T-2 2.7 10-3 pN.µm-2 
r1 cut-off distance L 0.055 µm 
r2 spatial decay for the self-interaction force. L 0.02 µm 

 
Table S1. Variables and parameters used in the analysis of bundle rigidity. 
 
 
 
 

b. Boundary conditions 
 
Solutions of Eqs. S5 depends on the boundary conditions at the ends of the filament, i.e., at  �̅� 0 
or  �̅� 1. Since the attraction force exerted along the stem balances the elastic force due to the 
loop rigidity (Figs. S2A, S2B and S2C), the components of the internal force (n1, n2) should vanish 
at �̅� 0 

𝑛 0 0,     𝑛 0 0,     Eq. S7 
In consequence, from  Eq. S6, the internal force should also vanishes at �̅� 1. We complete the 
set of boundary conditions by specifying the position of the filament at s=0 and s=1 

�̅� 0 0, �̅� 1 0,
𝑦 0 0, 𝑦 1 0.

 Eq. S8 

 
c. Determination of bundle bending rigidity 

 
The shape of a loop is given by a solution of Eqs. S5-S8 valid for a 2D-elastic rod.  However, since 
solutions of Eq. S5 depend on the ratio 𝛼 𝛼⁄  only, we cannot have access to bundle rigidity 
directly. Therefore, we first determined the force interaction in the case of a single filament for 
which the bending rigidity is known. Then, we used the same method to analyze the elasticity of 
loops formed by a bundle made of several filaments by scaling the parameters 𝛼 , 𝛼  
appropriately. 
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Algorithm for the determination of the interaction parameter in the case of single filament loop 
(see Table S1). 

1. We extracted the configuration of the loop and the stem from the microscopy image (Fig. S2A 
and S2B) and measured its contour length (L).  

2. We normalized the filament configuration and arc-length with the filament contour length L.  
3. Using a persistence length of 10 µm for a single actin filament (or a bending modulus 𝐶

4.1 10 𝑁. 𝑚) (4, 5), and L, we estimated the parameter  
4. 𝛼 𝑁 𝐿 𝐶⁄   (with  𝑁 4.1 10 𝑁 ) 
5. The best configuration fit (Fig. S2D and S2E) was obtained by adjusting 2, the unique free 

parameter remaining in Eq. S5.  
6. kS was then given by 

𝑘 . Eq. S9 

 
The self-interacting force density kS is attractive along the stem up to the junction between loop 
and stem sections (red arrows, Fig. S3). It peaks (~100 pN.µm-1) at the transition between stem and 
loop where elastic forces from the loop counterpoise attraction in the stem (Fig. S3).  
 

Determination of bundle rigidity 
We now focus on the determination of the rigidity of a bundle made of several filaments. Firstly, 
assuming a close packing of filaments, the radius R of a bundle made of N filaments scales as

NrR  , where r is the radius of a single filament (Fig. S4). Secondly, we assume that the 
interaction force is proportional to the perimeter of the bundle, since we expect that only the 
filaments in the outer part of the bundle can exert force on filaments outside the bundle (Fig. S4). 
Therefore, the parameter kS in Eq. S3 (or 2 in Eq. S5) scales as 

,

,
√𝑁 Eq. S10 

In addition, previous studies showed that simple geometrical arguments allow to approximate the 
apparent bundle rigidity as a power function of the number of filaments  

,

,
𝑁  Eq. S11 

with 21    (1). The case =1 corresponds to filaments free to slide in the bundle, and =2 
corresponds to totally crosslinked filaments. By combining Eqs. S10 and S11, we conclude that  

⁄  Eq. S12 

Therefore, by comparing experimental images of bundles forming a loop obtained by TIRF 
microscopy to a solution of Eqs. S5-S12, we can deduce N, the number of filament in a bundle, 
and, thanks to Eq. S11, the bundle rigidity. Fig. S6 shows typical observed closed loops (dotted 
lines) and the corresponding optimal solution to Eqs. S3-S6 and the parameters listed in Table S1. 
 

d. Polymerization kinetics and polymerization force 
 
In presence of profilin, the polymerization rate for actin filaments barbed ends capped by the 
processive formin mDia1 is 38 µM-1s-1 (6). Assuming a depolymerization rate of 0.1 s-1 (7), we 
predict the critical concentration for actin monomer to be [G]0 = 0.037 µM (Table S2). The 
concentration of actin monomers, which yields a constant elongation of 0.2 µm.min-1 for actin 
filaments (measured from Fig. 1 and Fig. S5), is [G]= 0.068 µM (Table S2).  In consequence, the 
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maximal force developed by actin polymerization, given by 𝐹 , 𝑘𝑇 𝛿⁄ ln 𝐺 𝐺⁄ , is 
0.93 pN (defined in Table S2). 
 

Drag force 
The presence of actin filaments in the bulk increases the apparent viscosity in the experiments close 
to values characteristic of that of a cell. Direct viscosity measurement in vivo reported values 
ranging from 0.08 to 0.26 Pa.s (8, 9) which represents a hundred-fold increase of viscosity 
compared to that of water (0.001 Pa.s). Given the polymerization force (0.93 pN) and drag force 
exerted on a sphere (Table S2), we predict that the drag force during bead movement is in the range 
0.01 to 0.032 pN (Table S2). 
 

Buckling force 
The critical force required to buckle an elastic bundle is: 

𝐹 𝛾
⁄

,  Eq. S13 

where LP is the persistence length of a single actin filament, N is the number of filaments in the 
bundle, L is the bundle length, and 𝛾 is a numerical factor that depends on the boundary conditions 
at the bundle ends [7] . In consequence, when the drag force balances the critical force at buckling 

𝐹 𝐹 ,    Eq. S14 
and the bead is stalled while bundle elongation continues. This transition occurs at a critical bundle 
length given by solving Eq. S14 with the help of Eq. S13 

⁄ .   Eq. S15 

Note that the rhs of Eq. S15 is a constant which does not depend on bundle characteristics. The 
estimated values (Table S2) yield critical lengths in the range of experimental observations. From 
Eq. S15 and assuming constant elongation, one can predict that large bundles will sustain the bead 
propulsion regime for longer time periods. 
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Parameter Definition Value 

 
Reference 

r Bead radius 2 µm  
𝛿 Actin monomer radius 2.75 nm  

CB0 Single actin filament bending rigidity 4.110-26 N.m  

Vmax Constant bead velocity  0.0033 µm.s-1  

kon Polymerization rate (barbed end) in the presence of 
formin 

38 µM-1.s-1 (6) 

koff Dissociation rate from the barbed end 1.4 s-1 (10) 
C Drag coefficient, 𝐶 6𝜋𝜂𝑟 1.1310-7 Pa.s.m  

[G]0 Critical actin monomer concentration (koff/kon) 0.037 µM  
[G] Apparent monomer concentration  

𝐺 𝐺
𝑉
𝑘 𝛿

 

0.067 µM  

FPol  Polymerization force,  
𝐹 , 𝑘𝑇 𝛿⁄ ln 𝐺 𝐺⁄  

0.93 pN  

Mechanical  
power, W 

𝑊 𝐹 𝑉 𝑘𝑇𝑘 𝐺 ln 𝐺 𝐺⁄  

 

   

η  Viscosity 0.08 to 0.26  Pa.s  
Estimated 
drag force  

𝐹 6𝜋𝜂𝑟 𝑉  

 
0.01 to 0.032 pN  

Critical 
buckling 
force (*) 

𝐹 𝛾
𝑘𝑇 𝜋 𝐿 𝑁 ⁄

𝐿  

unknown  

Critical 
length at 
buckling  

 

𝐿
𝑁 ⁄

𝛾𝜋 𝑘𝑇 𝐿
𝐹  

40 to 12 µm2/filament1.5 
(**) 

 

(*)  N is the number of actin filaments in the bundle; LCrit is the bundle length at the onset of 
buckling; 𝛾 is a numerical factor. 
 (**) using 𝛾=1 and =1. 
 
Table S2. Parameters used to model bead motility 
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B. Model of filament bundles during macroscopic bead movement 
 

a. Equations used to simulate bead movements 
 

Bead movement was modeled by a set of equations similar to Eq. S5-S8 without the external term 
accounting for loop formation 

𝑓 0

𝑓 0

𝐶 𝑓 0

        Eq. S16  

The arc-length variable, s, lies in the interval [0, L(t)] where L(t) is the time-dependent bundle 
length. Assuming that all filaments in the bundle experience the same stress at their barbed end, 
the global force-dependent elongation rate of the bundle is given by 

𝑘 𝐺 𝐺 𝑒𝑥𝑝   Eq. S17 

In the above equation, kon is the polymerization rate for actin filament capped by formins (6), [G] 
and [G]0 are, respectively, the concentration of actin monomers and the critical concentration in 
presence of formin; 𝛿 is the radius of a monomer, Δ𝐸 𝛿|𝑓 | is the work against the elastic force 
required to insert one monomer between the bead and the barbed end. The final set of equation 
governs the bead position 

𝑤 𝑡 cos𝜃;          𝑤 𝑡 sin𝜃

with        𝑤 𝑡 𝑚𝑎𝑥 0, 𝐶 𝐹
   Eq. S18 

where (xB(t), yB(t)) is the bead center, θ is the angle between the bundle and the horizontal axis at 
the junction between the bundle and the bead, F is the magnitude of the constant viscous drag 
exerted on the bead, C is the coefficient giving the drag exerted on the bead (Table S2). 
 

b. Boundary conditions used to simulate bead movements 
  

The pointed end (at s=0) remains fixed in time with  
𝑥 0 0, 𝑦 0 0, 𝜃 0 0  Eq. S19 

The boundary at s=L(t) connects the bundle and the bead 
𝑥 𝐿 𝑡 𝑥 𝑡 𝑟 𝑡 cos𝜃 𝐿 𝑡
𝑦 𝐿 𝑡 𝑦 𝑡 𝑟 𝑡 sin𝜃 𝐿 𝑡

0
   Eq. S20 

where rB is the bead radius. 
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C. Linearization of the 2D model. 
 
We start from Eqs. S1-S2 (Supplementary material, section A), which are valid for 2D systems 
(Fig. S1B). To simplify the analysis, we assume that 

1. the angle θ between the tangent d3 and the horizontal axis is small;  
2. the force applied along the tangent is zero (f1, ext=0) 
3. the force applied laterally to the filament, which accounts for the presence of surrounding 

filaments, has a constant density (force per unit length), fLat. 
 
Eqs. S1-S2 read 

cos𝜃, sin𝜃,

𝐶 𝑓 cos𝜃 𝑓 sin𝜃,

0, 𝑓

  Eq. S21    

with     cossin,sincos, 2121 ffffff yx   and CB is the filament bending rigidity 

(𝐶 𝑘𝑇𝐿 ). After deriving the third line in Eq. S21 with respect to arc-length s and using the 
expression for the derivative of the forces (two last lines in Eq. S21), one gets 

𝐶 𝑓 cos 𝜃 𝑓 sin 𝜃 𝑓 cos 𝜃. Eq. S22 

When θ is small enough, Eq. S22 is replaced by 

𝐶 𝑓 𝐶 ,   Eq. S23 

where we expressed fx, the constant unknown force along the horizontal axis, as  

𝑓 𝐶               Eq. S24 

where λ, which has the dimension of the a length, is the wavelength of the wavy filament 
configuration (Fig. S8), the filament wavenumber ω (i.e. the number of bumps) is given by 𝜔
2𝜋 𝜆⁄  (Fig. S8). The solution of Eq. S23 reads 

𝜃 𝑠 sin 𝜔𝑠 𝐾 1 cos 𝜔𝑠 𝑠,        Eq. S25 

where we used the condition 𝜃 0 0 to eliminate one of the arbitrary constants,  𝜃 0 0 
expresses that the initial filament direction is horizontal at the pointed end. The three unknown 
parameters 𝐾 , 𝐾 , 𝜔  are dependent on the conditions at the barbed end. 
 

a. Tethered conditions. 
 
Since the filament is assumed straight and horizontal, tethered conditions are equivalent to 

𝑥 𝐿 𝑥 0 cos 𝜃 𝑑𝑠 ≃ 1 𝑑𝑠 𝑎,

𝑦 𝐿 𝑦 0 sin 𝜃 𝑑𝑠 ≃ 𝜃𝑑𝑠 0,

𝜃 𝐿 0,

  Eq. S26 

where L is the filament length and a the end-to-end distance (a<L). The first condition in Eq. S26 
comes from the integration of the first line in Eq. S21 using the simplification cos 𝜃 ≃ 1 𝜃 2⁄ , 
the second condition is obtained from the integration of the second line in Eq. S21 (with the 
approximation sin 𝜃 ≃ 𝜃), while the third condition in Eq. S26 requires that the filament 
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orientation at the barbed end be horizontal. Eqs. S25-S26 result in a set of non-linear equations 
for the unknown parameters 𝐾 , 𝐾 , 𝜔  

𝐾 ,          𝐾 ,  Eq. S27 

with  solution of 
𝑓 𝐿 𝜔 𝐿 cos 𝜔𝐿 4 24 1 cos 𝜔𝐿 9𝜔𝐿 sin 𝜔𝐿

24 𝐶 𝐿 𝑎 𝜔 1 cos 𝜔𝐿 0 
Eq. S28 

The integrated curvature is 

𝐾 𝑑𝑠 𝜔 𝑂 𝜔             Eq. S29 

 
b.  Non-tethered conditions. 

 
Non-tethered filaments have zero bending curvature at their both ends (Fig. 5B) 

0, 0.   Eq. S30 

In addition, the tangential force fy(s) at s=L should be zero (Fig. 5B). The expression for fy(s) is 
derived from the third line in Eq. S21 

𝑓  ≃ 𝐶 𝑓 𝜃   , Eq. S31 

 from which we get the last condition 

𝜔 𝜃 0.  Eq. S32 

 
The solution of Eqs. S29 and S31 is 

𝐾 , 𝐾 ,  Eq. S33 

with  given by the non-linear equation 
𝜔𝐿 sin 𝜔𝐿 cos 𝜔𝐿 1 0.   Eq. S34 

 
The associated total curvature reads: 

𝐾 𝑑𝑠 𝜔 𝑂 𝜔             Eq. S35 

 
Also note that  

𝐸 𝐾 ,   Eq. S36 

gives the total elastic energy stored in the filament shape for both attachment conditions. 
 

c. Simulations. 
 

Once the lateral force density fLat is fixed, the solution of Eqs. S27-S28 or Eqs. S23-S24 gives 
the wavenumbers  and wavelengths 𝜆 2𝜋 𝜔⁄  (Fig. S10). For a single value of fLat there exists 
an infinite number of wavenumbers/wavelengths compatible with tethered (red curve) or non-
tethered (green curves) conditions (Fig. S9). Which  corresponds to the effective wavelength? 
For a given fLat, the elastic energy stored in the filament shape scales with 2  (Eqs. S29, S35, 
S36). Therefore, in realistic conditions, only the ground state, which corresponds to solutions 
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with minimal  (solution of minimal elastic energy), is observable. Filament configuration with 
higher  cannot live in the noisy environment of the cytoplasm or in vitro experiments. From Fig. 
S9, we extracted the wavenumbers and wavelengths corresponding to the ground state and 
displayed them in Fig. 6. 
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SUPPLEMENTAL FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Schematic representation of 3D (A) and 2D (B) models for elastic filaments 
(e1, e2, e3) (resp. (e1, e3)) is the spatial frame in 3D (resp. 2D representation). The directors 
vectors (d1, d2, d3) give the local orientation of the filament at any point. Note that in the 2D 
model, the bending moment is along d2 which is orthogonal to the plane (e1, e3). 
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Figure S2. Determination of the attraction force: case of a single filament 
Panels A and B: A folded filament forms a flat loop which is stabilized by attractive forces along 
the stem (dashed green arrow, panel B) balancing the elastic forces along the loop (dashed blue 
arrow, panel B).  Panel C: Geometric model of the filament configuration in panel A. M is a point 
at distance s from the loop origin O, θ is the angle between the unit vector tangent to the filament 
at M (black arrow) and the horizontal axis. To simplify the model, we consider that the attraction 
force exerted on M  is horizontal, along the line MM’. M’ is the point symmetric to M located at 
a distance L-s from O. Additionally, we assume that the attraction between M and M’ depends on 
|MM’| only. Panel D: Solution to Eqs. S3-S6 (red curve) superimposed to the actual filament 
configuration in A (green curve). Parameters of the solution are: Lf = 19 µm (total filament 
length); Lp = 10 µm (persistence length), ks = 2.7x10-3 pN.µm-2 (self-interaction parameter), x0 = 
0.055 µm and x1 = 0.05 µm. Panel E: Superposition of the solution shown in panel E (after 
rotation and scaling) and the filament. 
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Figure S3. Attractive force density 
Panel A: Schematic representation of the magnitude and sign of the attraction force. Panel B: 
Repulsion/attraction horizontal force as a function of the arc-length position for the solution 
shown in Fig. S2D. 
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Figure S4. Model for the attractive force in bundles 
Panels A and B: Typical loops made by a single filament (A) or a bundle (B). Scale bar: 5 µm. 
Panels C and D: Attraction force between filaments or bundles (green arrows). Small dark circles 
represent the cross section of a single actin filament (C) or actin filaments in the bundle (D).  
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Figure S5. Kinetics of bundle elongation and bead displacement 
Panels A and B: The bundle length (blue dots) and the bead trajectory (red dots) for the two are 
displayed for the two examples shown in Fig. 1A (red, bottom bead; blue, top bead). The dashed 
curves represent linear interpolation of experimental points.  
Panels C and D: Simulation of the bead displacement and bundle elongation using Eqs. S16-S20 
for two bundle rigidities: (C) 50 µm, (D) 150 µm. 
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Figure S6. Sample of bundle loops for different density of formin 
The blue curves give the best fit by Eqs. S5-S8 (with =1) to the actual loop, shown in red. 
Horizontal and vertical axis are in micrometers. 
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Figure S7. Persistence length of bundles 
Determination of bundle persistence length using Eqs. S5-S8 assuming perfect sliding of the 
filament in the bundle (=1, right panel) or filament bound together  (=2, left panel). The 
average and standard deviation are indicated in blue. 
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Figure S8. Wavy filament shape, wavenumber and wavelength 
Panel A: The filament shape predicted by the model consists in a linear combination of periodic 
functions with period  2 . The force exerted by the filament onto its attachment point 

(magenta arrow) and the elastic energy stored in the filament shape are both proportional to 2.  
Panel B: Because the number of half periods can change by steps of  1  only, it results a sudden 
change in the wavenumber (henceforth in the energy and force). 
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Figure S9. Filament wavenumber and wavelength predicted by the linear model 
The wavenumber (left panel) and the wavelength (right panel) of filament configurations are 
computed as a function of the density of lateral forces coercing the filament into a cylinder. Red 
(resp. green) curves are obtained for tethered (resp. non-tethered) conditions.  
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Figure S10. Model for filament in dense networks 
Panel A:  The force due to the presence of other filaments of the bundle is applied at any point M 
on the filament (red curve) along a direction orthogonal to the end-to-end axis (blue line). The 
gray cylindrical box represents the space in which the red filament is confined. The end-to-end 
blue line represents the filament configuration if the coercing force were infinite. 
Panel B: The radius of the cylindrical box containing the filament is a decreasing function of the 
filament density.   

Panel C: The amplitude of the force is given by the formula:     1
0exp1  crrrf where r 

is the distance |MN| (see panel A) and r0, the box radius given in panel B. The three radii r0=0.36, 
0.28 and 0.06 µm correspond to low (1 Fil.µm-2), moderate (50 Fil.µm-2) and high (2000 Fil.µm-

2) filament densities. The scaling factor rc controls the transition width. We performed 
simulations with rc=0.02 µm. Values of rc in the range 0.01 to 0.05 give similar results 
(qualitatively and quantitatively), showing that it is the position of the transition (controlled by r0) 
that matters. 
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Figure S11.  Actin filament is coerced into cylindrical box 
Increasing the filament density from 1 to 2,000 filaments.µm-2 coerces a single filament into a 
cylindrical box with decreasing radius. The leftmost configuration (green curve) represents a 
buckled filament without lateral forces; the rightmost red configuration illustrates the presence of 
lateral constraints due to high filament density. 
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Figure S12. Mechanical power overlap for tethered and non-tethered filaments  
Direct comparison of 0° tilt, tethered filaments (red curve) vs. 35° tilt , non tethered filaments 
(blue curve) displays the complementarity of the two filament architectures. 
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