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ABSTRACT 27 

The position of host factors required for viral replication within a human protein-protein 28 

interaction (PPI) network can be exploited to identify drug targets that are robust to drug-29 

mediated selective pressure. Host factors can physically interact with viral proteins, be a 30 

component of pathways regulated by viruses (where proteins themselves do not interact 31 

with viral proteins) or be required for viral replication but unregulated by viruses. Here, we 32 

demonstrate a method of combining a human PPI network with virus-host protein 33 

interaction data to improve antiviral drug discovery for influenza viruses by identifying 34 

target host proteins. Network analysis shows that influenza virus proteins physically interact 35 

with host proteins in network positions significant for information flow. We have isolated a 36 

subnetwork of the human PPI network which connects virus-interacting host proteins to 37 

host factors that are important for influenza virus replication without physically interacting 38 

with viral proteins. The subnetwork is enriched for signaling and immune processes. 39 

Selecting proteins based on network topology within the subnetwork, we performed an 40 

siRNA screen to determine if the subnetwork was enriched for virus replication host factors 41 

and if network position within the subnetwork offers an advantage in prioritization of drug 42 

targets to control influenza virus replication. We found that the subnetwork is highly 43 

enriched for target host proteins – more so than the set of host factors that physically 44 

interact with viral proteins. Our findings demonstrate that network positions are a powerful 45 

predictor to guide antiviral drug candidate prioritization. 46 

IMPORTANCE 47 

Integrating virus-host interactions with host protein-protein interactions, we have created a 48 

method using these established network practices to identify host factors (i.e. proteins) that 49 
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are likely candidates for antiviral drug targeting. We demonstrate that interaction cascades 50 

between host proteins that directly interact with viral proteins and host factors that are 51 

important to influenza replication are enriched for signaling and immune processes. 52 

Additionally, we show that host proteins that interact with viral proteins are in network 53 

locations of power.  Finally, we demonstrate a new network methodology to predict novel 54 

host factors and validate predictions with an siRNA screen. Our results show that integrating 55 

virus-host proteins interactions is useful in the identification of antiviral drug target 56 

candidates. 57 

INTRODUCTION 58 

Viruses such as influenza virus hijack and reprogram host cellular machinery to perform 59 

virus replication tasks. Influenza outbreaks have a major impact on public health and the 60 

global economy each year(1, 2). While annual vaccinations provide some protection, 61 

vaccination effectiveness is impaired by antigenic drift and availability issues(3, 4). Recent 62 

sporadic human infections with avian viruses of H5N1 and H7N9 subtypes have raised 63 

concerns about the pandemic potential of these viruses(5–8). Antiviral drugs that target 64 

influenza viral proteins are available(9, 10) but drug resistant strains have emerged(11, 12). 65 

Therefore, there is an urgent need to identify drug targets that are robust to virus mutation 66 

and drug-mediated selective pressure. 67 

Understanding virus-host interactions in the context of the human protein-protein 68 

interaction (PPI) network will provide a global perspective into how influenza virus 69 

manipulates host proteins and aid in identifying host factors involved in influenza virus 70 

replication for drug targeting(13–15). The virus-host interactome is visualized in Fig. 1A. 71 

Within a PPI network, a protein’s global significance can be assessed by the protein’s 72 
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network centrality: the identification of important components based on information flow 73 

across the network. Common measures include a proteins degree (number of binding 74 

partners) and betweenness (the degree to which the protein is a bottleneck in the network) 75 

though several others exist(16, 17). Network centrality has emerged as a valuable tool for 76 

studying proteins associated with cancer(18, 19) and drug targeting(19–22). PPI network-77 

based approaches have recently been utilized in influenza virus studies to identify and study 78 

potential factors involved in virus replication(23–27). Network studies have demonstrated 79 

that virus interacting host proteins tend to have a high network significance based on a 80 

variety of network metrics (including betweenness and degree) for several viruses including 81 

influenza viruses(28)  and hepatitis C virus(29). A comparative analysis of influenza virus 82 

protein and host protein interactomes has identified novel host factors that are common 83 

across the protein interactomes(30). Furthermore, meta-analysis studies have developed 84 

statistical methods to better identify host factors by leveraging data from several virus 85 

replication screens (31). Yet, a remaining question is how effectively can virus-host protein 86 

interaction data and network topology be leveraged to improve host factor identification 87 

(i.e. antiviral drug target identification).  88 

Here, we demonstrate a method of integrating virus-host protein interaction data into a 89 

human PPI network to prioritize host proteins as antiviral drug target candidates. First, we 90 

analyzed a set of  1,292 human proteins identified previously as having interactions with 91 

influenza virus proteins(32), 299 of which were found to significantly inhibit influenza virus 92 

replication during an siRNA virus replication screen (Fig. 1A). Consistent with previous 93 

studies, we show that virus-interacting human proteins tend to be in positions essential to 94 

PPI network information flow and are closely clustered within the PPI network. We then 95 

isolated the subnetwork of the human PPI network that connects virus-interacting host 96 
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proteins to non-interacting, host factors (referred to as “internal”) that were identified to be 97 

important for influenza virus replication in a study and re-evaluated in this work (33) (Fig. 98 

1B). Candidate proteins connecting virus-interacting host proteins to internal host factors 99 

were selected based on their betweenness within this subnetwork and evaluated by viral 100 

replication screen. Betweenness was selected under the hypothesis that selecting network 101 

bottlenecks (i.e. high betweenness proteins) would limit the opportunity for the virus to 102 

engage host machinery through alternative pathways. The fraction of proteins tested which 103 

significantly reduced virus replication (i.e. the hit rate) was compared to the hit rate 104 

observed in a genome-wide screen, the hit rate when screening virus-interacting proteins 105 

(the virus’ nearest neighbors in the network) and the hit rate observed when screening host 106 

factor identified in a previous study(33).  107 

RESULTS 108 

Host proteins that interact with influenza virus proteins are central to the PPI network 109 

Studies have shown that proteins in network positions that are essential for information 110 

flow within a PPI network (e.g. high degree or high betweenness) are more likely to be 111 

associated with diseases(34, 35) or drugs with known, dangerous side-effects(19, 36). Using 112 

a human PPI network, we analyzed the network topology characteristics of virus-interacting 113 

and non-virus-interacting host proteins. In a previous study, we identified 1,292 host 114 

proteins that co-precipitated with at least one of 11 influenza virus proteins (viral PB2, PB1, 115 

PA, HA, NP, NA, M1, M2, NS1, NS2, and PB1-F2 proteins)(32). These proteins are referred to 116 

as “virus-interacting proteins”. We mapped the interaction data onto a human PPI network 117 

developed from the Human Integrated Protein-Protein Interaction rEference  (HIPPIE) 118 

database(37). After constraining the network to highly confident interactions (see 119 
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Methods), the PPI consisted of one large network (9,969 proteins and 57,615 interactions) 120 

which contained 1,213 influenza virus-interacting host proteins and 86 smaller networks 121 

that contained 7 or fewer proteins (the majority only containing 2 proteins) and no 122 

influenza virus-interacting proteins. The smaller networks were removed from further 123 

consideration. 124 

Virus proteins were significantly more likely to interact with host proteins that were in 125 

positions of high regulatory importance in the human PPI network. For every protein, the 126 

degree (number of neighbor proteins) and betweenness(38) (measure of the shortest paths 127 

between all other proteins in the network that include the protein in question) were 128 

calculated. On average, the degree of virus-interacting host proteins was twice the degree 129 

of all proteins in the network (Fig. 2A; the median degree of virus-interacting proteins = 10; 130 

the median degree of all proteins in the network = 5; Student t-test of the log-scaled data p 131 

< 10
-16

). Virus-interacting proteins also had a significantly higher betweenness (Fig. 2B; virus-132 

interacting proteins median betweenness = 1625.1; the median betweenness of all protein 133 

in the network = 32.8; Mann-Whitney U test of the log-scaled data p < 10
-16

). We also 134 

compared to the median betweenness when removing proteins with a betweenness of zero. 135 

Virus-interacting proteins still had a significantly higher betweenness but the population 136 

medians were closer in value (virus-interacting proteins median betweenness = 3981.1; the 137 

median betweenness of all protein in the network = 1584.8; Mann-Whitney U test of the 138 

log-scaled data p = 8.2*10
-16

).  The tendency for virus proteins to bind host proteins that had 139 

a higher degree and betweenness was consistent when analyzing the interaction partners of 140 

each virus protein separately (Fig. S1; pairwise t-test of the log-scaled data. All p < 0.01 141 

except for betweenness of NS2-interacting proteins which was not significantly distinct from 142 

the betweenness of the full PPI). This indicates that influenza virus proteins selectively 143 
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interact with human proteins that can strongly regulate cellular behavior. These results are 144 

consistent with literature findings for HCV and Dengue virus(39, 40) and with a previous 145 

study which used a yeast two-hybrid approach to identify influenza virus interacting host 146 

proteins for 10 of the 11 virus proteins (28). Further, these are characteristics that 147 

generalize to each virus protein’s interacting partner; suggesting that all 11 virus proteins 148 

have a role in manipulating cellular machinery. 149 

Influenza virus-interacting host proteins are closely connected in the human PPI network 150 

Next, we evaluated if virus-interacting proteins tend to cluster closely to one another in the 151 

PPI network. A previous study suggested that host factors of viral replication are closely 152 

clustered within the network but did not assess the topological characteristics of virus-153 

interacting host proteins (41). Functionally related proteins are often observed to be closely 154 

clustered in PPI networks(42, 43). Knowing that influenza virus proteins manipulate multiple 155 

host cell functions to promote replication, these previous studies suggest that the 156 

interaction partners of viral proteins should be closely clustered by host function. If true, 157 

neighboring cluster proteins could serve as possible alternatives for influenza virus to 158 

manipulate each host function.  159 

We quantified how close each virus proteins’ interacting host proteins are within the 160 

network by calculating the shortest distances required to connect all of the host proteins 161 

that interact with a viral protein, creating a distribution of distances. The cumulative 162 

distribution details the fraction of host proteins that could be connected to other host 163 

proteins that bind the same viral protein in n or fewer steps. As a control, we determined 164 

the cumulative distribution of distances that result from randomly sampled proteins in the 165 

network. For a single iteration, we created a set of random proteins. The size of the set was 166 
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determined by the number of proteins which interact with the virus protein of interest (e.g. 167 

PB1 has 322 interacting host proteins, therefore 322 proteins were randomly selected from 168 

the network; Fig. 2C-F). The distributions of distances connecting all of the randomly 169 

sampled proteins was calculated. This was process was repeated 100 times.  170 

We found that virus-interacting host proteins are very significantly clustered within the PPI 171 

network. The set of proteins that interact with a viral protein are significantly more closely 172 

clustered in the network than expected by chance (Fig. 2C-F, p < 0.01 when comparing the 173 

median distance of the virus-interacting proteins to the median distance of randomly 174 

sampled proteins).  Generally, ~25% of the randomly sampled proteins are connected by 2 175 

or fewer interactions while 88.7% of PB1-interacting proteins, 90.0% of HA-interacting 176 

proteins, 98.2% of NS1-interacting proteins, and 79.6% of all host proteins that interact any 177 

influenza virus protein are connected by 2 or fewer interactions. Collectively, these results 178 

support that viral proteins are selectively targeting closely clustered host proteins. 179 

We next evaluated if influenza interacting proteins are often components of a common 180 

protein complex. To do so, we determined the fraction of all influenza virus interacting 181 

proteins pairs (735,078 pairs in total) that appear within a protein complex and compared 182 

that fraction to the fraction of all protein pairs (49,685,496 total pairs) in the PPI that appear 183 

in a protein complex. Mammalian protein complex information was downloaded from 184 

CORUM (a comprehensive resource of mammalian protein complex data)(44). We found 185 

that 1.5% of all virus interacting protein pairs are involved in a complex where as only 186 

0.066% of all proteins pairs in the PPI are involved in a complex. In sum, influenza virus 187 

proteins are closely clustered and 22.4 times more likely to be involved in a protein complex 188 

than randomly selected proteins. 189 
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Constructing the influenza virus-host subnetwork  190 

Network analysis of virus-interacting host proteins demonstrates that viral proteins 191 

preferentially interact with closely connected host proteins that are in positions central to 192 

information flow across the human PPI network; suggesting that it may be possible to 193 

exploit network positions to prioritize potential antiviral drug targets. We hypothesized that 194 

there exists a subnetwork consisting of pathways that connect virus interacting proteins to 195 

key cellular machinery that is likely to be significantly enriched for host factors. We further 196 

hypothesized that the topology of host factors within this subnetwork may provide an 197 

additional advantage in identifying host factors. 198 

To evaluate these hypotheses, we first performed an siRNA screen of host factors identified 199 

in a previous genome-wide screen for influenza virus host factors to identify key host factors 200 

that do not interact directly with the virus (33). Poor repeatability due to differences in the 201 

experimental conditions and possibly high false negative rates (41) often characterizes 202 

siRNA screens of influenza virus replication host factors. Here, HEK293 cells were 203 

transfected with siRNAs targeting 264 non-virus interacting host factors identified in Karlas 204 

et al 2010 (two siRNAs per gene were used, as shown in Table S1; AllStars Negative Control 205 

siRNA [QIAGEN] was used as a negative control), then infected with influenza virus at 24 206 

hours post-transfection. The culture supernatants were harvested for virus titration at 48 207 

hours post-infection. Virus titers were determined by plaque assay. A protein was defined as 208 

a hit if the virus titers decreased by at least two log units upon transfection with an adjusted 209 

p < 0.01. Cell viability of siRNA-transfected cells was assessed using Cell-Titer Glo assay and 210 

down-regulation of mRNA levels for the hit proteins were confirmed by qRT-PCR. Of the 264 211 

previously identified host factors tested, 71 significantly down-regulated virus replication. 212 

Of the 71, 21 were identified to directly interact with influenza virus proteins. In all, 50 of 213 
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the host factors down-regulated virus growth and do not directly interact with the virus. We 214 

labeled these proteins as “internal-essential” host factors. 215 

Next, we constructed an influenza virus specific subnetwork (process illustrated in Fig. 1B) 216 

of the shortest paths connecting virus-interacting host proteins to “internal-essential” host 217 

factors (i.e. the host factors re-verified in the siRNA screen of host factors identified in the 218 

Karlas et al. screen). The proteins linking internal-essential proteins to virus-interacting 219 

proteins are “connecting” candidate proteins for evaluation as host factors of virus 220 

replication. The resulting subnetwork contained 1,213 virus-interacting proteins, 38 221 

internal-essential proteins (12 proteins were not in the PPI network), and 1,643 connecting 222 

candidate proteins (Table S2 contains the identities and centrality values for all proteins in 223 

the subnetwork). As a result of how the subnetwork is constructed, the mean degree of the 224 

virus-interacting proteins and the internal-essential proteins were lower than the mean 225 

degree of the connecting proteins (see Fig. S2A; ANOVA followed by Tukey post hoc analysis 226 

p < 0.01).  While the degree of connecting proteins does not shift significantly between the 227 

total PPI network and the virus subnetwork (Fig. 3A), some proteins with low betweenness 228 

have much lower betweenness in the virus subnetwork when compared to the total PPI 229 

network (Fig. 3B). Higher betweenness nodes in the total PPI network do not demonstrate 230 

dramatic shifts in the virus subnetwork upon comparison. This shift between the total 231 

network and virus subnetwork may reveal proteins that are more or less critical to virus 232 

replication which cannot be identified in a standard PPI network analysis.  233 

Functional enrichment analysis of the influenza virus-host subnetwork 234 

A functional enrichment analysis was performed using DAVID 6.8’s Functional Annotation 235 

tool(45). Analysis found that virus-interacting host proteins and connecting (non-internal-236 
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essential) proteins within the virus subnetwork are functionally distinct (see Table 1-2 for 237 

abbreviated results, see Table S3 for full results). Gene ontology and pathway analysis found 238 

that virus-interacting host proteins are primarily associated with housekeeping and viral 239 

replication processes (consistent with the results reported by Watanabe et al.(32)), whereas 240 

connecting proteins were associated with protein phosphorylation, histone reconfiguration 241 

and immune responses. Specifically, the immune response pathways identified are the 242 

stimulatory C-type lectin receptor signaling, T-cell receptor signaling, and Fc-epsilon 243 

receptor signaling; all of which regulate NFκB activity. Influenza virus is known to 244 

manipulate host immune response pathways (specifically NFκB regulating pathways) to 245 

promote viral replication(46, 47). These results suggest that the virus subnetwork contains 246 

functional information generally unobserved when considering virus-interacting host 247 

proteins or internal-essential proteins in isolation.  248 

Connecting proteins of the influenza virus-host subnetwork are more enriched for host 249 

factors than are virus-interacting proteins 250 

To evaluate the hypothesis that the “connecting” proteins are likely to be host factors and 251 

to simultaneously evaluate if network topology can improve host factor identification, we 252 

selected 78 proteins of the subnetwork with the highest (n=39) and lowest betweenness 253 

(n=39) and conducted another in vitro virus replication assay. HEK293 cells were again 254 

transfected with siRNAs targeted to each of the 78 candidate protein’s genes and the 255 

procedure described previously was performed to determine the proportion of the 256 

connecting proteins tested that are host factors of influenza-virus replication. The hit rate is 257 

defined as the proportion of proteins tested that significantly down-regulated virus 258 

replication. 259 
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To evaluate the significance observed in the virus replication screen of the connecting 260 

proteins, we compared the observed hit rate to the hit rate observed in a screen the 1,292 261 

virus-interacting host proteins in HEK293 cells (hit rate = 299/1292 = 0.23)(32), in the screen 262 

of the 264 host factors from Karlas et al. 2010(33) (detailed above), and in a full genome 263 

screen for influenza virus host factors in A549 cells (287/22,843 = 0.013)(33). The full 264 

genome screen provides the expected hit rate when randomly sampling the PPI. An 265 

alternative approach to network-based discovery is to target the nearest neighbors of the 266 

virus; a comparison provided by the screen of virus-interacting host proteins. An additional 267 

metric is the hit rate observed in our siRNA screen of the host factors identified by Karlas et 268 

al (71 out of 264; hit rate = 0.27). Differences between hit rates was compared using the 269 

Pearson's chi-squared test when comparing proportions between two binomial groups. 270 

The siRNA screen of the connecting proteins found that connecting proteins were 271 

significantly enriched for host factors, but there was no statistically significant advantage in 272 

selecting proteins by betweenness (Fig. 4). Of the 78 proteins targeted in the siRNA screen 273 

of connecting proteins, a total of 27 significantly reduced virus titers by at least two orders 274 

of magnitude; corresponding to 15 categorized as connecting – high betweenness proteins 275 

and 12 categorized as connecting – low betweenness proteins. Note that one of the 39 276 

connecting – high betweenness proteins (PLK1) was eliminated from the calculation because 277 

both respective siRNAs were cytotoxic (see Table S4). The hit rate of connecting proteins 278 

(27/77 = 0.35) was significantly higher than the hit rate observed in the screen of virus-279 

interacting proteins (p = 0.024) and in the full genome screen (p < 2.2*10
-16

) but not 280 

significantly distinct from the rate observed in the re-screening of the Karlas host factors (p 281 

= 0.21). When considering the connecting proteins based on their betweenness, the high 282 

betweenness had a hit rate of 0.39 (15/38) which was significantly higher than the hit rates 283 
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observed in the virus-interacting and full genome screens (p= 0.032 and p < 2.2*10
-16

, 284 

respectively). High betweenness protein hit rate was higher than the rate observed in the 285 

screen of Karlas et al. 2010 host factors, but not significantly (p=0.16). The low betweenness 286 

connecting proteins hit rate was lower than that of the high betweenness connecting 287 

proteins (12/39 = 0.31). The difference in hit rates between high and low betweenness 288 

proteins was not significant (p = 0.57). In all, the screening results suggest that proteins 289 

connecting virus-interacting proteins to host factors of influenza virus replication are highly 290 

enriched for host factors themselves – significantly more so than proteins which directly 291 

interact with virus proteins. However, the topological information from betweenness does 292 

not significantly improve host factor identification.   293 

The influenza virus subnetwork is enriched for host factors identified in 6 host factor 294 

screens 295 

To determine if host factors identified in previous screens are enriched within the virus 296 

subnetwork, we compiled a list of host factors of influenza virus replication identified in at 297 

least one of 6 previous screens (33, 48–52) (Table S5). A Fisher exact test for enrichment 298 

was used to determine if the connecting proteins or the set of influenza virus-interacting 299 

proteins are enriched with host factors identified in these studies relative to the abundance 300 

of host factors within the PPI. Both connecting proteins and the virus interacting proteins 301 

are significantly enriched for host factors (p=7.2*10
-05

 and p=1.1*10
-05

, respectively; odds 302 

ratio = 1.4 and 1.5, respectively).  When compared, there is no significant difference in the 303 

enrichment of host factors between connecting proteins and virus-interacting proteins (p = 304 

0.48; odds ratio = 0.92). To ensure the host factors identified in the Karlas et al study were 305 

not creating bias in the enrichment result, the enrichment analysis was repeated using host 306 

factors identified in all studies except the Karlas study. Again, connecting proteins and virus 307 
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interacting proteins are significantly enriched for host factors (p=1.8*10
-06

 and p=3.2*10
-03

, 308 

respectively; odds ratio = 1.5 and 1.34, respectively) and no significant difference in the 309 

enrichment of host factors between connecting proteins and virus-interacting proteins was 310 

found (p = 0.49).  311 

DISCUSSION 312 

Network approaches have demonstrated their potential impact on health related research 313 

including gene/protein characterization and drug design and side effects (14, 18, 19, 22, 36, 314 

53) yet demonstrations that network information can inform drug target discovery is still 315 

limited. Here, we present the first confirmation that virus and host protein interaction data 316 

can be integrated to improve large-scale drug target discovery (specifically antiviral target 317 

discovery) and reveal additional insights into virus-host interactions. The position of virus-318 

interacting proteins suggest that the influenza virus has evolved to interact with proteins 319 

that heavily influence network behavior. Additionally, virus-interacting proteins are closely 320 

clustered in the network. This may be a result of attempts by the virus to manipulate 321 

specific biological functions (as proteins with shared biological functions tend to cluster in 322 

PPI networks(54)) signifying that influenza virus has parallel available pathways to engage 323 

with host biological functions. Previous studies have found that host factors of virus 324 

replication (not necessarily virus-interacting host proteins) have also been observed to 325 

cluster within the PPI network(41). Further analysis on network clustering host factors of 326 

interest is needed to determine if these two observations are independent of one another.  327 

The observation that host-virus interaction data can be leveraged to improve virus 328 

replication host factor discovery is unlikely to be affected by off-target concerns associated 329 

with siRNA screens. Off-target concerns often challenge siRNA studies though changes to 330 
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experimental protocols (such as requiring multiple siRNA hits per targeted gene or changing 331 

siRNA concentrations) can only moderately improve false positive rates (55–57). The 332 

protocol used in this study was not optimal to ensure the characterization of any one 333 

targeted gene. As such, the hit rates of gene groups are compared. Protocols between these 334 

experiments and those used for comparisons are either identical (32) or very similar (33), 335 

suggesting that off-target rates across the tested groups are unlikely to explain the 336 

differences in observed hit rates. 337 

The variability and incompleteness of PPI data as well as the limited agreement between 338 

influenza virus replication screens are well known concerns for network-based drug target 339 

discovery. The possibility that virus-host interaction data is skewed towards well studied 340 

networks could also have an effect on the clustering result in virus-interacting proteins. 341 

However, the enrichment of host proteins important for influenza virus replication within 342 

the constructed virus subnetwork demonstrates that even with these possible 343 

shortcomings, PPI network analyses have the power to identify important host factors for 344 

influenza virus replication. The antiviral protein candidate screen performed in this study 345 

further supports the use of PPI data during candidate prioritization with significant hit rates 346 

against virus-interacting proteins and randomly targeted proteins. 347 

The observation that betweenness does not significantly improve host factor prediction 348 

suggests that alternative topology measures should be considered. There were several 349 

reasons why betweenness was selected. Biological pathways are known to have several 350 

alternative routes to maintaining cellular operations; a key feature of biological robustness 351 

(58–60). Biological networks are also theorized to have a bow tie-like structure that suggests 352 

a natural bottlenecking within the PPI near critical cellular machinery(61). These concepts 353 
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together suggest targeting bottlenecks (high betweenness proteins) as a means of 354 

mitigating escape via alternative paths. It was also the concern of alternative pathways as to 355 

why the set of virus interacting proteins was not limited to confirmed host factors of 356 

influenza virus replication.  In future work, other network topology measures, e.g. degree, 357 

Burt’s Constraint, or closeness, could be tested in the subnetwork and subnetwork 358 

construction could be varied to consider different subsets of either the virus interacting 359 

proteins or the internal host factors. Even so, the results suggest that the construction of 360 

the virus-specific subnetwork provides major advantages in host factor discovery and can 361 

significantly expand drug candidate repertoires beyond virus-interacting proteins. 362 

Furthermore, since the connecting proteins do not directly interact with the virus, they may 363 

be more resistant concerns related to drug-mediated selective pressure. 364 

Another interesting continuation of this study would identify the cause of connecting 365 

proteins’ effect on virus replication. The mechanism by which each host factor is regulating 366 

virus replication may offer additional clues for drug candidate prioritization efforts. Overall, 367 

this PPI-based study provides insight into the network characteristics of virus-host 368 

interactions and supports the idea that the influenza virus evolved to interact with host 369 

proteins in dominant network positions in order to maximally manipulate host cells. 370 

METHODS AND MATERIALS 371 

Protein-protein interaction network construction and analysis 372 

Protein-protein interaction data was downloaded from the Human Integrated Protein-373 

Protein Interaction rEference (HIPPIE) database(37) (version 1.4). Interactions with a 374 

confidence score less than 0.7 were removed. The interaction data was then analyzed with 375 

the igraph package in R. The interaction data resulted in one large network containing 9,969 376 
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nodes and 86 smaller disconnected networks (most with 2 nodes, all contained 7 or fewer) 377 

which were removed from the study. The final human PPI contained 9,969 proteins and 378 

57,615 interactions. 379 

All PPI topology analyses were performed with the R library igraph version 1.0.1(62).  380 

Statistical analyses and graphics packages 381 

All statistical tests were performed in R 3.2.2 using the functions prop.test, fisher.test, 382 

pairwise.t.test or wilcoxon.test (which performs a Mann-Whitney-U test) as appropriate. 383 

Prop.test and fisher.test both compare outcome proportions between binomial groups with 384 

the latter being more precise for small group sizes. Graphics were produced with either the 385 

default graphing features of R or with the ggplot2 library (63). 386 

Cells and Viruses 387 

Influenza A/WSN/ 33 virus (WSN; H1N1) was generated using reverse genetics(64). HEK293 388 

cells were cultured in DMEM (Sigma-Aldrich) supplemented with 10% FCS (10% FCS/DMEM) 389 

and antibiotics at 37°C in 5% CO2. Virus plaque titers were determined by plaque assay in 390 

Madin–Darby canine kidney (MDCK) cells.  MDCK cells were cultured in Eagle’s MEM 391 

(GIBCO) with 5% NCS at 37°C in 5% CO2.  392 

siRNA Treatment 393 

siRNA treatment procedure, cell viability and virus titer determination are described in 394 

detail in Watanabe et al 2014. Briefly, two siRNAs per candidate gene were selected from a 395 

predesigned genome-wide human siRNA library (FlexTube siRNA; QIAGNE). AllStars 396 

Negative Control siRNA (QIAGEN) was served as a negative control. The siRNA against the 397 

NP gene of WSN virus (GGA UCU UAU UUC UUC GGA GUU) purchased from Sigma-Aldrich 398 

was used as a positive control.  HEK293 cells were transfected twice with 25 nM (final 399 
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concentration, 50 nM) of siRNA duplexes using RNAiMAX (Invitrogen). At 24 hr after the 400 

second transfection, cell viability was determined using the CellTiter-Glo assay system 401 

(Promega) following manufacturer’s instructions. To assess influenza virus replication, two 402 

parallel sets of siRNA-transfected cells were infected with 50 plaque forming units (pfu) of 403 

WSN virus per well of a 24-well tissue culture plate at 24 hr after the second siRNA 404 

transfection. At 48 hr post-infection, supernatants were harvested and virus titers 405 

determined by plaque assay in MDCK cells. 406 

Quantitative reverse transcription-PCR 407 

To confirm the down-regulation of host genes by their respective target siRNAs, quantitative 408 

reverse transcription-PCR (qRT-PCR) experiments were performed. Table S6 provides a 409 

complete list of primer sequences. HEK 293 cells, transfected twice with 25 nM of siRNA 410 

(final concentration, 50 nM), were lysed at 48 h post-transfection and total RNA was 411 

extracted by using the Maxwell 16 LEV simplyRNA Tissue Kit (Promega). Reverse 412 

transcription was performed by using ReverTra Ace qPCR RT Master Mix (TOYOBO, Osaka, 413 

Japan) or SuperScript III Reverse Transcriptase (Invitrogen). The synthesized cDNA was 414 

subjected to quantitative PCR with primers specific for each gene by using the 415 

THUNDERBIRD SYBR qPCR Mix (TOYOBO). The relative mRNA expression levels of each gene 416 

were calculated by the ΔΔCt method using beta-actin as internal control. Primer 417 

sequences are available upon request. 418 

Determining candidate proteins involved in influenza virus replication 419 

For each set of siRNAs, the virus titers from cells treated with siRNAs were normalized by 420 

the titers obtained from cell treated with AllStars Negative Control siRNA (Table S7). siRNAs 421 

that reduced cell viability by more than 40% relative to that of AllStars Negative Control 422 
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siRNA-treated cells were not considered for further analysis. Unlike our previous study(32), 423 

LOESS regression was not needed (Fig. S3). A two-sided, unpaired Student’s t test was used 424 

to compare the mean virus titers in cells treated with gene-specific siRNAs with those in 425 

cells treated with AllStars Negative Control siRNA. Holm’s method for multiple comparisons 426 

was then applied to the p values.  427 
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 630 

FIGURES 631 

Figure 1 The virus-interacting network and the virus subnetwork. (a) The virus-interacting 632 

network is created from human host-PPI data combined with virus-host protein interaction 633 

data. (b) The virus subnetwork was isolated from the complete human PPI network by 634 

collecting all interactions involved in the shortest paths (red) that connect influenza virus-635 

interacting proteins (blue) to human proteins essential to virus replication (e.g. the internal-636 

essential proteins; colored orange). The connecting proteins (colored black) are candidates 637 

to be evaluated for their antiviral properties. 638 
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Figure 2 The network topological characteristics of virus-interacting host proteins. The 639 

distributions of the (A) degree and (B) betweenness of virus-interacting proteins and all 640 

proteins in the human PPI network. An ε = 0.01 was added to the betweenness to facilitate 641 

log scaling. The cumulative distributions (thick, red lines) of the shortest distances 642 

connecting host proteins in the PPI network that interact with viral (C) PB1, (D) HA, (E) NS1 643 

proteins or (F) the set of all viral proteins. As a control, the cumulative distribution of 644 

distances was iteratively determined (N=100) by randomly sampled host proteins in the PPI 645 

network (thin, black lines). The number of proteins sampled on each iteration was equal to 646 

the number of interacting host proteins of each virus protein (or set of viral proteins).  647 

Figure 3 Network characteristics of the virus subnetwork. Panels (A) and (B) compare the 648 

degree and betweenness, respectively, of the connecting proteins in the whole PPI network 649 

and the virus subnetwork. 650 

Table 1 Functional Enrichment Analysis of Virus Subnetwork. Functional enrichment 651 

analysis of connecting proteins within the virus subnetwork. Proteins were analyzed using 652 

DAVID. 653 

Table 2 Functional Enrichment Analysis of Virus Subnetwork. Functional enrichment 654 

analysis of virus-interacting proteins within the virus subnetwork. Proteins were analyzed 655 

using DAVID. 656 

Figure 4 Comparison of hit rates. The hit rates are reported for all tested connecting 657 

proteins and connecting proteins with high or low betweenness in the virus subnetwork. 658 

These hit rates are compared to hit rates observed from a previous screen of virus-659 

interacting host proteins (labeled “Virus-Interacting Proteins”) [32], from applying our 660 

screening methodology to host factors identified in a screen by Karlas et al. (labeled “Karlas 661 
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host factors”) and from a genome-wide screen [33]. Prop.test in R was used to determine 662 

the significance of the difference in hit rates observed for binomial groups. * indicates a p < 663 

0.05 and ** indicates a p < 0.01.  664 

 665 

SUPPLEMENTAL FIGURES 666 

Fig S1 The distributions of the (a) degree and (b) betweenness of the interaction partners 667 

of each of the 11 virus proteins. The y axis lists the particular virus protein, and the x axis 668 

demonstrates distributions of the centrality measures of the virus protein’s interaction 669 

partners within the human PPI network. The distributions for all proteins in the human PPI 670 

network (labeled “All”) and the set of proteins that interacted with any of the virus proteins 671 

(“VB”) are included for comparison. 672 

Fig S2 Boxplot of the degree and betweenness distributions for connecting (candidate) 673 

proteins, virus-interacting proteins, and internal essential proteins. Black lines indicate the 674 

median for each population. 675 

Fig S3 The mean log fold change (LFC) vs the mean fold change (FC) in cell viability for all 676 

156 gene-specific siRNAs tested. Cyan and green points highlight data corresponding to the 677 

24 negative and positive control siRNAs (i.e., AllStars Negative Control siRNA and 25 siRNA 678 

against influenza virus NP gene, respectively). The broken ride line is the LOESS regression 679 

curve, showing that virus growth was not dependent on cell viability. 680 

Table S1 Effects of siRNAs targeting host factors identified to be important for influenza 681 

virus replication by Karlas et al. (Nature, 2010) on virus production. Note that two siRNA’s 682 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/344861doi: bioRxiv preprint 

https://doi.org/10.1101/344861


 32

were used per Entrez Gene ID. Sheet 2, labeled “untested host factors”, lists host factors 683 

that were identified in the Karlas screen but were not evaluated in this study.  684 

Table S2 The degree and betweenness of proteins in virus-host interaction subnetwork. 685 

The symbol, description and Entrez Gene ID of each protein are provided in the first three 686 

columns. Proteins tagged with a 1 in the "Virus-interacting" and "Internal-Essential" 687 

columns identify proteins were associated with a virus protein in the co-688 

immunoprecipitation study or identified as essential but not directly associated with a virus 689 

protein, respectively. The last three columns provide the protein's degree and betweenness 690 

in the subnetwork and identify which proteins were selected for further testing. 691 

Table S3 DAVID Functional Annotation Tool results for virus-interacting proteins and 692 

connecting proteins of the influenza virus subnetwork. Full results include the clustering, 693 

chart, and table outputs from DAVID 6.8. 694 

Table S4 Effects of siRNAs Targeting Host Factors with High or Low Betweenness in the 695 

Virus-Host Subnetwork on Virus Production.   696 

Table S5 Hit-lists of genes identified in 6 independent genome-wide screens. Studies 697 

include König et al (2010), Brass et al (2009), Shapira et al (2009), Hao et al (2008), Karlas et 698 

al (2010), and Sui et al (2009).  699 

Table S6 A list of primers used for qPCR.  700 

Table S7 Virus titers observed in HEK293 cells.    701 
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Table 1 Functional Enrichment Analysis of Virus Subnetwork. Functional enrichment analysis 

of connecting proteins within the virus subnetwork. Proteins were analyzed using DAVID. 

Cluster 
Number of 

GO terms 

Enrichment 

Score 

Transcription 4 55.4 

DNA damage/repair 3 19.2 

Protein phosphorylation 19 18.7 

Mitosis 5 18.7 

Histone reconfiguration 42 14.4 

Immune response 3 14.0 

        C-type lectin receptor signaling pathway 

  

        T cell receptor signaling pathway 

  

Zinc ion binding 4 11.5 
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Table 2 Functional Enrichment Analysis of Virus Subnetwork. Functional enrichment analysis 

of virus-interacting proteins within the virus subnetwork. Proteins were analyzed using DAVID. 

Cluster 

Number 

of GO 

terms 

Enrichment 

Score 

Ribonucleoprotein/Viral 

transcription 
13 67.4 

Cell-cell adhesion 3 46.6 

mRNA splicing 9 41.8 

Nucleotide binding 10 30.5 

Chaperone/UPR 3 22.0 

Viral nucleocapsid 3 19.0 

mRNA nuclear export 4 17.4 

Nucleotide binding/ATP binding 5 17.1 

Translation initiation factors 11 13.1 

Proteasome/NF-kB MAPK signaling 23 12.0 
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