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Summary 

H3K9me3, H3K27me3 and H4K20me1 are epigenetic markers associated with chromatin 

condensation and transcriptional repression. Previously, we found that migration of melanoma 

cells is associated with and dependent on global chromatin condensation that includes a global 

increase in these markers. Taken together with more recent reports by others suggest it is a 

general signature of migrating cells. Here, to learn about the function of these markers in 

migrating cells we mapped them by ChIP-seq analysis. This analysis revealed that induction of 

migration leads to expansion of these markers along the genome and to an increased over-

lapping between them. Significantly, induction of migration led to a higher increase in H3K9me3 

and H4K20me1 signals at repetitive elements than at protein-coding genes, while an opposite 

pattern was found for H3K27me3. Transcriptome analysis revealed that 182 altered genes 

following induction of migration, of which 33% are dependent on H3K27me3 for these changes. 

H3K27me3 was also required to prevent changes in the expression of 501 other genes upon 

induction of migration. Taken together our results suggest that heterochromatinization in 

migrating cells is global and not restricted to specific genomic loci and that H3K27me3 is a key 

component in executing a migration-specific transcriptional plan.   
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Introduction 

Cell migration is one of cancer hallmarks that is fundamental for metastasis formation (Hanahan 

and Weinberg 2011). Tumor cell migration is highly dependent on cytoplasmic changes in the 

cytoskeleton and in the activity of motor proteins (Etienne-Manneville 2013; Rottner and Stradal 

2011; Ouderkirk and Krendel 2014), but more recently alterations in chromatin structures were 

also found to be required (Gerlitz and Bustin 2011). Chromatin basic repetitive packaging unit is 

the nucleosome, which is composed of 147bp of DNA that are wrapped around an octamer of 

histones (McGinty and Tan 2014). Nucleosomes are organized in higher order structures, of 

which relatively de-condensed and transcribed regions are termed euchromatin, while more 

condensed and non-transcribed regions are termed heterochromatin. Euchromatin and 

heterochromatin are decorated by different levels and/or types of epigenetic marks such as 

histone modifications. Heterochromatin-associated histone modifications include H3K9me3, 

H3K27me3 and H4K20me1 (Mozzetta et al. 2015). H3K9me3 is enriched in constitutive 

heterochromatin regions such as repetitive elements and pericentromeric regions, where it is 

important for their repression (Peters et al. 2001). Still, H3K9me3 was also found at promoters of 

repressed genes as well as at some active genes (Barski et al. 2007). H3K27me3 accumulates 

over cell-type specific repressed genes (facultative heterochromatin) and the inactivate X 

chromosome (Barski et al. 2007; Margueron and Reinberg 2011, 2; Rougeulle et al. 2004). 

H4K20me1 is associated with repression of the inactive X chromosome and specific genes, but it 

was also found to accumulate downstream from the TSS of highly active genes (Beck et al. 

2012; Kohlmaier et al. 2004). The inconsistent observations regarding H4K20me1 may arise 

from various cross-talks of H4K20me1 with other epigenetic marks and the fact that H4K20me1 

is an initial step in the process of generating the highly repressive mark H4K20me3.   
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 Previously we found that migration of mouse melanoma cells is associated with and 

dependent on global chromatin condensation that includes more than a two-fold increase in the 

levels of H3K9me3, H3K27me3 and H4K20me1 (Gerlitz and Bustin 2010; Gerlitz et al. 2007; 

Maizels et al. 2017). More recently, migration-associated global chromatin condensation was 

reported in primary and transformed T-cells (Zhang et al. 2016b) and primary tenocytes (Zhang 

et al. 2016a). Reliance of cell migration on chromatin condensation has been reported in various 

types of cells including lung cancer cells (Chen et al. 2010), embryonic fibroblasts (Kottakis et 

al. 2011), breast adenocarcinoma cells (Fu et al. 2012; Kokura et al. 2010; Yokoyama et al. 

2013), colorectal cancer cells (Yokoyama et al. 2013), prostate cancer cells (Yu et al. 2017), 

glioma cells (Spyropoulou et al. 2014), chondrosarcoma cells (Girard et al. 2014), epidermal 

cancer stem cells (Adhikary et al. 2015), primary tenocytes (Zhang et al. 2016a) and primary and 

transformed T-cells (Zhang et al. 2016b). Thus, the dependence of tumor cell migration on 

chromatin condensation is a ubiquitous mechanism. Still, the exact roles of heterochromatin 

formation in migrating cells are not fully understood. 

 Here, to gain a mechanistic insight on the roles of heterochromatin in migrating cells we 

mapped the changes in heterochromatin spread and in the transcriptome in melanoma cells in 

response to migration signals by ChIP-seq and RNA-seq, respectively. Induction of migration 

was associated with more diffused distribution of H3K9me3, H3K27me3 and H4K20me1 that 

generated lower number of peaks, but had a higher over-lapping between the different histone 

modifications. Following induction of migration, H3K9me3 and H4K20me1 accumulated to a 

higher degree in repetitive regions, while H3K27me3 re-distributed towards genes. In parallel, 

we identified 182 genes with altered RNA levels of which one third were dependent on 

migration-induced methylation of H3K27.     
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Results 

Induction of migration leads to a global increase of 2-4-fold in the levels of the heterochromatin 

markers H3K9me3, H3K27me3 and H4K20me1, as we previously detected by immunostaining 

(Maizels et al. 2017; Gerlitz and Bustin 2010; Gerlitz et al. 2007). To learn about the mechanistic 

role of these histone modifications in the migration process, we mapped their relative distribution 

along the genome by ChIP-seq. Migration of the B16-F1 mouse melanoma cells was induced by 

the wound healing assay (Liang et al. 2007), in which multiple scratches were performed in each 

plate to generate large numbers of migrating cells. This way of induction of migration enabled us 

to receive an enriched population of migrating cells as measured by a 2-5-fold increase in the 

levels of H3K9me3 and H3K27me3 at the promoters of E-cadherin, Gapdh and Line (Sup. Fig. 

1).  

H3K9me3, H3K27me3 and H4K20me1 ChIP-seq mapped reads were at the range of 27-

42 million and the coverage values at the range of 0.68-1.52 (Sup. Fig. 2a). As expected from the 

nature of heterochromatin modifications, more than 50% of the signals of these modifications did 

not accumulate at defined and short loci to form sharp peaks (Fig. 1a). Moreover, following 

indication of migration, this phenomenon further increased, resulting in accumulation of only 

7.45%, 9.62% and 29.64% of the reads of H3K9me3, H3K27me3 and H4K20me1, respectively, 

inside peaks (Fig. 1a). In agreement, upon induction of migration the intensities of the peaks 

were reduced by 14-17% (Fig. 1a), and the number of identified peaks was reduced by 30-40%, 

while the number of enriched-peaks was reduced by more than 90% (Sup. Fig 2b). Significantly, 

upon induction of migration the average peak length of H3K9me3 and H4K20me1 was increased 

by 34% and 20%, respectively, while the average peak length of H3K27me3 was reduced by 
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20% (Fig. 1a). Taken together, the above analyses indicate on more diffused signals of 

H3K9me3, H3K27me3 and H4K20me1 upon induction of migration. This pattern suggests a 

possible increase in the degree of overlap between the three modifications following induction of 

migration. Indeed, in migrating cells the correlation between these modifications increased 

significantly to 0.73 between H3K9me3 and H3K27me3, 0.77 between H3K9me3 and 

H4K20me1 and 0.69 between H3K27me3 and H4K20me1 (Fig. 1b). The increased correlation 

between the different modifications occurred over any evaluated genomic element (promoters, 

enhancers etc.) (Sup. Fig. 3).  

To assess which genomic regions are more prone to be affected in migrating cells by each 

of the above modifications, we counted the number of mapped reads overlapping specific 

genomic regions and calculated them as percentage of the total mapped reads. The functional 

genomic regions in our analysis included protein coding genes, non-coding RNA, enhancers, 

promoters and repetitive elements. The relative distribution of H3K9me3 and H4K20me1 

mapped reads increased at repetitive elements by 2% and 19%, respectively, while decreased at 

protein coding genes by 1% and 11%, respectively. On contrary, the amount of H3K27me3 

mapped reads increased by 7% at protein coding genes, while decreased by 3% at repetitive 

elements (Fig. 2a). This pattern became more definite when the relative distribution of 

differential peaks that fall inside different genomic elements was calculated: The relative 

distribution of nucleotides in differential-peaks of H3K9me3 and H4K20me1 at repetitive 

elements increased by 77% and 546%, respectively, while decreased at protein coding genes by 

23% and 37%, respectively. On contrary, the nucleotides in differential-peaks of H3K27me3 

increased by 92% at protein coding genes, while decreased by 54% at repetitive elements (Fig. 

2b). To verify these results, we analyzed the average signal distribution of these modifications 
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across different types of repetitive elements and across protein coding genes. In agreement with 

the previous analysis, the signals of H3K9me3 and H4K20me1 were higher across LINE, SINE, 

LTR and DNA transposons in migrating cells than in control cells, while the signal of 

H3K27me3 was lower across the same repetitive elements in migrating cells than in control 

cells. An opposite pattern emerged over protein coding genes: reduced levels of H4K20me1 

together with increasing levels of H3K27me3 in migrating cells than in control cells (Fig. 3a).  

Classifying the combinatorial pattern of the above modifications using a Hidden-Markov-

Model (HMM) based approach revealed that upon migration there is a reduction in the genomic 

coverage by regions with similar levels of the three markers (state no. 4, Fig. 3b), while there is 

an increase in the percentage of genomic regions that are decorated by all three markers, but at 

differential levels (states no. 1, 3 and 5, Fig. 3b). Interestingly, regions free of all three markers 

occur in repetitive elements (LINE and LTR), but their percentage decreases upon induction of 

migration (state no. 2, Fig. 3b). Importantly, upon induction of migration the changes in the 

combinations of the modifications across promoters and gene bodies were much smaller than the 

changes over the whole genome, thus raising the question if there are any transcriptional changes 

in migrating cells.  

To answer this question, we determined the changes in the transcriptome upon induction 

of migration using RNA-seq (Sup. Fig. 4). Differential expression analyses identified 801 genes 

with altered expression levels (FDR<0.05) in cells that were induced to migrate for 3h: 465 

genes were up-regulated and 336 genes were down-regulated. Out of them, 182 genes were 

altered with a fold change of >1.3: 129 up-regulated genes and 53 down-regulated genes (Sup. 

Table 1 and Sup. Fig. 5). Surprisingly, although induction of migration induces a global increase 

in chromatin condensation, higher number of genes were upregulated than down-regulated. To 
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search for common functions of the altered genes, genes found to be differentially expressed 

with FDR >0.05 and fold change >1.3 were subjected to Ingenuity Pathway Analysis (IPA). As 

shown in Fig. 4, the most significantly enriched pathways included ones that are known to be 

associated with tumor cell proliferation and migration such as the TGF-IGF-1 and ERK5 

signaling pathways (Gabellini et al. 2009, 8; Giampieri et al. 2009; Ning et al. 2011; Pang et al. 

2016; Simões et al. 2016, 5) and pathways involved in energy generation: glycolysis and 

pyridoxal 5'-phosphate (PLP) salvage pathway. PLP is an active form of vitamin B6, which is 

important for the metabolism of carbohydrates, amino acids and fats, the generation of the 

methyl donor S-adenosylmethionine (SAM) and in neutralizing oxidative stress (Bird 2018; 

Anderson et al. 2012). Activation of oxidative stress response was indicated also by the up-

regulation of NRF2 targets (Fig. 4). Analysis of upstream regulators and downstream affected 

functions identified a strong link to cell migration (Sup. Fig. 6).  

    To evaluate the correlations between H3K9me3, H3K27me3 and H4K20me1 and 

transcription in our system, we first assessed the intensities of these modifications over genes 

that exhibit different expression levels. All three evaluated modifications did not accumulate 

over non-expressed genes (Sup. Fig. 7-9), suggesting a different repression mechanism for these 

genes, such as DNA methylation. In expressed genes, H4K20me1 and H3K9me3 patterns were 

similar between control and migrating cells: H4K20me1 levels across promoter regions 

correlated inversely with gene expression levels, whereas the contrary was observed across gene 

bodies (Fig. 4b and Sup. Fig. 9). Surprisingly, H3K9me3 signal intensity correlated positively 

with gene expression levels (Fig. 4b and Sup. Fig. 7). In contrast to H4K20me1 and H3K9me3, 

H3K27me3 association with gene expression levels overturned upon induction of migration: In 

control cells, as expected, H3K27me3 signal intensity correlated inversely with gene expression 
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levels. However, in migrating cells, H3K27me3 correlated positively with gene expression levels 

(Fig. 4b, Sup. Fig. 8).  

Out of the three analyzed histone modifications, only H3K27me3 displayed increased 

levels over genes upon induction of migration (Fig. 3) and its reverse correlation with gene 

expression levels was turned-over upon induction of migration (Fig. 4b and Sup. Fig. 8). 

Therefore, we analyzed which migration-associated transcriptome changes are dependent on 

H3K27me3 by RNA-seq of migrating cells that were treated with the Ezh2-specific inhibitor, 

GSK343, for 3 h. This analysis revealed that 33% of the migration-altered genes were not 

changed once GSK343 was added, indicating they are H3K27me3-dependent genes. The 67% of 

the migration altered genes that were changed also in migrating cells treated with GSK343 were 

termed H3K27me-independent genes (Fig. 5a, Sup. Table 2, Sup. Fig. 4 and Sup. Fig. 10). 

Significantly, most of the signaling pathways altered in migrating cells such as TGF-and ERK5 

were H3K27me-dependent, while the most significant H3K27me independent-pathways were 

glycolysis and NRF2-mediated response (Fig. 5b). In addition, 501 genes that normally do not 

change upon induction of migration did change once H3K27 methylation was inhibited (Fig. 5, 

Sup. Table 2 and Sup. Fig. 10). These genes are mainly involved cholesterol metabolism. Thus, 

H3K27 methylation in migrating cells is important not only for establishing a new transcriptional 

plan, but also to limit the transcriptional changes to specific genes. Analyzing the levels of 

H3K27me3 across the migration-altered genes revealed no obvious changes in H3K27me3 levels 

between control and migrating cells over both H3K27me-dependent and independent genes (Fig. 

5c). Still, H3K27me3 levels at the promoters of the H3K27me-depedent genes were higher than 

those of the H3K27me-independent genes. On contrary, over the H3K27me-buffered genes a 
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clear increase in H3K27me3 levels upon induction of migration was observed. Suggesting that 

the effect of H3K27me3 on the H3K27me-depednet genes may be indirect.   

Finding that 67% of the migration-altered transcripts are independent of H3K27 

methylation means that additional mechanisms are involved in their regulation. To learn if 

alterations in their RNA stability levels are involved, we determined the transcriptome of control 

and migrating cells following 3 h of RNA polymerase II inhibition by DRB. Calculation of the 

ratio between the mRNA levels in DRB-treated migrating cells and DRB-treated control cells 

identified 653 downregulated genes and 365 upregulated genes having decreased and increased 

RNA stability upon induction of migration, respectively (Fig. 6a, Sup. Table 3, Sup. Fig. 4 and 

Sup. Fig. 11). Notably, whereas only 10% of the H3K27me-dependent genes had migration-

dependent changes in their RNA stability levels, 23% of the H3K27me-independent genes had 

migration-dependent changes in their RNA stability levels. IPA analysis revealed that genes with 

increased RNA stability in migrating cells are mainly involved in translational control and 

energy production, while genes with decreased RNA stability in migrating cells are mainly 

involved in cell cycle control and DNA damage response (Fig. 6b). Suggesting that regulation at 

the levels of RNA stability and translation rate may be highly important for cell migration.   

     

Discussion 

In this study we found that upon induction of migration, the increase in heterochromatin markers 

does not occur in narrow regions to generate peaks, but rather spread over larger genomic 

regions. Migration signals alter the RNA levels of 182 genes that are involved in signaling 

pathways such as TGF and ERK5, but also in glucose metabolism and oxidative stress 

response. One third of the transcriptome alterations are dependent on methylation of H3K27, 
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while altered genes in H3K27me-indepednent manner are more prone to regulation at their RNA 

stability level.   

ChIP-seq protocols depend on the assumption that the overall yields of DNA are identical 

per cell under different conditions. Accordingly, the same amount of total DNA is taken for 

analysis, and the resulting data are normalized to each other so that the total amounts of signals 

are identical. Since induction of migration is associated with a dramatic increase in the amount of 

heterochromatin, ChIP doesn't yield the same amount of DNA in control and migrating cells.  

Hence, the DNA normalization done during library preparation reduces the quantitative 

difference between the two conditions, which may explain, the lack of global increase in 

heterochromatin markers upon induction of migration in our ChIP-seq experiments. Therefore, 

our analysis has been mainly focused on the changes in signal distribution across genomic 

features upon induction of migration. 

 Induction of migration led to a more diffuse distribution of H3K9me3, H3K27me3 and 

H4K20me1 along the genome as measured by reduced number of ChIP-seq peaks and ChIP-seq 

signals within peaks (Fig. 1 and Sup. Fig. 2). In agreement with this pattern, the over-lapping 

between the different markers increased dramatically (Fig. 1). These changes were accompanied 

by a shift in the distribution of these markers between the various genomic elements: H3K9me3 

and H4K20me1 signals shifted from protein-coding regions to repetitive elements while the 

H3K27me3 signal shifted in the opposite direction. These shifts were seen in whole reads 

analysis and become much more dramatic when analyzing the reads that fell only within 

differential peaks (Fig. 2). These patterns suggest that although the overall signals of each of 

these markers is increased by 2-4 fold as previously measured by immunostaining (Gerlitz and 

Bustin 2010; Gerlitz et al. 2007; Maizels et al. 2017) the effects on transcription may be 
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moderate since the signals do not accumulate at narrow regions. Indeed, transcriptome analysis 

revealed that upon induction of migration only 182 genes were altered with a fold change of 

>1.3, while only 30% of them were down regulated.     

 Reports on the transcriptome of migrating cells are quite scarce (Dayem et al. 2003; 

Demuth et al. 2008; Fitsialos et al. 2007). In previous reports the transcriptome was evaluated by 

microarrays that had a limited genomic coverage. Analyzing our RNA-seq data by IPA identified 

the activation of TGFIL-8 and ERK5 signaling pathways that were found to be activated in 

previous transcriptome analyses of migrating cells (Dayem et al. 2003; Demuth et al. 2008; 

Fitsialos et al. 2007) (Fig. 4). These pathways are well established regulators of cancer cell 

migration and invasion (Gabellini et al. 2009; Giampieri et al. 2009; Ning et al. 2011; Pang et al. 

2016; Simões et al. 2016). In addition, we found changes in glucose metabolism that includes up-

regulation of three glycolytic enzymes (Glucose-6-Phosphate Isomerase, Phosphofructokinase 

and Aldolase C) that may be required for increased energy production in migrating cells. The 

increase in oxidative stress response genes may be required due to the increase in ATP 

production.   

 In the literature, there are mixed reports regarding the association between H4K20me1 

signal and gene expression levels (Beck et al. 2012; Kohlmaier et al. 2004). Our integrated 

analysis of ChIP-seq and RNA-seq data identified a positive-correlation between H4K20me1 

levels downstream the TSS and gene expression levels, and negative-correlation between 

H4K20me1 signal intensity upstream the TSS and gene expression levels (Fig. 4 and Sup. Fig. 

9). Thus, H4K20me1 may support transcription when localized downstream the TSS whereas it 

may be involved in transcriptional repression when localized upstream of the TSS.   
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Using an Ezh2 specific inhibitor we were able to find that methylation of H3K27 is 

required for the transcriptional regulation of 33% of the migration-altered genes as well as to 

prevent changes in 501 additional genes upon induction of migration (Fig. 5). Migration signals 

lead to activation of several transcriptional regulators such as SMAD4 and SP1 (Sup. Fig. 6) that 

have the potential to affect the transcription of several hundreds of genes. We hypothesize that 

the changes in the transcription of many of these genes are not required or may even interfere 

with the migration process, and H3K27me3 serves to prevent the binding or the activity of 

transcription factors at these genes.  

An additional mechanism to prevent changes in the transcriptome beyond the 182 

migration-altered genes is by changes in RNA stability levels. Our analysis identified 1018 genes 

with altered RNA stability level upon induction of migration (Fig. 6). However, the net mRNA 

level of most of these genes do not change in migrating cells, indicating on inverse changes in 

their transcription rate.  

In search for some insight regarding the mechanism that controls the migration-induced 

changes in the H3K27me-independent genes we found that these genes are more susceptible to 

alterations in their RNA stability levels following induction of migration (Fig. 6).  

 In analyzing the importance of transcription for cell migration we found previously that 

active transcription is dispensable for migration during a time period of 3 h, whereas it is 

important for migration during longer period of time (11 h) (Gerlitz and Bustin 2010). Thus, the 

changes we identified here are the initial changes that will have an accumulative effect as the 

migration time increases. Still, heterochromatin is important for migration during a time period 

of 3 h as well (Gerlitz and Bustin 2010; Gerlitz et al. 2007). This may be due to the effect of 

chromatin condensation on the physical properties of the nucleus (Gerlitz and Bustin 2011, 2010; 
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Bustin and Misteli 2016). Increased heterochromatin levels were shown to increase nuclear 

rigidity (Zhang et al. 2016a; Furusawa et al. 2015; Stephens et al. 2018), which may be important 

to protect the genome from mechanical damage that can occur during migration through 

confined spaces (Denais et al. 2016; Raab et al. 2016). Increased nuclear rigidity may also serve 

as a better anchoring point for the actin cytoskeleton that was suggested to use the nucleus to 

generate force during cell migration (Graham et al. 2018; Petrie et al. 2017). In support of the 

mechanical roles of migration-induced chromatin condensation are the increased spread of the 

heterochromatin markers over larger genomic regions. Thus our results support a model in which 

migration-induced chromatin condensation serves to alter both the transactional plan as well as 

the physical properties of the nucleus.         

 

Materials and Methods 

Cell culture. Mouse melanoma B16-F1 cells were grown in DMEM (D5796, Sigma-Aldrich, St. 

Louis MO, USA) supplemented with 10% FCS (04-007-1A Biological Industries, Beit Haemek, 

Israel), 0.292 mg/ mL L-glutamine (03-020-1B, 1A Biological Industries, Beit Haemek, Israel) 

and 40 units/mL Penicillin-Streptomycin (03-031-1B, Biological Industries, Beit Haemek, Israel) 

at 37 OC, 7% CO2. For migration assays the cells plated on fibronectin-coated plates were grown 

to confluence. To induce migration, the cells were scratched at multiple sites, washed once with 

DMEM and incubated in growth medium at 37 OC and 7% CO2 for 3 h. Control cells were kept 

in similar conditions without being scratched. To inhibit the generation of H3K27me3 or to 

inhibit RNA polymerase II the cells were incubated in growth medium supplemented with 3 µM 

of GSK343 (SML0766, Sigma-Aldrich, Rehovot, Israel) or 0.1 mM DRB (D1916, Sigma-

Aldrich, Rehovot, Israel). The inhibitors were added 3h before lysing the cells.  
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ChIP-seq. Chromatin immunoprecipitation (ChIP) was performed as described previously 

(Aparicio et al. 2005) with the following modifications. Following cross linking with 1% PFA, 

cells were collected and aliquoted to 107 cells. Nuclei were isolated by lysis buffer and DNA was 

collected following, fragmentation by 0.7 mU/μl of MNase (N3755, Sigma-Aldrich, Rehovot, 

Israel) at 37oc for 15 min and briefly sonication in RIPA buffer. IP was done using magnetic 

protein A/G beads (BioVision, 6527-1, CA, USA) coupled to 24µl of rabbit  H3K9me3 

(Millipore, 07-442, CA, USA), 12µl of rabbit  H3K27me3 (Millipore, 07-449, CA, USA) or 

24µl of rabbit  H4K20me1 (Millipore, 17-610, CA, USA). DNA was purified using QIAquick 

Gel Extraction kit (QIAGEN, 28704, Hilden, Germany) according to the manufacturer protocol 

and sequenced at the Technion Genome Center by Illumina HiSeq 2500 machine.  

RNA purification and RNA-seq. Total RNA was purified by the NucleoZOL kit 

(MACHEREY-NAGEL, 740404.200, Duren, Germany) according to the manufacturer’s 

instructions. Purified RNA was sent for poly A containing mRNA selection, library preparation 

and sequencing at the Technion Genome Center. Replicates number was five for untreated 

control and migrating cells and three for cells treated with GSK343 or DRB. 

Peak calling and peak analysis. Quality control checks of the raw sequence data were carried 

out using the FastQC tool ([CSL STYLE ERROR: reference with no printed form.]). Then, the 

Trim_galore ([CSL STYLE ERROR: reference with no printed form.]) tool that is based on 

cutadapt (Martin 2011) was used for adapters trimming and for removing of low quality bases 

from the ends of reads. The first four nucleotide which were of bad quality were trimmed from 

reads by fastX trimmer ([CSL STYLE ERROR: reference with no printed form.]). Cleaned, high 

quality reads were aligned to the mouse genome (build mm10) using Bowtie2 (Langmead and 

Salzberg 2012) with default parameters. PCR bias of duplicated reads were removed using 
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"MarkDuplicates" command implemented by picard tool ([CSL STYLE ERROR: reference with 

no printed form.]). Broad peaks enriched in immunoprecipitation over input were identified by 

SICER (Xu et al. 2014) with "fragment size" of 350, "effective genome fraction" of 0.8 and 

"FDR" 0.05. SICER-df was applied to determine differential peaks enriched in migrating cells 

compared to control cells and vice versa. Operations on genomic intervals were performed using 

BEDTools (Quinlan and Hall 2010). The ChIP-seq data reported in this paper were deposited at 

Gene Expression Omnibus database with accession number SUB3771416. 

Calculation of ChIP-seq coverage and signal distribution across specific genomic location. 

Genomic location of Refseq genes and repetitive elements were downloaded from UCSC table 

browser (Tyner et al. 2017). Enhancers location were downloaded from HOMER (Heinz et al. 

2010) and the genomic coordinates were converted to mm10 assembly using UCSC liftOver tool. 

Promoters were defined as 1000bp upstream of transcription start sites (TSS). Within each list, 

overlapping intervals were merged into a single feature that spans all of the combined features. 

In order to avoid intervals overlapping more than a single defined annotated element, we 

removed from each list nucleotides that belong to another annotation list by assigning the 

following priority: coding genes, non-coding genes, promoters, enhancers and repetitive 

elements. The coverage of ChIP signal across these regions was presented as percentage of reads 

mapping within genomic regions out of the total mapped reads without redundancy, or as 

percentage of bp mapping within genomic regions out of the total number of bp included within 

peaks or differential peaks, and was calculated using coverageBed (Quinlan and Hall 2010) and 

intersectBed (Quinlan and Hall 2010), respectively. Distribution of ChIP signal across functional 

genomic regions was done using ngs.plot (Shen et al. 2014). 
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Correlation analysis and combinatorial pattern of heterochromatin markers. The entire 

genome was divided into non-overlapping equally sized bins (10kb), and the average ChIP score 

was calculated for each bin using multiBamSummary command from deepTools(Ramírez et al. 

2016). Spearman correlation coefficients were computed using deepTool's multiBamSummary 

and plotCorrelation commands.  Hidden Markov model-based chromatin state definition was 

performed using the ChromHMM v1.14 (Ernst and Kellis 2017) . Five state were used to 

segment the genome, and the enrichment of these states across different genomic feature was 

calculated.  

RNA-seq Analysis. Reads were aligned to the mouse genome (mm10) using TopHat (Trapnell et 

al. 2009)  after removal of adapter sequences and critical examination of quality controls using 

Trim_galore ([CSL STYLE ERROR: reference with no printed form.]) with  default parameters. 

The number of reads mapping each mouse gene (as annotated in Ensembl release GRCm38.86) 

was counted using the ‘intersection-nonempty’ mode of HTseq-count script (Anders et al. 2015). 

Differential expression analysis was performed using edgeR (Robinson et al. 2010) and Limma 

(Ritchie et al. 2015) packages from the Bioconductor framework (Reimers and Carey 2006). 

Briefly, features with less than 1 read per million in 3 samples were removed. The remaining 

gene counts were normalized using the TMM method, followed by voom transformation (Law et 

al. 2014). Linear models were used to remove batch effect and to find differentially expressed 

genes. Up and down regulated genes having FDR < 0.05 and fold change ≥ 1.3 were analyzed for 

pathway enrichment using the Ingenuity Pathway Analysis (Yu et al. 2016) (IPA). H3K27me3 

dependency was detected by comparing genes found to be differentially expressed between 

migrating and control cells, to genes found to be differentially expressed between migrating cells 

treated with GSK343 to control cells. H3K27me3-dependent genes, are genes whose expression 
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changes abolished upon treatment with GSK343, while H3K27me3-independent genes are those 

whose change in expression preserved even after treatment with GSK343.   

Distribution of heterochromatin signals across high and low abundant genes. Average gene 

expression was calculated across five replicates of RNA-seq samples for control cells and 

migrating cells and genes with average expression lower than 1 cpm (counts per million) reads 

were excluded. Genes were ranked based on their expression level, and the top and bottom 500 

genes were chosen. The distribution of histone modifications signal across these genes was 

plotted using ngs.plot tool (Shen et al. 2014). 
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Figure 1: The patterns of the ChIP-seq signals of H3K9me3, H3K27me3 and H4K20me1 

upon induction of migration.  (a) Mean ± SE of ChIP-seq peak intensities and lengths of 

H3K9me3, H3K27me3 and H4K20me1 in control (Cont.) and migrating (Mig.) cells. Reads 

percentage inside peaks are the percentage of ChIP-seq mapped reads of the indicated 

heterochromatin markers that are localized inside peaks. Statistical significance was calculated 

between control cells to migrating cells by Wilcoxon rank sum test, p.val<2.2*10-16. (b) Genome 

wide correlation between the three heterochromatin markers. Spearman correlation coefficients 
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of the ChIP-seq signals were calculated from reads coverage of consecutively equally sized 10kb 

bins genome-wide. 

 

 

 

 

Figure 2: Relative distribution of ChIP-seq signal across various genomic elements in 

control and migrating cells. The relative distribution of ChIP-seq reads (a) and ChIP-seq 

differential peaks (b) across the indicated genomic elements was calculated for the input and the 

three heterochromatin markers in control cells and in migrating cells.  
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Figure 3: Distinct and combinatorial pattern of heterochromatin markers over genomic 

elements. (a) Distribution of H3K9me3, H3K27me3 and H4K20me1 ChIP-seq signals in control 

cells (green line) and in migrating cells (orange line) across gene bodies and the repetitive 

elements LINE (n=671156), SINE (n=682126), LTR (n=646284) and DNA transposons 

(n=79756). In each graph, the region between 5’End and 3’End represents the analyzed element. 

(b) Five combinatorial chromatin states were defined using the three heterochromatin markers. 

The left panel describes the chromatin states as represented by the emission coefficients in 

ChromHMM model, the right panel describes the relative enrichment of states coverage across 

the whole genome and over different genomic regions, in control and migrating cells. 
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Figure 4: Altered gene expression upon induction of migration. (a) Top 10 pathways that are 

altered upon induction of migration as were identified by IPA using RNA-seq data collected 

from control cells and migrating cells (n=5). Only genes that were differentially expressed by 

factor of >1.3 and FDR<0.05 were included in the analysis. Orange bars represent up-regulated 

pathways and grey bars represent altered pathways in which the altered genes did not have a 

uniform trend. (b) Distribution of heterochromatin markers across highly (green) and lowly 

(orange) abundant genes. Genes with average expression level higher than 1 cpm were selected, 

out of these, the highest or lowest 500 expressed genes were chosen. Genes bodies are presented 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/344887doi: bioRxiv preprint 

https://doi.org/10.1101/344887


between the 5’End and the 3’End marks. Additional 3000bp upstream and downstream of the 

genes are plotted. 
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Figure 5: The dependence of migration-induced transcriptional changes on H3K27 

methylation. (a) Altered genes upon induction of migration (fold change >1.3, FDR<0.05) that 

were detected in untreated migrating cells and in migrating cells treated with GSK343 are 

represented by a Venn diagram. Overlapping genes are termed "H3K27me-independent", genes 

altered only when migrating cells were compared to control cells are termed "H3K27me-

dependent" and differentially expressed genes only in GSK343-treated migrating cells are termed 

"H3K27me-buffered". (b) Top 10 pathways altered according to the "H3K27me-independent" 

gene list, the "H3K27me-dependent" gene list and the “H3K27me-buffered” gene list as 

identified by IPA. (c) Distribution of H3K27me3, H3K9me3 and H4K20me1 signals across 

"H3K27me-dependent", "H3K27me-independent" and “H3K27me-buffered” genes in control 

cells (green) and in migrating cells (orange). The region between 5’End and the 3’End represent 

genes bodies. Additional 2000bp upstream and downstream of the genes are plotted. 
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Figure 6: Migration-induced changes in RNA stability. Altered genes upon induction of 

migration were detected in the presence of DRB, an RNA polymerase II inhibitor (fold change 

>1.3, FDR < 0.05). Increased RNA stability is detected by upregulation of genes in DRB-treated 

migrating cells compared to DRB-treated control cells, and decreased RNA stability by 

downregulation. (a) A Venn diagram representing the overlap between genes with increased or 

decreased RNA stability levels upon induction of migration to H3K27me-dependent and 

independent genes. (b) Top 10 pathways of the genes with altered RNA stability levels upon 

induction of migration as identified by IPA. 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/344887doi: bioRxiv preprint 

https://doi.org/10.1101/344887

