Abstract
The generation of functional genomics datasets is surging, as they provide insight into gene regulation and organismal phenotypes (e.g., genes upregulated in cancer). The intention of functional genomics experiments is not necessarily to study genetic variants, yet they pose privacy concerns due to their use of next-generation sequencing. Moreover, there is a great incentive to share raw reads for better analyses and general research reproducibility. Thus, we need new modes of sharing beyond traditional controlled-access models. Here, we develop a data-sanitization procedure allowing raw functional genomics reads to be shared while minimizing privacy leakage, thus enabling principled privacy-utility trade-offs. It works with traditional Illumina-based assays and newer technologies such as 10x single-cell RNA-sequencing. The procedure depends on quantifying the privacy leakage in reads by statistically linking study participants to known individuals. We carried out these linkages using data from highly accurate reference genomes and more realistic environmental samples.
Competing Interest Statement
The authors have declared no competing interest.