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Abstract

Motivation: Determining RNA binding protein(RBP) binding specificity is crucial for understanding many
cellular processes and genetic disorders. RBP binding is known to be affected by both the sequence and
structure of RNAs. Deep learning can be used to learn generalizable representations of raw data and
has improved state of the art in several fields such as image classification, speech recognition and even
genomics. Previous work on RBP binding has either used shallow models that combine sequence and
structure or deep models that use only the sequence. Here we combine both abilities by augmenting and
refining the original Deepbind architecture to capture structural information and obtain significantly better
performance.
Results: We propose two deep architectures, one a lightweight convolutional network for transcriptome
wide inference and another a Long Short-Term Memory(LSTM) network that is suitable for small batches
of data. We incorporate computationally predicted secondary structure features as input to our models
and show its effectiveness in boosting prediction performance. Our models achieved significantly higher
correlations on held out in-vitro test data compared to previous approaches, and generalise well to in-vivo
CLIP-SEQ data achieving higher median AUCs than other approaches. We analysed the output from our
model for VTS1 and CPO and provided intuition into its working. Our models confirmed known secondary
structure preferences for some proteins as well as found new ones where secondary structure might play
a role. We also demonstrated the strengths of our model compared to other approaches such as the
ability to combine information from long distances along the input.
Availability: Software and models are available at https://github.com/shreshthgandhi/cDeepbind
Contact: ljlee@psi.toronto.edu, frey@psi.toronto.edu

1 Introduction
RNA binding proteins (RBPs) are crucial bio-molecules that play a key
role in regulating many cellular processes, such as gene expression. RBPs
fine tune gene expression by regulating various steps of pre-mRNAs
processing, including splicing, editing and polyadenylation, and generate
a large diversity of processed RNAs from the genome by regulating their
maturation, stability, transport and degradation. For instance, HuR binds

to target mRNA to enhance its stability and translation (de Silanes et al.
(2004)) whereas, TIA-1 and TIAR suppress mRNA translation (Kim
et al. (2011)). Due to their critical role in regulating post-transcriptional
expression, mutations in RBPs or their binding sites can lead to many
diseases including muscular atrophies and neurological disorders (Lukong
et al. (2008); Musunuru (2003)). Since RBPs are involved in several stages
of post-transcriptional regulation, understanding their binding preferences
is crucial in understanding RNA processing, localisation and regulation.

RNA, being a single stranded molecule, folds onto itself, forming
structures stabilised by hydrogen bonding between its bases. Due to
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the large diversity of structures of both RNA and RBPs the functional
specificity of RBPs is complex and highly variable compared to DNA-
binding proteins (Helder et al. (2016)). The structure of RNA can affect
accessibility to target sites and affect binding of RBPs (Duss et al. (2014)).
In addition to the complications due to structural context, RBPs such as
some PUF proteins have been found to bind to multiple sites with variable
spacing between them (Koh et al. (2009)). The protein PTB has been
shown to contain four RNA binding domains (RBDs) all of which can
bind to separate sites on RNA (Clerte and Hall (2006)). Multiple RBDs can
contribute to overall binding affinity in a complicated non linear manner
(Helder et al. (2016)).

Many RBPs are known to have a preference for both a specific sequence
order and secondary structure of a portion of RNA (Hackermüller et al.
(2005)). The shape of RNA which results from its folding is represented
as base pairing between its nucleotides . There are several computational
methods that predict the secondary structure of an RNA sequence from the
order of its bases based on thermodynamic stability constraints (Steffen
et al. (2005); Lorenz et al. (2011)). The structures can be represented as
graphs (Janssen and Giegerich (2014)) or average probability vectors over
the ensemble of all probable structures (Lorenz et al. (2011)). In addition,
there are experimental methods that can probe RNA structures (Flynn et al.
(2016)) but such data is scarce. It is commonly assumed that most proteins
bind to accessible sites and few prefer a specific structural context (Li
et al. (2014); Ray et al. (2009)). For instance, it is known that Vts1p is a
yeast RBP that preferentially binds the sequence motif CNGG within RNA
hairpins (Aviv et al. (2006)). Even though specific sequence preferences
can be learnt from in-vitro experiments, a very small fraction ( 15%-40%)
of specific RBP sequence motifs are occupied in-vivo (Taliaferro et al.
(2016)). It has been shown that local secondary structure restricts access to
a large subset of sequence motifs that would otherwise be bound (Taliaferro
et al. (2016)).

Several in-vitro and in-vivo techniques have been developed to
investigate RBP binding. High-throughput sequencing based experimental
techniques such as CLIP-seq (Licatalosi et al. (2008); König et al. (2010);
Hafner et al. (2010)), SELEX (Ellington and Szostak (1990); Stoltenburg
et al. (2007)), RNAcompete (Ray et al. (2009, 2013)), RNA Bind-n-Seq
(Lambert et al. (2014)) allow for the measurement of RBP binding affinities
in a transcriptome-wide manner. Among the high-throughput techniques,
the in-vivo methods HITS-CLIP, CLIP-seq and RIP-seq provide high
quality test data for bench-marking binding models but owing to the high
amount of noise and low resolution (Fu and Ares Jr (2014); Kishore

et al. (2011)), training models on them directly is challenging. In-vivo
experiments are further complicated by the presence of other RBPs and
binding measurements could be the result of competition or complex
formation between them. In-vitro experiments offer higher resolution,
less noise and more accurate computational secondary structure prediction
(Rouskin et al. (2014)). Hence, in this work we present results on training
on in-vitro data, however we also note that our approach is agnostic to
the data source and can be easily extended to train on in-vivo data as
well. RNAcompete (Ray et al. (2009, 2013)) is a high-throughput in-vitro
platform that measured the binding affinities (reflected as probe intensities)
of over 200 RBPs to more than 240 000 probe sequences, each of length
around 35− 40 designed to cover every possible 9-mer at least 16 times.
The large amount of data available for the experiments allows for training
data-driven models such as deep neural networks and is the basis of the
data used in this work. A new approach RNAcompete-S (Cook et al.
(2017)) allows for querying a large diversity of RNA primary sequences
and secondary structures and is an improvement over RNAcompete, which
only allowed limited secondary structure representation and had probe
sequences designed to be unstructured. The RNAcompete-S dataset is
better suited to infer sequence-structure models since the probe sequences
have stronger secondary structures. However, the data is available only for
seven RBPs so far.

On the computational side, several methods have been developed
to model RBP binding preferences including methods that rely on both
sequence and secondary structure. The RNAcompete assay provided a
comprehensive analysis of binding preferences of RBPs covering 205
genes and 24 different eukaryotes (Ray et al. (2013)). Several methods have
been trained on data from RNAcompete including Deepbind (Alipanahi
et al. (2015)), RNAcontext (Kazan et al. (2010)), and RCKOrenstein
et al. (2016). Deep learning models learn distributed representations of
data using multiple non-linear transformations and have shown promising
results on several tasks where large amounts of data is available (LeCun
et al. (2015)). Deepbind was the first approach to use deep neural
networks to learn RBP binding preferences from RNAcompete data.
It uses a convolutional neural network to model the mapping from
sequence to binding intensity. However, Deepbind does not incorporate
secondary structure as a feature and hence cannot model structural context.
The specific architecture used for Deepbind also limits its ability to
model complex interactions among multiple binding sites. RNAcontext
incorporates structure in the form of structural context probability vectors
that represented the ensemble of all possible structures. It learned a
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Fig. 1. (a) The cDeepbind-CNN architecture uses two convolution layers followed by global max and average pooling. The values of the feature map in the second convolution layer q is a
summary of local information within its receptive field. Thus, the value in qk depends on (sk, . . . , sk+w), where w is the receptive field of units in q. The pooling then combines these
features along the sequence length to produce the final prediction (b) The cDeepbind-RNN architecture uses an LSTM layer to process the feature map of the convolution layers to produce
a summary vector o. Since each sequential output in the LSTM is influenced by past inputs in the sequence ok depends on (s0, . . . , sk+w), where w is the receptive field of units in q
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position weight matrix (PWM) to represent the sequence motif and global
structure preferences to represent the preference of an RBP to bind to
a given structural context. Since it only depends on a match between a
PWM and local sequence, RNAcontext is position equi-variant and its
predictions cannot depend on local secondary structure. RCK improved
upon RNAcontext by using a k-mer model with local structure preferences.
For each possible k-mer the RCK model learns a sequence score and
structural context score. Due to its design that learns a weight for each
possible k-mer, the number of weights for the model grows exponentially
with k. The RCK method is thus limited to small values of k (k ≤ 6)
and cannot model longer positional dependencies. RCK also averages
the structural context along the span of each k-mer, and so cannot detect
position-specific features. Graphprot is another approach that outperforms
RNAcontext on sequence and structure specific binding(Maticzka et al.
(2014)). It trains graph based support vectors by representing most
likely structures as combinatorial graphs. As noted by the authors of
(Orenstein et al. (2016)) Graphprot is prohibitively slow to run on the
entire RNAcompete dataset as it has a runtime of about 7 days for each of
the 255 proteins. Also it is unable to capture structural preferences from
the RNAcompete data due to its unstructured nature.

To overcome the limitations of previous approaches, we augment the
Deepbind model with structural information and refine its architecture to
model more complex patterns of binding. We employ a Long Short Term
Memory (LSTM) network and a convolutional neural network that allows
our model to learn complex binding preferences. Our models can handle
long range dependencies along RNA and identify structural preferences for
RNA directly from data. Similar to the original Deepbind model, our model
can be applied to any dataset where sequence and structure information is
available. To benchmark our models we apply them to the RNAcompete
dataset and significantly outperform state-of-the-art methods on in-vitro
prediction. We demonstrate the ability of our models to capture complex
interactions involving multiple binding sites. This work is based on SGs
master’s thesis work made publicly available earlier at http://hdl.
handle.net/1807/79240

2 Methods

2.1 Input and pre-processing

The models take as input a sequence s = (s1, . . . , sn) from the alphabet
A = {A,G,C, U} and a structural annotation vector r = (r1, . . . , rn)

where ri ∈ R5 and denotes the probability of the position being in
the contexts (paired(P), hairpin loop(H), inner loop(I), multi-loop(M) or
external region(E)). The structural context is computed using a variant of
RNAplfold (Lorenz et al. (2011)) provided by the RNAcontext authors,
that annotates the sequences into the aforementioned five structural profiles
as opposed to the usual paired and unpaired profiles from RNAplfold. The
sum of each structural context probability for a given ri sums to 1. The
sequence input is encoded as a four-dimensional one-hot-encoding and
is appended to the structural context vector to give a 9-dimensional input
vector. The target scores are taken to be the RNAcompete probe intensities
pre-processed to have the scores greater than the 99.95th percentile to be
clamped at the value of the 99.95th percentile as done in Deepbind and
RCK. Furthermore, the scores are normalised to have a mean of zero and
a variance of one to ensure that consistent scales for learning rates and
initial values of weights can be used without regard to individual intensity
ranges for each protein

2.2 cDeepbind Model architecture

We develop two deep learning models for modelling RBP sequence and
structure preferences. The models extend upon the original Deepbind

model and can incorporate structural context, and are thus named Context-
Deepbind or cDeepbind (Figure(1)). The cDeepbind-CNN model was
designed with the aim to have a model with fast inference that could
be applied to predict binding at each position on the transcriptome with
single nucleotide resolution. The cDeepbind-RNN model can model more
complex binding interactions but has slower inference. We use the mean-
squared error between the predictions and target scores as our loss function
for training. We also add an l2 penalty on the weights as a regularizer.
For all our architectures we train an ensemble of identical models on the
data with different random initializations and shuffled minibatches of data.
Using an ensemble of models mitigates the problem of converging to local
minima since by averaging the outputs we obtain a flatter minima which
is known to generalise better(Kawaguchi et al. (2017)). We incorporated
several techniques practised in the deep learning community to facilitate
fast and efficient model training. We use Adam optimizer (Kingma and Ba
(2014)) since it allows for stable training with recurrent architectures that
have sparse gradients. We used batch size schedules (Smith et al. (2017))
which allows reduction in stochasticity in the gradients near convergence,
by using increasing the batch size as training progresses. We implemented
automatic hyperparameter search for our models which allows them to be
applied to any new data source. We use GPU acceleration to allow us to
train on the large amount of data in a rapid manner. We now describe both
our architectures in detail.

2.2.1 cDeepbind-CNN
The cDeepbind-CNN model uses a fully convolutional architecture to
predict binding intensity. Convolutional Neural Networks(CNNs) are
useful where local groups of data are highly correlated and form distinct
patterns or motifs. For instance, in image models, they preserve local
correlations in the data, such as edges, curves, and contours. Combinations
of lower level features give rise to more complex shapes such as faces.
Analogously, for genomic sequences convolutions can detect motifs along
the sequence and combine them to create a representation for the entire
input. Here we use two convolution layers with ReLU hidden units
to transform the input. The choice of ReLU activation allows efficient
backpropagation of gradients since it does not saturate. We do not use
any sub-sampling in the convolution layers to retain single nucleotide
resolution at the final convolution output. We then perform max and
average pooling across the entire sequence length to get a two-dimensional
score which is then weighted to produce the final binding score. The global
pooling layers are used to generate a summary score for the entire input
using the representations learned at the lower layers. Using global pooling
also imparts the model flexibility in the length of the input. Since there is
no sub-sampling or fully connected layers, the sequence order is retained
in the final convolution output. Thus, from the model, it is possible to
produce a binding track that shows the binding scores for each position in
the sequence.

2.2.2 cDeepbind-RNN
The cDeepbind-RNN model uses a convolutional LSTM architecture.
Recurrent neural networks (RNNs) are networks for processing sequential
data. They do this by sharing parameters across time steps and thus are
able to share useful representations between them. RNNs process the input
sequence one element at a time, maintaining a state vector that contains
a summary of all observations seen so far. The input at each time step is
used to update the hidden state. The output of the time step is produced
by a non-linear combination of the input at the given time step and the
state from the previous time step. A Long Short Term Memory (LSTM)
network is a recurrent network that can handle long dependencies along
the data without losing information through gradient backpropagation.
We use an LSTM since it can efficiently capture non-linear interactions
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Fig. 2. (A) Box plot comparing the performance of extant methods on in-vitro binding prediction on the RNAcompete dataset. All models were trained on Set A sequences and tested
on Set B. Dots represent Pearson correlation on the test set for 244 experiments.(B) Scatter plot comparing cDeepbind-RNN to state-of-the-art method RCK. (C) Scatter plot comparing
cDeepbind-CNN to RCK.

between different input positions such as combinations of multiple binding
sites, specific flanking structural context etc, by storing past context in its
internal hidden state. In our architecture, the convolution layers recognise
local motifs along the sequence and pass that as input to the LSTM. The
LSTM then processes the convolution output sequentially and produces
the final binding prediction at its last time step.

2.3 Hyperparameters

Deep learning models are known to be sensitive to hyperparameters.
Random sampling of hyperparameters generally performs better than
grid search or manual tuning (Bergstra and Bengio (2012)). We perform
hyperparameter search by randomly sampling 5 hyperparameters for each
model run and choose the one with the lowest validation cost on three-fold
cross validation. We sample the filter widths for the convolution layers in
the range 8− 16, the number of filters in the range 8− 24, the number of
hidden units for the LSTM in the range 10− 30. We use random normal

initialization for the weights and initialize the biases to a small positive
value.

2.4 Training pipeline and hyperparameter tuning

The model training pipeline consists of automatic hyperparameter training
using cross validation followed training an ensemble of models with the
best hyperparameter from the previous step on the entire training set. We
use an ensemble of five models as our final predictive model by averaging
the predictions across the ensemble. We find that the most important
hyperparameters for the model were the learning rate, rate of weight decay,
number of LSTM units and variance of the random normal initializer for the
weights. We use batch-size scaling which is a new alternative to learning
rate decay, to accelerate training. We start training with a minibatch size
of 500 and double the batch size after every 5 epochs. We found during
cross-validation that loss saturates after 15 epochs and we train all our
models for 15 epochs. The code for the model was written in Tensorflow
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(Abadi et al. (2016)) and the models were run on NVIDIA Tesla K80
GPUs. The training time including hyperparameter search for a single
protein on one GPU was around 30 minutes for cDeepbind-RNN and 10

minutes for cDeepbind-CNN. We use parallel training across 15 GPUs to
train the entire list of 255 proteins in 3 hours for the cDeepbind-CNN and
8 hours for cDeepbind-RNN.

3 Results
We compared our models with other methods such as RCK, Deepbind and
RNAcontext. We observed that our model outperforms all other approaches
and can learn the relevant sequence and structural preferences for the
proteins under study.

3.1 cDeepbind is more accurate at in vitro binding
prediction than state of the art

We compared the performance of our model on predicting probe intensities
on the RNAcompete dataset (Ray et al. (2013)) across 244 experiments.
We find that even though the probes in this experiment were designed
to be unstructured we can still learn some structural preferences from it,
which was discovered by the authors of RCK as well. The data consists
of a training set of sequences (set A) and a held out test set (set B). The
models are trained on set A and the performance measure is taken as the
Pearson correlation of predicted intensities with the probe intensities on
the test set. We used the results published in the RCK study (Orenstein
et al. (2016)) for comparison against other methods. As illustrated in
Figure (1), both our models significantly outperform all other methods on
in-vitro binding prediction. We obtained an average Pearson correlation
of 0.594 and 0.5336 for our RNN and CNN models respectively. We
outperforms the state of the art method RCK, which achieves an average
correlation of 0.461 and the original Deepbind model which obtains an
average correlation of 0.435 (P-values using Wilcoxon signed-rank test in
Figure (1,B,C)).

We found that the average relative improvement in correlation over
RCK was 33.21% and 18.15% over the 244 experiments for the RNN and
CNN models respectively. We believe the improvement in performance
results from the model being able to recognise longer patterns, complex
interactions, and interplay across sequence and structure components of
the input.

3.2 cDeepbind is sensitive to secondary structure

To evaluate the impact of secondary structure in the improvement of
predictions we trained the cDeepbind-RNN model without secondary
structure as a feature. Both sets of models were trained with an LSTM
output layer and the same hyperparameter search space for the sizes of
the hidden units. We found that the model that has access to secondary
structure features performs better with an average Pearson correlation of
0.594 versus 0.528 for the model that does not use secondary structure
features (P-value=3.91×10−39, Wilcoxon signed rank test). We find that
the relative improvement is greatest in some proteins that have a known
secondary structure preference such as RBFOX1. We also discovered that
several other proteins had a big improvement in predictions upon including
secondary structure, such as SF1, PUM, MSI, and others.

3.3 cDeepbind discovers known structural preferences for
VTS1p

To visualise the binding preferences learned by the cDeepbind-RNN model
we looked at some sequences that had the highest experimentally observed
binding intensities for the protein and visualised the gradient of the loss
function with respect to the input. The gradient acts as a sensitivity map that
tells us what the model is paying attention to. It should be noted here that
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Fig. 3. Mutation map for the sequence(A) and structure(B) components of the input, and
Minimum Free Energy (MFE) structure (D) for a sequence that binds VTS1 with high
affinity using the cDeepbind-RNN model. The mutation map is along the length of the
input with the gradient normalised for each position. The cells are coloured according to
the normalised gradient for each possible input according to the colour-bar in (C)

the input to the model are one-hot vectors which are a continuous relaxation
of the original discrete sequences. Even though the model treats the input
space as continuous, it is useful to think of the direction of the gradient at
a given position being an indicator of a nucleotide switch at that position
resulting in either an increase or decrease in the overall loss. We illustrate
the sensitivity of the model to different parts of the input using mutation
maps (Figure (3,A,B)), which were first developed in the original Deepbind
study. The mutation map is a colour map with four rows corresponding to
the bases A,G,C,U in the input from top to bottom. The cells are coloured
on a spectrum from blue to red with white meaning zero gradient (Figure (3,
C)). A negative gradient indicates a reduction in the loss which corresponds
to a prediction closer to the target score. Hence, the red cells correspond
to positions useful for binding whereas blue cells correspond to cells that
would prefer a different nucleotide. The size of the letters on top of the
mutation map corresponds to the relative magnitude of the gradient at that
position, with positions more relevant to the final predictions having a
greater size. We also overlay the gradient on to the predicted secondary
structure computed using RNAfold (Hofacker (2003)) as shown in Figure
(3, D). Our model confirms the known binding preference of VTS1p to
bind to CNGG motifs within hairpin loops. The mutation map (Figure (3,

A

B

Fig. 4. Mutation map and MFE structure for a sequence that binds CPO with high affinity
using the (A) cDeepbind-RNN model and (B) cDeepbind-CNN model.
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A B

Fig. 5. (A) Box plot comparing the performance of our models with previous approaches. Each dot represents average AUC across different CLIP experiments for a protein. (B) Bar plot
illustrating the average AUCs for each protein for cDeepbind-RNN, cDeepbind-CNN and RCK. We obtain an improvement in median AUC with our models.

A)) shows that when the model encounters the CNGG motif(highlighted in
the red rectangle in Figure (3, A) ), it is sensitive to the C and two Gs, with
all other nucleotides in their positions predicting a decrease in score and the
model does not care about the nucleotide sandwiched between the C and
G since it shows almost a zero gradient in that cell. The model also gives a
high weight to the gradient at the structure component of the input around
the CNNG motif being in a hairpin state and the flanking region being
paired, as seen in Figure (3, B), which corroborates the known binding
preference of VTS1.

3.4 Comparing CNN and RNN models for CPO

We take a sequence from the test set of the CPO model that has normalised
target score of 26.90. The cDeepbind-RNN model assigns a prediction of
23.91, whereas the cDeepbind-CNN model assigns a score of 4.1. CPO is
a protein that is known to bind to the GCAC motif (Ray et al. (2013)). As
illustrated in Figure (4), both the models are sensitive to the CAC motifs
within the sequence(highlighted within red rectangles in Figure (4,A,B)),
with the gradient suggesting that any alterations in those positions in the
sequence would lead to a greater mean squared error with the target score.
The gradient also suggests that the models would have preferred a G instead
of a U preceding the CAC at the far right of the sequence which agrees
with the literature motif for CPO. We also see here that the CNN model
focuses on just one motif and does not take into account the combined
effect of the multiple motifs in the sequence (Figure (4, B))

The RNN however, can handle non-additive effects of multiple motifs
in a better way due to its architecture and is able to make a prediction
closer to the target score. The RNN model seems to suggest that the CPO
protein might prefer multiple CAC motifs in conjunction, for binding. This
is corroborated by recent work where the binding specificity of the protein
RBPMS was investigated (Teplova et al. (2016)). The RRM domain of
RBPMS was reported to bind to a pair of tandem CAC motifs spaced by
a variable nucleotide window. It was also reported that the majority of the
residues of the RNA recognition motif (RRM) domain of RBPMS were
strictly conserved in the corresponding RRM of CPO. Thus it is reasonable
to assume similar binding patterns for RBPMS and CPO. This example
illustrates the ability of the RNN model to combine information along the
sequence in a non-additive way and its advantage over the CNN in handling
such dependencies.

3.5 Comparison on in vivo binding data

We evaluated our model on 23 pairs of RNAcompete and CLIP experiments
that covered 10 proteins. The CLIP experiments were taken from the
GraphProt study (Maticzka et al. (2014)). The CLIP datasets contained in
vivo binding sites collected from CLIP experiments. Control sequences
were extracted from unbound regions of the same bound transcripts.
The dataset contained flanking sequences of length 150 nucleotides on
both sides of both bound and control sequences. We used the sequences
including flanks for secondary structure prediction with RNAplfold while
only the sequence and predicted probabilities were used for testing. Since
the RCK paper bench-marked models trained on the entire set of sequences
including the test set, we retrained models for this comparison on the
larger set of sequences. The performance values for RCK, RNAcontext,
and Deepbind were taken from the RCK study.

We compared the cDeepbind-CNN and cDeepbind-RNN models
against other methods (Figure (5)). The AUC for a protein was taken
as the average AUC for all pairs of RNAcompete-CLIP experiments that
covered the proteins. To compare against other methods we consider the
median of the average AUCs for the 10 proteins. We find that our both our
CNN and RNN models obtain higher AUCs than other methods achieving
median AUCs of 0.840 and 0.805 respectively against 0.803 for RCK
and 0.790 for Deepbind. The p-values between cDeepbind-CNN and
the next best performing method, RCK, was 0.029, whereas the p-value
between cDeepbind-RNN and RCK was 0.057 (Wilcoxon signed-rank
test). We believe we do not see as big of a boost in performance in-vivo as
compared to in-vitro because of the noisy nature of the data and inaccuracy
of secondary structure prediction in-vivo. In addition, there are very few
proteins in the in-vivo evaluation set to quantify improvements accurately.

4 Conclusions
We have presented a deep learning approach to model RBP binding
preferences that incorporates both sequence and secondary structure
information. Our approach provides an improvement over k-mer models
by using distributed representations in the form of convolutional filters
to model the binding preferences. Our models can learn preferences for
long motifs in the input. We show that our CNN model can produce
binding tracks from the input and our RNN model can store past

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted June 12, 2018. ; https://doi.org/10.1101/345140doi: bioRxiv preprint 

https://doi.org/10.1101/345140


“output” — 2018/6/12 — page 7 — #7

cDeepbind 7

context in its internal state to make better predictions. Our models
significantly outperform previous methods on in-vitro evaluation based
on Pearson correlation on held out test data. On in-vivo evaluation, we
achieve improvement in median AUC on both of our models, albeit the
improvements are not very significant. We believe in-vivo data for more
proteins that overlap with the set of proteins available in RNAcompete,
would demonstrate the improvement in performance more significantly.

Our models show a large gap in performance with and without
secondary structure information for some proteins that are known to be
sensitive to secondary structure such as VTS1p and RBFOX1. In addition,
we discover such difference for other proteins such as SF1, PUM and MSI
which do not have known secondary structure preferences.

Even though we applied our model to the RNAcompete in-vitro data,
our approach is general and the model can learn relevant features from
any data source including in-vivo CLIP datasets. It would be useful in the
future to train and validate on RNA-bind-n-seq and RNAcompete-S. Future
directions for this work could include training on in-vivo data, training a
multitask prediction model for similar proteins, and generative modelling
of binding sequences.
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