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Abstract

Protein instability leads to reversible self-association and irreversible aggregation which is a

major concern for developing new biopharmaceutical leads. Protein solution behaviour is

dictated by the physicochemical properties of the protein and the solution. Optimising protein

solutions through experimental screens and targeted protein engineering can be a difficult and

time consuming processes. Here, we describe further development of the protein-sol web tool,

which was previously restricted to protein solubility prediction from amino acid sequence. Tools

are presented for calculating and mapping patches of hydrophobicity and charge on the protein

surface. In addition, predictions of folded state stability and net charge are displayed as a

heatmap for a range of pH and ionic strength conditions. The tool is evaluated in the context

of the interfaces present in Fab fragments and their antigens. Surprisingly, antibody-antigen

interfaces are, on average, at least as polar as Fab surfaces. This benchmarking process provides

the user with thresholds with which to assess non-polar surface patches, and possible solubility

implications, in proteins of interest. Stability heatmaps compare favourably with experimental

data for CH2 and CH3 domains. Display and quantification of surface polarity and pH / ionic

strength dependence will be useful generally for investigation of protein biophysics.
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Introduction

Protein biopharmaceuticals (biologics), and in particular monoclonal antibodies, are crucial for

many new generation therapeutic interventions (Carter, 2011; Ecker et al., 2015). Compared to

traditional small chemical drugs, antibodies have a higher specificity, as well as target selectiv-

ity, leading to fewer off-target effects (Smith, 2014). However, due to the liquid formulation

requirements, and the general instability of proteins compared to small molecules (Wang, 1999;

Manning et al., 2010), the development of monoclonal antibody biopharmaceuticals can be difficult.

Instability of monoclonal antibody products is exacerbated by the delivery requirements. Most

biopharmaceutical antibodies are delivered subcutaneously (Narasimhan et al., 2012), and this

limits the maximum volume to around < 1.5 ml, which generally necessitates a concentration of

around 100gL or higher. This requirement further complicates the delivery of a stable protein

formulation, as high concentration often leads to a less stable protein product. Protein instability

can lead to non-specific association causing aberrant solution behaviours (Woods and Nesta, 2010;

Liu et al., 2005; Raut and Kalonia, 2016), in more severe cases, instability gives rise to the formation

of irreversible, and immunogenic aggregates (Hansel et al., 2010). Reversible and irreversible

association processes limit protein solubility, and have therefore complicated the manufacturing of

protein biopharmaceuticals (Shire, 2009; Daugherty and Mrsny, 2006; Mitragotri et al., 2014). To

improve the stability and developability of biologics, various groups have focused on predicting

the physicochemical properties of proteins in an attempt to accelerate drug production. Previous

work within our group has looked at protein features related to protein solubility, in particular

the lack of positively charged surface patches (Chan et al., 2013), the ratio of lysine to arginine

residues (Warwicker et al., 2014), and the stability of individual Fab domains (Hebditch et al.,

2017b). Experimental studies (Chari et al., 2009; Esfandiary et al., 2015; Neergaard et al., 2013;

Yearley et al., 2013; Calero-Rubio et al., 2017; Roberts et al., 2014a; Ghosh et al., 2016; Inouye et al.,

2016; Schermeyer et al., 2017), as well as computational approaches (Calero-Rubio et al., 2016;

Lilyestrom et al., 2013; Corbett et al., 2017; Kuhn et al., 2017), have been aimed at understanding

the solution behaviour of proteins and biologics.

Much research has focused on the role of anisotropic surface patches of charge and hydropho-

bicity in causing reversible and irreversible protein association (Yadav et al., 2012; Perchiacca
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et al., 2012; Chow et al., 2016; Li et al., 2016; Roberts et al., 2014b; Austerberry et al., 2017). This

experimental work has led to efforts in predicting protein surface patches in silico. For example,

the commercially available spatial aggregation propensity (SAP) software (Chennamsetty et al.,

2009b) which has been applied to IgG antibodies (Chennamsetty et al., 2009a), and is used for

predicting aggregation prone hydrophobic regions on the protein surface (Courtois et al., 2016;

Voynov et al., 2009). A development of the SAP software, incorporating charge and hydrophobicity

into the developability index, has been reported (Lauer et al., 2012). Predicting aggregation risk

for antibodies from sequence using bioprocessing data has also been described, with an associated

tool available commercially (Obrezanova et al., 2015). The freely available CamSol (Sormanni

et al., 2015, 2017), and Aggrescan 3D (Zambrano et al., 2015) servers use sequence and structural

information for rational design of mutants with enhanced solubility.

We have recently reported (Hebditch et al., 2017a) the protein-sol server for sequence-based

prediction of protein solubility, calibrated with experimental solubilities in high throughput

cell-free expression of E. coli proteins. Here, we discuss extension and utility of this freely

available web tool, with structure-based calculations. Patch analysis is introduced for electrostatic

potential, using Finite Difference Poisson-Boltzmann (FDPB) methods (Warwicker, 1986) that

aid visualisation of asymmetric charge distributions. Analysis of non-polar surface uses a patch

analysis (Cole and Warwicker, 2002), importantly with benchmark analysis of Fab fragments to

illustrate the range of values that are associated with surfaces and interfaces. Furthermore, taking

into account the common use of pH and ionic strength variation in bioprocessing, a heatmap is

produced showing prediction of how protein folded state stability varies with these parameters.

Comparison with available data for CH2 and CH3 domains reproduces the qualitative differences

observed.

Methods

Using the protein-sol patches and heatmap tools

All software at protein-sol is free to use without license or registration and is available online at

https://protein-sol.manchester.ac.uk. To use the protein-sol patches or heatmap code, the user

simply needs to upload a protein structure in the standard protein data bank format (Berman et al.,
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Figure 1: Structural classification of the Fab proteins. On the left, an example of categorisation of chains in
a Fab PDB file. Although each Fab may contain multiple non Fab chains, we elected to only consider
chains within 10Å of the Fab VH and VL domains as the antigen. As a result, the Fab:antigen
interface is that between the VH and VL of the Fab, and any non-Fab chain within 10Å. On the
right, a schematic representation of classification for atoms in a Fab fragment. Regions highlighted
in blue denote interface (top and middle) or surface (non-interface, bottom). Assignment to the
different categories was made from calculations of SASA, as described in the text.

2000), with results returned in a molecular graphics viewer and as downloadable files, available

using a supplied custom URL for 7 days. The protein-sol webserver is built using open source

software. Patches data is displayed using the NGL viewer (Rose et al., 2018), and the heatmap

visualisations are made in python.

Protein-sol patches calculation and visualisation

From the supplied PDB structure, only protein is ncluded in the calculation, with the advantage

that parameterisation failures for ligands unknown to the dictionary are avoided. Electrostatic

calculations follow published protocols from our group (Moutevelis and Warwicker, 2004; War-

wicker, 2004), but pKa calculations are not made. Ionisable group charges are fixed at pH 6.3,

giving half protonation for histidine sidechains, full deprotonation of aspartate and glutamate

sidechains and protein carboxy termini, and full protonation of lysine and arginine sidechains

and protein amino termini. Any supplied hydrogen atoms are removed, and polar hydrogen
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atoms added back, to carry partial charges. Electrostatic potential is calculated with the FDPB

method (Moutevelis and Warwicker, 2004) on a 0.6Å spaced grid, with relative dielectric values of

4 for protein and 78.4 for water. Counterions are included at 0.15 M concentration to model ionic

strength that matches physiological. For ease of display, both in the server and as a download,

the potential is transcribed from the Cartesian calculation grid to the B-factor field of a PDB file

containing the original coordinates. To accomplish this with visualisation of potential values at the

protein surface, a grid shell surrounding the protein is extracted from the Cartesian grid (Bate and

Warwicker, 2004), and potential values assigned to protein atoms according to the closest point on

this surface grid shell. Potential values are capped at lower and upper values of −86 and +86 mV,

to fit with the PDB B-factor field, these values correspond to an interaction magnitude for a unit

charge in the field of about 8.6 kJ/mole. The resulting electrostatic potential surface, and patches,

can be manipulated by the user with the NGL viewer (Rose et al., 2018). An equivalent colour

scheme for potential can also be viewed from the downloadable coordinate file, for example using

the red_white_blue spectrum command, with minima and maxima of −86 and +86 in PyMOL

(Schrodinger, 2010). In the embedded viewer of the server, various representations other than

surface are possible, as are full-screen viewing and picture download.

A different branch of the code evaluates the non-polarity of patches around over the protein

surface. For this purpose, a patch is associated with each non-hydrogen atom in the protein. Each

patch is the ratio of non-polar to polar solvent accessible surface area (SASA) for all non-hydrogen

atoms within a 13Å radius of the central atom (Cole and Warwicker, 2002). For brevity we refer to

this ratio as NPP (Non-Polar to Polar) ratio. As for electrostatic potential, this property is inserted

into the B-factor field of a PDB file, and displayed in the embedded NGL viewer, as well as being

downloadable for local viewing. Colour-coding in the embedded viewer is chosen as purple

(more polar) to green (more non-polar), so as to distinguish it from the standard red, white, blue

scheme for electrostatic potential, and can be visualised using the magenta_white_green spectrum

command with minima and maxima of 0.4 and 2.5 in PyMOL (Schrodinger, 2010). It is standard

practice to display the most non-polar surface regions, in the context of protein solubility. It is

worth noting however that more polar regions also carry information, to our surprise we found

that the antigen-combining regions of antibodies are, on average, relatively polar.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/345231doi: bioRxiv preprint 

https://doi.org/10.1101/345231
http://creativecommons.org/licenses/by/4.0/


Protein-sol heatmaps for the predicted pH and ionic strength dependence of

stability

Whereas the calculation of electrostatic potential on protein-sol is made with standard pKas, it is

the differences to standard pKas (∆pKas) that determines the pH-dependent contribution to folded

state stability. Not only are pH and ionic strength screens used in formulation studies, but also low

pH is used for viral inactivation of biologics expressed from CHO cells (Birch and Racher, 2006).

We have developed software in previous applications to compute pKas and the pH-dependent

contribution to protein stability, and now provide this code at the protein-sol site. Experimental

groups often provide the results of pH and ionic strength screens as heatmaps, and we have

therefore chosen this format. Whilst we are unlikely to be describing precisely a feature measured

experimentally, folded state stability (for which we provide a prediction of the pH-dependent

component) is a key underlying property. Indeed, in the Results section we discuss a qualitative

fit between heatmaps generated for CH2 and CH3 domains, and experimental data. Rather than

the FDPB model used for electrostatic surface generation, we use the more simple Debye-Hückel

(DH) scheme for charge-charge interactions in a medium of uniform relative dielectric (78.4, water)

and ionic strength (variable, 0 to 0.3 M). This allows rapid calculation (Warwicker, 1999) of the

required Monte Carlo sampling of protonation states (Beroza et al., 1991). It is approximated that

there are no interactions between ionisable groups in the unfolded state, and the pH-dependent

energy is given in Joules per amino acid, a normalisation against protein size. The predicted net

charge of the protein (units of e per amino acid) is also given in the heatmap format, within the

pH 2 to 8, and ionic strength 0 to 0.3 M ranges. Ligands are, again, excluded from the calculations.

In order to give the user context, 2D plots of pH-dependent contribution to stability are drawn for

ionic strengths of 0, 0.15, and 0.3 M. The user-supplied protein is displayed against a background

of the Fabs dataset analysed in this work.

For calculation with representative CH2 and CH3 domains of an IgG1 antibody, the 1HZH

structure was used (Saphire et al., 2001). Coordinate files for each domain (CH2 and CH3) were

extracted from the overall 1HZH file.
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Datasets of Fab structures for calculation

The Fab dataset was formed by searching the PDB (Berman et al., 2000) for structures containing

Fabs, and the biological assembly files retrieved. Sequences from the resulting structures were

analysed manually to identify only structures with unique heavy and light chains, resulting in 199

Fab structures. From these Fab structures, the four individual domains, the variable and constant

domains of the heavy chain (VH and CH), and the variable and constant domains of the light

chain (VL and CL), were identified using interdomain sequence motifs (Hebditch et al., 2017a).

This resulted in 199 Fab structures that constitute the heatmap dataset.

In order to identify antibody:antigen interfaces, coordinates for the antigen binding VH and

VL domains were compared with all non-Fab atoms in the relevant PDB file. For any non-Fab

coordinate within 10Å of the combined VH and VL domain coordinates, the entire chain of the

close non-Fab structure was extracted and combined with the entire Fab, in a new coordinate

file. From the original 199 entirely unique Fab structures, 90 of the original biological assemblies

contained an antigen within 10Å of the VH and VL domains (Figure 1). These 90 Fabs were

then also split into heavy and light chains for chain:chain analysis, and forming the basis for

putting the patches part of the server into the context of Fab calculations. We were interested in

whether regions of Fab that were not determined to be interfacial (H - L chain or with antigen)

were representative more generally of protein surfaces. For this purpose we used a dataset of 54

enzymes (Bate and Warwicker, 2004) known to be monomeric, and thus likely to present mostly

non-interfacial amino acids.

Results

Categorisation of surface, buried and interface atom

SASA was calculated for each atom in each construct: the extracted Fab alone, the extracted

antigen alone, each Fab chain alone, and the Fab:antigen complex. With solvent accessible surface

areas for each atom in each construct ascertained, we then assigned structural categorisations

(Figure 1) based on solvent accessible surface area. An atom was defined as buried for SASA <

5Å, and surface accessible otherwise. A lower threshold (0.1 Å) was used to assess change in
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Figure 2: Example protein-sol visualisation of surface patches on a Fab. In A) the Fab is colour coded from
low NPP ratio (purple) to high NPP ratio (green), and in B) the Fab is colour coded from negative
charge (red) to positive charge (blue). Both are visualised using the embedded NGL viewer on the
protein-sol web application after calculation.

SASA for an atom, upon interface formation, and assign to the relevant interface (Fab:antigen or

Fab chain:Fab chain). Once each atom is tagged with one or two of the above three tags, it was

assigned a single structural categorisation, prioritising the interface over surface categorisation.

Thus, atoms with a surface categorisation are at the Fab surface and outside of both interface types

(Fab:antigen and H chain: L chain). As a result it is possible, for a dataset of Fab fragments, to

compare the two interface environments and the remaining surface regions. NPP ratios for atoms

in an interface are assigned from the constituent parts of the complex that contains that interface.

For example, for Fab:antigen, Fab fragment NPP ratio values are taken from the Fab calculation.

It is then possible to compare the distributions of NPP ratio for interfacial (including different

types of interface) and surface atoms. A similar comparison can be made for distributions reduced

to just the set of maximal NPP ratio values, where a maximum is taken from each environment

(interface, surface) in each Fab system. For further comparison, the surfaces of the monomeric

enzymes set are also included.

One step visualisation of charged and hydrophobic surface patches

The protein-sol patches software takes a protein PDB structure and calculates patches of charge

(at pH 6.3) and hydrophobicity across the protein surface (Figure 2). This allows the user to

quickly identify interesting regions on the protein surface which may influence the behaviour

and stability of the protein structure. Electrostatic surface potential based on FDPB calculation

is plotted alongside the potential colour-code. Note that a relatively large change in pKa for
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acidic and basic groups in a surface salt-bridge may be about 1 pH unit, equivalent to 57 mV

i.e. the range of potential given here is that expected for electrostatic interactions at the protein

surface. Potential equivalent to thermal energy at 300 K, kT/e, is 25 mV. A scale is also given for

colour-coding by patch NPP ratio, from 0.6 (more polar) to 2.5 (more non-polar). Importantly, an

additional bar graphic displays the maximum of NPP ratio, in the context of maxima found for

interface and non-interface regions of Fab fragments. This information allows the user to find

not just the most non-polar region, but also to assess its significance against known interfaces,

significantly enhancing the practicality of the tool.

Using our dataset of different Fab structural categorisations, we demonstrate the potential of

the protein-sol patches software to quickly identify hotspots of relative hydrophobicity (higher

NPP ratio). Through interrogation of the dataset for extremes, Figure S1 shows particularly

hydrophobic patches for the Fab chain:chain interface (Figure S1A), a patch on an interface

between Fab fragment and antigen (Figure S1B), and a patch on the surface of a Fab fragment

(Figure S1C). Note that these are extreme values and, as we show in a subsequent section,

antibody-antigen interfaces are relatively polar.

Figure 3: Protein-sol stability heatmap. Calculated for the CH2 (A) and CH3 (B) and charge heatmap
calculated for the CH2 (C) and CH3 (D) domains of a monoclonal antibody (1HZH).

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/345231doi: bioRxiv preprint 

https://doi.org/10.1101/345231
http://creativecommons.org/licenses/by/4.0/


Figure 4: Distribution of hydrophobic patches across the different Fab structural classifications. A) Dis-
tributions of all NPP ratio values for the Fab, antigen and monomeric enzyme surfaces combined
for each protein. B) Distribution of all NPP values for all three Fab structural categorisations:
Fab:antigen interface, Fab surface (excluding Fab:antigen interface) and Fab chain:chain interface
combined for each protein and compared. C) Distribution of max NPP ratio values for Fab:antigen
interface, Fab chain:chain interface, and Fab surface.

Heatmaps show the predicted pH and ionic strength dependence of stability

Alongside surface visualisation, protein-sol also provides heatmaps for the pH and ionic strength

dependence of folded state protein stability, using the DH method for interactions between

ionisable groups, and pKa calculations. Two separate heatmaps (Figure 3) display predicted

charge (units of e per amino acid), and predicted pH-dependent contribution to stability (J per

amino acid). Normalisation relative to sequence length allows direct comparison of proteins. Each

heatmap consists of 91 combinations of pH and ionic strength. In order to compare qualitatively

with experiment, CH2 and CH3 domains from the IgG1 PDB structure 1HZH are used (Saphire

et al., 2001), since pH and ionic strength variations in stability have been reported for IgG1 CH2

and CH3 domains (Yageta et al., 2015). Measured phase diagram boundaries for these domains,

derived at acidic pH (Yageta et al., 2015) has been marked (Figure 3), showing a good match

between these calculations and experiment. For example, looking across the pH variation at 0.15 M

ionic strength, there is a greater variation in pH-dependence for CH2 than for CH3 domains. The

pH-dependence of stability is directly related to charge (Antosiewicz et al., 1994), but perhaps the

most convenient feature to extract from heatmaps of charge is the predicted sign of net charge. It

should be noted that these calculations lack post-translational modifications, such as glycosylation.

Here, the IgG1 CH2 domain is predicted to be rather more positively-charged than the CH3

domain at equivalent pH and ionic strength.

Differences in the physicochemical screens represented by the heatmaps can also be visualised

in terms of line graph streams that show the variation with pH of charge or energy at a fixed ionic
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strength (Figure S2). Our dataset of Fab fragments is used as a background with which to compare

the pH dependence calculation for the user structure. We chose this background set due to its

importance in the biopharmaceutical and biotechnology areas. Wider-scale analysis is possible,

but analysis of proteins that are native to differing environments can be a complex topic (Chan

and Warwicker, 2009). Comparison of Figure S2 panels A and B show clearly that the predicted

pH-dependence of stability is greater for the CH2 domain for the CH3 domain. Similarly, Figure

S2 panels C and D show the more positive predicted charge of the CH2 domain relative to the

CH3 domain, at equivalent pH values.

A common distribution of patch polarity for protein surfaces

To provide the user with context for patch polarity, alongside surface display, it was necessary

to undertake a bioinformatics analysis. Protein surfaces were studied for 3 datasets, the Fab

fragments, their corresponding (protein) antigens, and a set of enzymes that are monomeric in

their biological states. Surfaces were assigned for Fab fragments and antigens, excluding interfaces,

as described in the Methods section, and the entire surfaces of the monomeric enzymes were

included. The distribution of NPP ratios are similar for all 3 datasets (Figure 4A), giving confidence

that this form of distribution is broadly representative of protein surfaces. Since a higher NPP

ratio reflects a more hydrophobic patch, and a lower NPP ratio relates to a more polar patch, the

similarity in distributions suggests that the polar to non-polar spectrum of a protein surface is a

general property, All three protein sets have a peak in the distribution at an NPP ratio around 1.0,

i.e. with equal contribution from polar and non-polar surface areas.

The heavy to light chain interface is more non-polar than protein surface, but the

Fab-antigen interface is relatively polar

Having ascertained that the Fab protein surface is representative of protein surfaces in general, a

comparison is made with heavy to light chain and Fab-antigen interfaces (Figure 4B). As expected

for a protein-protein interface, the NPP ratio distribution is substantially shifted towards non-polar

for the chain-chain interface within a Fab fragment, By comparison, the Fab:antigen interface is

slightly more polar than the Fab surface, suggesting that the two interface types have different

physicochemical properties. The polarity surface displayed on the server relates to the NPP ratio
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Figure 5: Example visualisation of the relatively high polarity at the Fab antigen interface in comparison
to the rest of the Fab. Regions of high hydrophobicity are coloured green, low hydrophobicity
coloured purple, and CDR regions highlighted in orange.

distributions given in Figures 4A and 4B. In order to give the user a more succinct indication of

where a protein fits in terms of non-polar surface, we decided to extend the analysis to record the

patch with the highest NPP ratio, in a particular protein. It is this property that is shown in the bar

chart displayed following the surfaces on the server. Figure 4C shows distributions of the highest

NPP ratio values, extracted (one for each protein) from the full distributions (Figure 4B). Interfaces

within a Fab fragment are again, on average, shifted towards more non-polar. The relative polarity

of Fab-antigen interfaces is now even more apparent, clearly shifted towards more polar than Fab

surface. For each Fab, the most hydrophobic patch is generally in the the Fab chain:chain interface,

and the least hydrophobic in the Fab:antigen interface. Overall, this approach allows a user to find

the single largest non-polar patch within a structure, and is typically related to features used in

the assessment of the developability for biotherapeutics.

Discussion

The development and use of therapeutic proteins can be limited by instabilities which complicate

manufacture, storage and delivery. It is important to improve understanding and to provide

predictions for the factors that cause reversible and irreversible association. To help improve

the developability of biopharmaceuticals, in past work, we introduced the protein-sol sequence
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software for predicting protein solubility based on primary structure (Hebditch et al., 2017a). In

this work, we introduce two new tools, available for free and with no licensing requirements,

protein-sol patches and heatmaps. Whilst targeted at the biopharmaceutical research community,

they could also be of wider interest for biotechnology. Both hydrophobic and charged surface

patches have been implicated in aberrant solution behavior. The protein-sol patches code is used

to calculate the predicted surface patches from a protein structure. Incorporation of the NGL

viewer allows fast and simple visualisation of the surface electrostatic potential and polarity

(hydrophobicity). Calculation results are also available for download, as PDB format files with

surface patches colour coded using the B-factor field. Results are therefore readily available for

further processing or visualisation by the user.

To put the server output into context, we investigated the hydrophobic properties of surface

and interfacial regions of Fab fragments, as well as a dataset of soluble monomeric enzymes.

There is little difference in NPP ratio distributions for surface regions of Fab fragments, their

corresponding protein antigens, and monomeric enzymes (Figure 4A). One interpretation of this

result is that a standard protein surface profile of polarity is associated with a balance between

structural stability and solubility. As expected, the heavy - light chain interface is relatively

non-polar, both in overall distribution (Figure 4B) and as peak values for each Fab (Figure 4C).

Surprisingly though, Fab-antigen interfaces are relatively polar, an observation that is exaggerated

when viewed as peak NPP ratios (Figure 4C), as compared with the whole distributions (Figure

4B). Antibody-antigen interfaces have been reported to differ from other protein-protein interfaces,

tending to be smaller in size, incorporating fewer helices and more loops, with less hydrophobic

packing (Dalkas et al., 2014). We now find that antibody-antigen interfaces are, if anything, even

more polar than surface (non-interfacial) regions. It is possible that the constraints of altered

interfacial size and different secondary structure composition lead to a reduction in non-polarity.

An alternative possibility is that as a non-obligate interface, there remains a requirement for

solubility in the absence of interface formation. Further, following reports that proteins at high

naturally occurring concentrations tend to more soluble (Tartaglia et al., 2007; Hebditch et al.,

2017b), the constraint for relatively polar surface would be enhanced for antibodies.

The NPP ratio part of the protein-sol server has been developed to allow users to view non-

polar patches in the context of developability. Incorporation of modal values from the NPP peak
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values distributions in Figure 4C, alongside the NPP peak value for the user’s protein in a simple

graphic, will aid such assessment. Whilst non-polar patches may be the focus for developability,

we do not discard more polar regions from the display. A demonstration of the relative polarity of

antibodies at the antigen-combining site is shown in Figure 5. Whereas for Figure S1B we chose the

most non-polar complementarity-determining region (CDR) (with a green patch), more typically

the relative polarity is apparent (Figure 5). Indeed, since this graphical tool makes the separation

of relatively polar and non-polar regions readily apparent, it could accelerate discoveries such as

that made here for antibody - antigen interfaces.

The current work provides an additional tool for groups looking to identify regions of a protein

for engineering improved solution properties. Both hydrophobic patches (Nichols et al., 2015), and

charged patches (Yadav et al., 2012; Chow et al., 2016; Perchiacca et al., 2012) have been mutated to

alter solution behavior. The ability to rapidly visualise surface patches will further inform and

accelerate such work.

With regard to heatmap depiction of predicted stability for pH and ionic strength variation,

these are two important factors when studying proteins. Although the trend of changes will

be uniform, acidification tends towards a more positive protein and increased ionic strength

reduces electrostatic interactions, the net outcome is a delicate balance of the constituent parts.

For example, we demonstrate (Figure 3) that qualitative experimentally-determined differences

between IgG1 CH2 and CH3 domains (Yageta et al., 2015), are reproduced by our calculations.

Furthermore, the user can view the size of predicted pH-dependence as a comparison with the

dataset of Fab fragments, with plots normalized for sequence length. Predicted protein charge is

also presented, in an analogous manner. Fab fragments were used as the control dataset since

they are a widely used biopharmaceutical platform. We suggest that the protein-sol heatmap may

be a useful tool for accelerating formulation screens by identifying potentially favourable regions

prior to formulation development, when a structure or structural model is available. Since viral

clearance procedures often involve a low pH step, the heatmap analysis will aid determination of

the degree to which protein stability is diminished as salt-bridges and other favourable interactions

are lost at acidic pH.

In this work we have discussed how the polar, non-polar, pH and ionic strength dependent

properties influence protein stability in solution, and how instability can limit development. The
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protein-sol software suite, incorporating patches and heatmap software has been designed to

benefit researchers interested in understanding the surface properties, and stability, of proteins

in solution. While developing the server, we have demonstrated how the patches software can

identify interesting physicochemical properties of Fab chain:chain and Fab:antigen interfaces, and

also how predictions for protein stability compare favourably to measured data. Protein-sol is

freely available. Our initial work suggests that it could contribute to the acceleration of protein

engineering and formulation optimisation, and to the improvement of developability for new

biotherapeutic leads. It also provides insight into the fundamental properties of proteins in

solution.
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