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Abstract 
Background: An increasing number of studies reported that exogenous miRNAs (xenomiRs) can 

be detected in animal bodies, however, some others reported negative results. Some attributed 

this divergence to the selective absorption of plant-derived xenomiRs by animals.  

Results: Here, we analyzed 166 plant-derived xenomiRs reported in our previous study and 942 

non-xenomiRs extracted from miRNA expression profiles of four species of commonly 

consumed plants. Employing statistics analysis and cluster analysis, our study revealed the 

potential sequence specificity of plant-derived xenomiRs. Furthermore, a random forest model 

and a one-dimensional convolutional neural network model were trained using miRNA 

sequence features and raw miRNA sequences respectively and then employed to predict 

unlabeled plant miRNAs in miRBase. A total of 241 possible plant-derived xenomiRs were 

predicted by both models.  Finally, the potential functions of these possible plant-derived 

xenomiRs along with our previously reported ones in human body were analyzed.  

Conclusions: Our study, for the first time, presents the systematic plant-derived xenomiR 

sequences analysis and provides evidence for selective absorption of plant miRNA by human 
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body, which could facilitate the future investigation about the mechanisms underlying the 

transference of plant-derived xenomiR. 

Keywords: miRNA, plant-derived xenomiR, cross-kingdom regulation, selective absorption, 

statistics analysis, machine learning, channel tropism 

Background 
miRNAs and their gene expression regulation function in eukaryotes is one of the most 

important discoveries in recent years [1]. It has been well elucidated that endogenous miRNAs 

could degrade or silence mRNAs to mediate gene expression by binding RNA-induced silencing 

complex (RICS) in a sequence-specific manner [2]. Meanwhile, although still controversial, new 

hypotheses about extracellular miRNA have been continually proposed, e.g., exosomal miRNA 

[3, 4], circulating miRNA [5, 6] and exogenous miRNA (xenomiR) [7, 8].  

Due to the possibility of cross-kingdom regulation, plant-derived xenomiR hypothesis has 

received great attention since first proposed in 2012 [7]. Plant-derived xenomiRs were defined 

as the miRNAs derived from plants which are capable of transferring into human or animal 

bodies. Subsequently, plant-derived xenomiRs have been detected in different tissues or body 

fluids of several species of animals, including human [7], mice [7], pig [9], panda [10] and 

silkworm[11]. And their relevance to many diseases, such as cardiovascular diseases [7], tumor 

[12, 13], chronic-inflammation [14], influenza [15], benign prostatic hyperplasia [16] and 

pulmonary fibrosis [17], were also proposed. However, many mechanisms of plant-derived 

xenomiRs in keeping stable in gastrointestinal (GI) track, transferring across GI track, entering 

cells or being secreted by cells are still unknown.  

Emerging evidence suggests that the species of plant miRNAs detected in animals are limited, 

although the total species of miRNAs of a single plant is often more than several hundred, for 

example 713 species of miRNAs have been identified in oryza sativa (osa) so far [18]. Only 25 

species of plant miRNAs were detected by Zhang et al. [7], although their samples pooled 80 

human serum (8 samples, each sample pooled from 10 humans). In another study of Zhang et al. 

[19], where plant miRNAs in human plasma were examined by qRT-PCR after donors drunk fruit 

juice, 10 species of plant miRNAs were detected, whereas 16 species of plant miRNAs could be 

detected in the fruit juice. Similarly, limited species of maize miRNAs were detected using qRT-

PCR in the serum and tissues of pigs feed with fresh maize for 7 days [20]. With TA-cloning and 

Sanger sequencing, only a part of species of mulberry-derived miRNAs were detected in 

hemolymphs of silkworms which were fed with mulberry leaves [11]. 

In fact, besides natural plant miRNAs, many species of synthetic plant miRNAs or mimic plant 

miRNAs that are identical or similar to natural plant miRNAs, were also reported to be able to 

transfer into and keep stable in animal bodies. Chin et al. [12] suggested that both natural plant 

miR159 and synthetic oligos, with the same sequence as miR159, were capable of transferring 

into human breast cancer cells. Similarly, the synthetic miR166b were detected in silkworm 
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hemolymph [11]. A recent study reported that 3 species of mimic plant miRNAs (mmu-miR34a, 

mmu-miR143 and mmu-miR145) can also transfer into mouse body by oral administration [13]. 

Many reports suggested that MIR2911 could be significantly taken in by human and animals, 

which was attributed to its unique sequence [15, 21, 22], and the disruption of the MIR2911 

sequence by two nucleotides abolished its absorption [23]. Yang et al. [22] suggested that not 

all miRNAs, but miRNAs with certain features could keep stable in GI tract of animals, and 

randomly synthesized miRNA-like sequences would be degraded quickly after injected in 

animals.  

The discoveries described above imply the selective absorption of plant miRNAs by animals, i.e. 

only plant miRNAs with specific sequence could be absorbed by specific species of animals, 

which also provides an explanation for studies that reported the un-detectability [24, 25] of 

several plant miRNAs in animals. In this paper, we first systematically studied the sequence 

differences between the plant miRNAs which can transfer (xenomiR group) and cannot transfer 

(non-xenomiR group) into human bodies using statistics methods. Significant difference was 

found in 28 sequence features between the two groups, which suggested the potential patterns 

underlying the plant-derived xenomiR sequences and a possible link between these patterns 

with selective absorption of xenomiRs. Subsequently, a random forest (RF) model and a one-

dimensional convolutional neural network (1D-CNN) model were trained to distinguish the two 

groups. Both models successfully distinguished between xenomiRs and non-xenomiRs with high 

accuracy. They were then used to predict potential plant-derived xenomiRs on unlabeled plant 

miRNAs, and a total of 241 plant miRNAs were identified as xenomiRs by both models. Finally, 

we analyzed the functions of the 241 predicted along with 166 previously reported xenomiRs in 

human body. Taken together, we report the first systematic plant-derived xenomiR sequences 

analysis, and the results provide evidence for selective absorption of plant miRNAs by human 

body. In addition, we propose the first list of high-probability xenomiRs, which further enables 

more robust decisions regarding plant miRNAs candidates for experimental validation and 

facilitates future investigation about the mechanisms of xenomiRs transferring into animal 

bodies. 

Results 
Datasets and feature extraction 
For sequence comparison, we collected 166 xenomiR sequences (positive samples) and 942 

non-xenomiR sequences (negative samples). All 166 xenomiRs (Additional file 2: Table S1) were 

collected from our previous study [26], which were obtained from 388 healthy human samples 

analyzed by a rigorous bioinformatics pipeline. These miRNAs covered almost all the reported 

plant-derived xenomiRs so far. Regarding non-xenomiRs (negative samples), no off the shelf 

dataset is available at present. To obtain the non-xenomiRs as accurately as possible, we 

carefully selected the miRNAs that have never been detected in human from osa, zea maize 

(zma), glycine max (gma) and arabidopsis thaliana (ath) (see Methods), which are either staple 

food or the plant closely related to common vegetables (see Discussion). In total, 942 miRNAs 
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(Additional file 3: Table S2) were labeled as non-xenomiRs. For both positive and negative 

samples, we extracted the length, nucleotide positions, 1~3 nt motif frequency in full miRNA 

sequences and 1~2 nt motif frequency in miRNA seed regions (Additional file 4: Table S3). All 

these features are widely used in miRNA associated researches. 

Statistical analysis of the differences between xenomiRs and non-
xenomiRs 
Considering the similarity of the members in the same miRNA family, we first studied the 

miRNA families to which the xenomiRs belong according to the miRNA families classified by 

miRBase [18]. In total, 49 miRNA families were mapped by xenomiRs (Additional file 5: Table 

S4), among which 8 (Fig 5-xenomiR family) covered nearly half of the 166 xenomiRs. In mir168 

family, up to 41.2% miRNAs (7 out of 17 miRNA sequences) were mapped by xenomiRs. These 

results suggested that xenomiRs are likely to enrich in specific miRNA families, rather than 

randomly distributed among all miRNA families.   

Further, we explored the differences between xenomiRs (Additional file 2: Table S1) and non-

xenomiRs (Additional file 3: Table S2) in terms of nucleotide position. The percentages of the 4 

kinds of nucleotides (adenine (A), cytosine (C), guanine (G) and uracil (U)) in each position were 

obtained for each group (Fig 2-position comparison), respectively. It can be found that the 

percentages of nucleotides are different in xenomiRs and non-xenomiRs, especially the 

percentages of pyrimidines (U at the 1
st

, 7
th

, 9
th

, 13
th

, 15
th

~17
th

 position, and C at the 3
rd

, 4
th

, 

5
th

,6
th

, 9
th

, 13
th

, 15
th

~22
nd

 position), suggesting the difference in position features between the 

two groups. Hypothesis tests were also performed on all the other features listed in Additional 

file 4: Table S3 for further comparison. In total, 28 out of 105 features were significantly 

different between the two groups (p < 0.05, false discovery rate (FDR) corrected), as listed in 

Table 1-feature-comparison, including length, C content, U content, 4 kinds of 2 mer motif, 17 

kinds of 3 mer motif and 4 kinds of 2 mer motif in seed region. It can be found that, comparing 

with non-xenomiRs, the contents of most motifs (1~3 mer) with C nucleotides are higher in 

xenomiRs, yet the contents of most motifs with U nucleotides are lower. Besides, the sequence 

length of xenomiRs is also significantly shorter than that of non-xenomiRs. Taken together, our 

results suggested that xenomiRs and non-xenomiRs are separable in sequence feature space. 

To easily observe the multi-dimensional feature differences between xenomiRs and non-

xenomiRs, linear discriminant analysis (LDA) was performed to visualize the differences in lower 

dimension. We selected all features except position features listed in Additional file 4: Table S3 

to describe miRNA sequences, and the density of LD1 was shown in Fig 3-LDA. Overall, the 

xenomiRs and non-xenomiRs could be separated with partial overlap in the middle, and the 

distribution of xenomiRs is more compact (p < 2.2e-16, see Methods) than that of non-

xenomiRs. To better distinguish xenomiRs and non-xenomiRs for accurately predicting potential 

xenomiRs, two more complicated models, random forest and one-dimensional convolutional 

(1D-CNN) neural network were employed. 
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Table 1 Sequence feature comparison between xenomiRs and non-xenomiRs 

Feature p value (t-test) FDR Mean (positive) Mean (negative) 

Length 2.47E-08 5.20E-07 21.07229 21.44586 

C 2.76E-06 2.89E-05 0.2547 0.206519 

U 1.38E-04 7.23E-04 0.242166 0.276587 

AU 2.01E-05 1.41E-04 0.051751 0.068726 

CA 9.01E-09 2.37E-07 0.085152 0.060352 

GU 8.07E-09 2.37E-07 0.034289 0.057152 

UA 4.83E-14 2.54E-12 0.021754 0.045344 

AGC 5.19E-04 2.48E-03 0.026438 0.016911 

AGU 1.51E-03 5.89E-03 0.008638 0.014441 

AUU 8.87E-04 3.58E-03 0.011491 0.018709 

CAC 5.90E-05 3.64E-04 0.019517 0.010089 

CAG 2.34E-07 3.44E-06 0.027643 0.013855 

CCC 1.85E-03 6.93E-03 0.0166 0.00767 

CUA 7.82E-05 4.32E-04 0.005474 0.011272 

GCA 2.95E-04 1.48E-03 0.027718 0.016945 

GCG 4.29E-05 2.81E-04 0.003174 0.008349 

GGU 7.23E-05 4.22E-04 0.007553 0.015033 

GUA 2.62E-07 3.44E-06 0.003583 0.010497 

GUG 1.10E-05 8.23E-05 0.010202 0.018809 

UAA 1.48E-07 2.59E-06 0.003479 0.010353 

UAU 1.19E-24 1.24E-22 0.00151 0.013291 

UGG 7.04E-04 3.08E-03 0.017699 0.025995 

UUA 6.51E-07 7.60E-06 0.003682 0.010092 

UUU 6.55E-06 5.29E-05 0.010167 0.021145 

GU (seed) 5.66E-06 4.95E-05 0.031124 0.060686 

GA (seed) 5.44E-04 2.48E-03 0.123494 0.08811 

UA (seed) 4.34E-06 4.15E-05 0.016064 0.037509 

GC (seed) 8.52E-04 3.58E-03 0.037149 0.058917 

Feature comparison was performed between xenomiRs and non-xenomiRs, and 28 features 

with FDR less than 0.05 were listed. Red indicates higher value in xenomiRs whereas blue 

represents higher value in non-xenomiRs. Bold indicates the values are higher and non-bold 

indicates lower in xenomiRs than non-xenomiRs. 

Model building and training 
In our RF model, 1~3 mer motifs in full miRNA sequence, 1~2 mer motifs in seed region and the 

length of miRNA were employed as inputs. The number of decision trees and the number of 

features randomly sampled as candidates at each split were set to 501 and 6, respectively. The 

framework of our 1D-CNN is summarized in Fig 4-CNN (see Methods), which contained 2 

convolutional layers, 1 flatten layer, 2 dense layers and 1 output layer. We encoded the four 

kinds of nucleotides by one-of-K fashion, and for each miRNA sequence, the codes of the first 

18 nucleotides of a raw miRNA sequence were flattened into a one-dimensional vector, which 
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was used as inputs (see Methods). Furthermore, L2 regulation and dropout [27] strategy were 

employed to relieve 1D-CNN model from overfitting, and the hyper-parameters used in our 1D-

CNN model were determined using Bayesian optimization method.  

Performance evaluation 
An independent test set containing 25 positive samples (15% of all positive samples) and 25 

negative samples, which were randomly selected from positive and negative samples, was used 

only in testing process, and all the other samples consisted of the training set (Table 2-sampls 

split). To deal with the imbalance between positive and negative samples in training set (141 

versus 917), an oversampling strategy was employed (see Methods). 

Table 2 Training set and testing set 

Data set Class # of miRNAs Data source 

Training 
Positive 141 Literature 

Negative 917 miRbase, GEO 

Testing 
Positive 25 Literature 

Negative 25 miRbase, GEO 

An independent test set containing 25 positive samples (15% of all positive samples) and 25 

negative samples, which were random selected from positive and negative samples, was used 

only in the testing process, and all the other samples were used for training 

To compare model performance, our RF model and 1D-CNN model were trained and tested 

under the same training set and testing set. As shown in Table 3-acc comparison, both models 

achieved relatively high accuracy, and their performance was comparable. The RF model 

achieved better SN (0.920), at the cost of lower SP (0.560). The SN of 1D-CNN model (0.880) is 

lower than that of random forest model, however, the specificity is much higher (0.680). In the 

meantime, our 1D-CNN model achieved higher ACC (0.78) than RF model, but the AUC under 

the ROC curve is lower (0.817) (Fig 4a-ROC). To further ensure that our models were 

independent of training and testing sets, a 5-fold cross-validation was performed. Comparable 

results were obtained for both RF and 1D-CNN models, as shown in Fig. 4b-ROC and Table 3-acc 

comparison. 

We further obtained the top 10% most important features evaluated by mean decrease 

accuracy and mean decrease Gini obtained from our RF model (Additional file 6: Table S5). The 

important features identified by both methods are highly consistent (7 out of 10) and also in 

line with the features that show significant difference between the xenomiRs and non-

xenomiRs (Table 1-feature comparison). Among them, the motif ‘CAG’ was evaluated as the 

most important feature by mean decrease Gini, and it was also the only 3 mer motif feature 

evaluated by mean decrease accuracy method. 

Table 3 Accuracy comparison between RF model and 1D-CNN model on test set and 5-fold 

cross-validation set. 
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Model SN SP ACC AUC 

Independent 

test set 

RF 0.920 0.560 0.740 0.866 

1D-CNN 0.880 0.680 0.780 0.817 

5-fold CV 
RF 0.901 0.666 0.736 0.840 

1D-CNN 0.859 0.712 0.766 0.794 

ACC indicates accuracy, SN indicates sensitivity, SP indicates specificity and AUC indicates area 

under the ROC curve. 

Prediction of potential xenomiRs from unlabeled plant miRNAs and 
xenomiR function analysis 
Both RF model and 1D-CNN models were used for predicting potential xenomiRs from all 

unlabeled 3695 plant miRNAs (Additional file 7: Table S6) with unique sequences in miRBase [18] 

(see Methods). In total, 643 and 555 miRNAs were predicted as xenomiRs by RF and 1D-CNN 

models, respectively, and 241 miRNAs (Additional file 8: Table S7) were predicted by both 

models (Additional file 1: Figure S1). Being conservative, we only considered these 241 miRNAs 

as predicted xenomiRs. Further, we analyzed the potential functions of all possible xenomiRs in 

human bodies, including 166 previously reported xenomiRs (Additional file 2: Table S1) and 241 

predicted xenomiRs (Additional file 8: Table S7). Specifically, we firstly obtained the potential 

targets genes of xenomiRs using miRanda [28] and RNAhybrid [29], which are commonly used 

miRNA target prediction tools. The 2194 unique target genes (Additional file 9: Table S8) 

identified by both tools were regarded as high-probability targets (see “Methods”). 

Subsequently, gene ontology analysis was employed to annotate the biological processes 

enriched by the target genes (see “Methods”). The top 20 most significantly enriched biological 

processes were shown in Fig 6a. It can be seen that the target genes are likely related to the 

development, differentiation, regulation of neural system, and the regulation of circulation 

system. Similarly, pathway enrichment analysis was employed to find potential biological 

pathways involved by xenomiRs, and the top 20 most significantly enriched pathways were 

shown in Fig 6b. Results indicated that the target genes are related to endocrine, cancer and 

inflammatory regulation pathways.  

Discussion 
We have conducted the first systematic analysis of sequence differences between xenomiRs 

and non-xenomiRs, and significant difference was found, which argued in favor of the selective 

nature of the absorption of xenomiRs and its relation with miRNA sequences. We have then 

shown the feasibility of distinguishing between xenomiRs and non-xenomiRs based on miRNA 

sequences using machine learning models. High accuracies were achieved by both random 

forest model and 1D-CNN model. This could serve as a valuable tool for predicting potential 

xenomiRs that have not yet been discovered, based on which further biological experiments 

could be conducted for validating their ability of transferring into human bodies and more 

importantly, exploring their potential functions. The important features of xenomiRs identified 

here might offer insights into underlying mechanisms of xenomiRs transferring into and keeping 

stable in animal body. In addition, we have provided the first list of high-probability xenomiRs 
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as well as their potential functions. Of interest, the functions of these xenomiRs seem to be 

consistent with previous studies (see details below). We have shown in our previous paper [26] 

that the plant miRNAs detected in human bodies are tissue-specific and cannot be fully 

explained by contamination and provided evidence for the xenomiRs hypothesis. The selective 

absorption of plant miRNAs by animal bodies could provide an explanation for studies where 

xenomiRs were not detected in animal bodies.  

In fact, the tissue-specificity of plant-derived xenomiRs could also explain the theory of channel 

tropism of traditional medical herbs proposed a few thousand years ago in Inner Gannon of 

Huangdi [30]. Channel tropism describes that each medical herb functions differently in distinct 

human tissues, and some herbs function in single tissue, whereas other herbs target multiple 

tissues, i.e. one-to-one or one-to-multiple mapping between herbs and target tissues. xenomiRs 

have been shown to be the active ingredient in many traditional medical herbs [15-17, 21] and 

the tissue-specificity of xenomiRs coincide well with the theory of channel tropism. This 

research takes the first step to study the theory of channel tropism by showing the existence of 

the possible patterns in xenomiRs. If more plant-derived xenomiRs in different human tissues 

are available, our 1D-CNN model could be adjusted slightly using transfer learning [31] to learn 

the different patterns of plant-derived xenomiRs in different tissues. Thus, the channel tropism 

could be better explained, and the corresponding tissues, where a specific herb function could 

also be predicted.  

More than one hundred species of xenomiRs have been reported so far, however, more species 

of xenomiRs remain to be discovered, especially those in the plants seldom consumed, such as 

traditional medical herbs. The discovery of xenomiRs in traditional medical herbs has great 

significance in better understanding of the mechanisms underlying the therapeutic function of 

these herbs. Therefore, to predict the potential xenomiRs using machine learning model is of 

great significance. However, since no off the shelf non-xenomiR miRNAs were available, 

negative samples could not be obtained directly. As an alternative approach, we selected the 

miRNAs that have never been detected in human body from osa, zma, gma and ath as negative 

samples. The first three species of plants are staple food consumed by most people daily, and 

the last one is closely related to common vegetables, such as brassica rapa, brassica oleracea, 

brassica juncea and oilseed rape. Therefore, it is reliable to regard the miRNAs expressing in 

these plants but not detected in human samples as non-xenomiRs. Of note, we cannot rule out 

the possible existence of a few xenomiRs in our negative samples, which may impact the 

accuracy of our models. However, our study could facilitate the discovery of xenomiRs as well 

as non-xenomiRs, by providing candidates for biological experiments, which could in turn 

enhance the robustness of the models and form a so-called virtuous circle. 

High GC content was reported to be responsible for the absorption of MIR2911 by animal 

bodies [21]. More generally, the high GC content [15] and the short length could increase the 

stability of an RNA. Our results confirmed this by systematic statistical analysis, revealed that 

xenomiRs have higher GC content (p = 0.02488) and shorter length (Table 1-feature 
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comparison), compared to non-xenomiRs. Meanwhile, other differences between xenomiRs 

and non-xenomiRs sequences were also identified (Fig 2-position comparison, Table 1-feature 

comparison). Besides, the important features obtained from our RF model (Additional file 6: 

Table S5) provided more insights into the patterns of xenomiR sequence. And if some important 

patterns are sabotaged, the absorption might be abolished, as in the case where miR2911 

sequence is disrupted by just two GC nucleotides [23]. In addition, the 3 mer motif ‘CAG’ was 

evaluated as one of the most important patterns for distinguishing xenomiRs with non-

xenomiRs (Additional file 6: Table S5), suggesting its possible relation with the transference or 

stability of xenomiRs. 

These results supported our assumption that plant-derived miRNAs are absorbed selectively by 

human and other animals, and only the sequence of a miRNA with certain patterns could be 

transferred into human bodies. However, further studies are needed to identify more concrete 

patterns in xenomiR sequences.  

Deep Learning has been widely applied in bioinformatics and obtained satisfactory performance 

[32, 33]. Our study used a 1D-CNN model to identify xenomiRs using only raw miRNA sequences 

as inputs, and higher prediction accuracy was achieved on independent test set, compared to 

RF model, which used 105 hand-craft features as inputs. It is likely that 1D-CNN model, which is 

capable of extracting the features of successive nucleotides, could capture the specific patterns 

underlying xenomiR sequences that contain important information for identifying xenomiRs.  

To uncover the potential role of xenomiRs in human body, we analyzed the function of 

xenomiRs using enrichment analysis tools [34]. Many identified functions of xenomiRs have 

already been reported by other studies with bio-experiments. For example, xenomiRs were 

reported to be related with cancer [12, 13], inflammatory [15, 17], circulation system [7] in 

human body. And recent studies reported an association between xenomiRs with neuron 

development of pandas [10], and the caste development of honeybees [35].  

This study does not deny the animal-derived xenomiRs hypothesis. However, animal-derived 

xenomiRs are much more difficult to identify because of the high sequence conservation, which 

obscures the differences between dietary animal miRNAs and endogenous miRNAs [8]. Hence, 

in this study, we only studied the plant-derived xenomiRs.  

In addition, many other factors could affect the detectability of xenomiRs in human samples, 

such as, the miRNA abundance in the consumed plant materials, the stability of plant miRNAs, 

the time after consumption [19] and some special molecules in the diet consumed along with 

plant miRNAs [17]. Therefore, in xenomiR studies, randomly selecting miRNAs to perform 

biological verification is risky. The methodology present in this paper could serve as a valuable 

and efficient tool for selecting candidate plant miRNAs for biological verification. 
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Methods 
Data sets 
We collected 166 xenomiRs reported in our previous study as positive data set. To obtain 

reliable negative data set, we collected small RNA sequencing samples of ath, gma, osa, zma 

from miRBase and GEO database. Specifically, we merged the miRNA sets obtained from 

different collected samples, resulting in an integrated miRNA set of four species of plants. In 

total, 942 non-xenomiRs were obtained after removing the xenomiRs (Additional file 2: Table S1) 

from the integrated miRNA set. Besides, removing the miRNAs labeled as xenomiRs and non-

xenomiRs in this study, the remaining miRNAs (3695) in miRBase [18] with length more than 18 

(containing 18) nt were regarded as unlabeled samples and used for xenomiR prediction.  

Feature extraction 
In total, 129 features were extracted from miRNA sequences, which were listed in Additional 

file 4: Table S3, including sequence length, nucleotide position, 1~3 met motif frequency in both 

full miRNA sequences and miRNA seed region (2
nd

 ~ 8
th

 nt). In 1D-CNN model, four kinds of 

nucleotide (A, C, G, U) were represented by one-of-K (K = 4) coding, i.e., binary code ‘0001’ for 

A, ‘0010’ for C, ‘0100’ for G and ‘1000’ U. Besides, a miRNA is labeled with 1 if it is a xenomiR or 

0 otherwise. 

LDA 
LDA was performed using 1~3 mer motifs in full miRNA sequence, 1~2 mer motifs in seed 

region and the length of miRNA. LD1 for each sample was obtained, and its distribution for both 

xenomiR and non-xenomiR groups were shown in Fig 3-LDA. To compare the degree of 

compactness for LD1 distribution of the two groups, any distance of LD1 (LD1 distance) 

between two sample within both group was obtained, and t-test was performed to test the 

difference between LD1 distances of the two groups. 

Performance Measures 
Commonly used metrics were used to evaluate the performance of our models, namely 

accuracy (ACC), sensitivity (SN) and specificity (SP), of which the formulas were summarized in 

Additional file 10: Table S9. Receiver operating characteristic (ROC) curves were plotted using 

SN and SP, and areas under ROC curves (AUC) were also calculated to further compare the 

performance of our models. 

One dimensional CNN 
Keras framework (https://keras.rstudio.com/) was employed to build our 1D-CNN model. The 

one-of-K coding of first L nucleotides were flattened into a single one-dimensional vector as 

inputs for our 1D-CNN model. Since the length of most plant miRNA sequences in xenomiRs or 

non-xenomiRs are more than 18 nt, L was set to 18. Hence, L×K units were used in the input 

layer. Our 1D-CNN model consisted of two convolutional layers to extract features from the 

miRNA sequences. After flatting the feature maps of second convolutional layer, two dense 
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layers were used, which employed dropout technique and L2 regulation to avoid overfitting. All 

the layers used sigmoid function as activation function except the two-unit output layer, where 

softmax function was used. Bayesian optimization was employed to optimized channel sizes 

and kernel sizes in each convolutional layer, number of units in dense layers, dropout rate and 

lambda in L2 regulation. 

To deal with the imbalance between positive and negative samples in the dataset, an 

oversampling strategy was employed. Given the training samples containing P positive samples 

and N negative samples (P << N), oversampling strategy is as follows. The positive samples were 

extended to the number of N by random sampling in P samples with replacement, meanwhile, 

all the positive samples should be sampled at least one time, resulting in the same number of 

positive and negative samples. Hence, the same number (N) of positive and negative samples 

were obtained in the training process.  

Targets prediction of plant-derived xenomiRs and enrichment analysis 
We assumed that plant-derived xenomiRs can suppress the target genes in a working manner of 

endogenous miRNAs. Human 3’ Untranslated Regions (3’ UTR) sequences were downloaded 

from UCSC Genome Browser database [36]. Miranda [28] and RNAhybrid [29] were employed 

to predict the target genes of xenomiRs, both of which are widely used in miRNA target 

prediction. And the unique target genes predicted by both tools were regarded as potential 

plant-derived xenomiR targets (S8 Table). Corresponding gene names were collected for further 

annotation analysis and GO annotation. KEGG pathway were performed for identifying 

significant enriched (FDR < 0.01) biological processes and pathways using “clusterProfiler” 

package [34].  

Conclusion 
Taken together, this study showed the sequence differences between xenomiRs and non-

xenomiRs, and provided the first insights into the sequence specificity of xenomiRs. This could 

facilitate our better understanding of mechanisms underlying the absorption of plant-derived 

xenomiRs, as well as the biological processes participated. In addition, we showed the 

feasibility of using machine learning models for predicting potential plant-derived xenomiRs 

based on miRNA sequences and made the first attempt to build such models. Furthermore, this 

study showed that, in xenomiR studies, randomly picking plant miRNAs to carry out a bio-

experiment could be risky, in terms of being inefficient, and the plant miRNAs should be 

decided with great care, for example, picking miRNAs in detected xenomiRs (Additional file 2: 

Table S1) or predicted xenomiRs (Additional file 8: Table S7) provided in our study.  
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adenine: A 

accuracy: ACC 
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areas under ROC curve: AUC 

cytosine: C 

exogenous miRNA: xenomiR 

false discovery rate: FDR 

gastrointestinal: GI 

guanine: G 

linear discriminant analysis: LDA 

RNA-induced silencing complex: RICS 

one-dimensional convolutional neural network: 1D-CNN 

random forest: RF 

receiver operating characteristic: ROC 

sensitivity: SN  

specificity: SP 

uracil: U 
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Figures, tables and additional files 
Fig 1. The top 8 plant miRNA families that contain the most xenomiRs. About one half of 

xenomiRs belong to these 8 miRNA families. In mir168 family, up to 41.2% miRNAs (7 of 17 

miRNA sequences) were mapped.  

Fig 2. Nucleotide position comparison between xenomiRs and non-xenomiRs. Percentage of the 

four kinds of nucleotide at each position of a) 166 xenomiRs and b) 942 non-xenomiRs. 

Fig 3. Dimension reduction of features extracted from xenomiRs and non-xenomiRs. Dimension 

reduction of features extracted from xenomiRs and non-xenomiRs was performed using LDA to 

show the differences between them. Overall, the xenomiRs and non-xenomiRs could be 

separated with partial overlap in the middle, and the distribution of xenomiRs is more compact 

than that of non-xenomiRs.  

Fig 4. The architecture of our 1D-CNN model. This model consists of two convolutional layers, 

one flatten layer, two dense layers and one output layer.  

Fig 5. ROC curves for performance comparison. ROC curves for performance comparison 

between RF and 1D-CNN models by (a) test set and (b) 5-fold cross validation, respectively.  

Fig 6. Enriched biological processes and KEGG pathways. The top 20 enriched biological 

processes (a) and the top 20 KEGG pathways (b) shown by Gene Ontology analysis pathway 

enrichment analysis, respectively. 
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Additional Information 
Additional file 1: Figure S1 Venn diagram showed the 241 potential xenomiRs predicted by both 

RF and 1D-CNN models. 

Additional file 2: Table S1 Positive samples. 

Additional file 3: Table S2 Negative samples. 

Additional file 4: Table S3. Feature list. 

Additional file 5: Table S4 The RNA families mapped by xenomiRs. 

Additional file 6: Table S5 The top 10% most important features evaluated by RF model using 

mean decrease accuracy (left) and mean decrease Gini (right), respectively. 

Additional file 7: Table S6 All unlabeled 3695 plant miRNAs in miRBase. 

Additional file 8: Table S7 The 241 potential miRNAs predicted by both RF model and 1D-CNN 

model. 

Additional file 9: Table S8 The 2194 unique target genes predicted by both miRanda and 

RNAhybrid. The genes were encoded in entrez ID. 

Additional file 10: Table S9 Accuracy measurement. 
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