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Abstract  9 

Understanding the complexity of ecological communities is a long-standing challenge. Resolutions to 10 

this problem have largely focussed on trophic interactions, despite the acknowledged importance of 11 

non-trophic effects. Trophic interaction modifications, where a consumer-resource interaction is 12 

influenced by an additional species, are a major cause of non-trophic effects that have been 13 

demonstrated to exert strong influences on the dynamics of natural systems. They offer the 14 

potential to use information about trophic interactions to understand the structure and topology of 15 

non-trophic effects. Here we examine the impact of interaction modifications, introduced under a 16 

range of assumptions, on artificial and empirical trophic networks. We show that local stability and 17 

reactivity is critically dependent on the inter-relationship between the trophic and non-trophic 18 

interactions. Depending on their distribution, interaction modifications could significantly alter the 19 

overall structure of community interactions. Analyses of the stability of ecological systems based 20 

solely on trophic interactions are therefore unreliable, making empirical distributions of interaction 21 

modifications essential. 22 

Introduction 23 
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Understanding how large and diverse ecosystems persist is a core challenge in ecology. Theoretical 24 

expectations that large random complex systems are unlikely to be locally stable1, indicate that the 25 

interactions within ecological communities are structured in important ways2. A growing body of 26 

work has demonstrated features of trophic networks that can stabilise communities - including the 27 

distribution of weak links3,4, pairwise correlations5, modularity6, row structure7 and trophic level 28 

coherence8. However, ecological communities contain complex networks of interactions beyond 29 

trophic interactions9, and there is an emerging appreciation of the value in studying the full 30 

spectrum of interaction types10–16. 31 

Interaction modifications17, where a pairwise interaction is dependent on a third species, are 32 

pervasive within ecological networks18 and capable of exerting impacts as strong as direct trophic 33 

interactions19. They are increasingly recognised as having the potential to be of considerable 34 

importance in the dynamics of ecological systems 20–22. Interaction modifications are higher-order 35 

interactions that induce non-trophic effects (NTEs, also termed trait-mediated indirect interactions) 36 

from the modifier species onto a pair of interactors (Figure 1). This additional source of interactions 37 

and dynamic connectance introduces emergent pairwise relationships between species that do not 38 

otherwise directly interact, potentially greatly increasing the dynamic connectance of the system 23. 39 

 40 

 Figure 1. Schematic representation of the relationship between a trophic interaction modification (blue dashed 41 

line), resultant non-trophic effects (brown solid lines) and consequent community matrix. An interaction 42 

modification results in two non-trophic effects from the modifier. Here a modifier acts to strengthen a trophic 43 

interaction. This results in a positive effect on the consumer (J) and a negative effect on the resource (I).  44 
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The ubiquity and diversity of non-trophic interactions poses a considerable problem for ecologists. 45 

Previous theoretical studies have introduced independently distributed higher-order interactions 46 

and demonstrated they can have significant influence on stability24,25. However, it is known that non-47 

trophic interactions are not randomly distributed26 and it is expected that the distribution of 48 

interaction modifications (and consequent NTEs) will be structured, both internally and with respect 49 

to the underlying trophic interactions27. This relationship offers an opportunity to build upon the 50 

understanding of the structure of trophic networks28 to inform the likely distribution and 51 

consequences of NTEs13 and move beyond random distributions of non-trophic effects14,15. 52 

Here, we examine the impact trophic interaction modifications (TIMs)29,30 can have on the 53 

equilibrium dynamics of simple models of the interactions between species in artificial and empirical 54 

networks. We combine trophic interaction matrices with NTE matrices generated through distinct 55 

distributions, designed to span the range of possibilities for distributions of interaction 56 

modifications. We examine the properties of the resultant interaction matrices and test the impact 57 

on local stability and reactivity to show that the impact of interaction modifications depends 58 

crucially on their distribution and relationship with the underlying trophic network. Until the 59 

empirical distribution of interaction modifications is understood, suggested resolutions of the 60 

stability-complexity paradox are premature.  61 

Results 62 

Introducing TIMs to artificial trophic networks 63 

We specified the interactions within artificial communities with a Jacobian matrix A from the 64 

combination of two matrices specifying the trophic (B) and non-trophic (C) interactions (Figure 2). 65 

Trophic interactions topologies were generated using the niche model31 and parameterised with 66 

draws from a bivariate normal distribution with pairwise correlation32. We tested 16 different 67 

distribution models for the specification of non-trophic effects caused by TIMs, detailed in Table S1 68 

and depicted in Figure 3, which varied in topology, distribution of modification strengths and 69 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 12, 2018. ; https://doi.org/10.1101/345280doi: bioRxiv preprint 

https://doi.org/10.1101/345280
http://creativecommons.org/licenses/by/4.0/


4 
 

translation from TIM to NTEs. Each of the resultant non-trophic interaction distributions had distinct 70 

structural properties, detailed in Table S2.   71 

 72 

Figure 2. Illustration of construction of interaction matrices. At an assumed equilibrium, a combined 73 

interaction matrix (A) can be split into the impact of trophic (B) and non-trophic effects (C). The 74 

species are arranged approximately in trophic height order, with basal species top/left and top 75 

predators at the bottom/right. The underlying trophic network was generated by a niche model (S 76 

=20, C=0.2), parameterised with a bivariate normal distribution 𝒩(𝜇𝑥 = −1, 𝜇𝑦 = 1, 𝑠𝑑𝑥 =77 

 0.5, 𝑠𝑑𝑦 = 0.5, 𝜌 = −0.8). Intra-specific interactions were fixed at zero and shown in grey.  78 

 79 

Figure 3: Illustration of the distributions of TIMs and their impacts tested in this study, with 80 

representative non-trophic interaction matrices for a 20 species trophic network and a TIM density of 81 

5 per species. Full specification of the distributions are given in Table S1. Mean magnitude of 82 
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individual non-trophic effects was held constant at 0.5. 83 

 84 

As the density of TIMs (the expected number of TIMs per species) was increased, the degree of self-85 

regulation that would be necessary for local asymptotic stability (ℜ(𝜆1
𝐀), henceforth ‘stability’) 86 

always decreased while reactivity (the size of the initial response to perturbation, 𝜆1
𝐇, H= 

𝐀+𝐀𝑇

2
) 87 

always increased (Figure 4a, b). Within this overall pattern, a number of TIM distributions led to 88 

markedly different responses, discussed below. Although the remainder of the TIM models had 89 

impacts on stability that were not meaningfully different to random NTEs, there was a small but 90 

discernible split in their reactivity response (Figure S1b). Models that led to NTEs being focussed, 91 

clumped or unbalanced (Larger Negative NTEs, Laplace strength distribution, Nearby TIMs, 92 

Unbalanced NTEs, Heterogeneous out-degree and Reciprocal modifications models) led to a higher 93 
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reactivity than those that had a more even effect distribution (Baseline, Scaled, Random NTE, Far 94 

TIMs, Uniform strength distribution). 95 

  96 

Figure 4. Effect of increasing density of TIMs on (a) stability log(ℜ(𝜆1
𝐀)), the degree of self-regulation 97 

necessary for local asymptotic stability, (b) system reactivity log(𝜆1
𝐇), (c) the log-ratio of the May 98 

stability criterion and the observed stability and (d) the log-ratio of the Tang et al stability criterion 99 

and the observed stability. TIM distribution models with distinctive responses are highlighted, the 100 
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remainder are coloured grey and are plotted in Figure S1. Loess fitted lines have been added to 101 

highlight differences. 102 

The two mutual interference models, representing cases where two resources that share a 103 

consumer both negatively affect the consumption of the other (Figure 3.n-o), had the greatest 104 

impact on stability and reactivity. At higher levels of TIM density, interfering modifications (which 105 

weaken a trophic interaction and are beneficial for the resource and detrimental for the consumer, 106 

at least in the short term, Figure 3.f) caused greater instability and reactivity than other models. 107 

Facilitating modifications (Figure 3.e) did not cause a distinct impact on stability, but the impact on 108 

reactivity closely matched the interfering modification distribution. The distribution with larger 109 

positive NTEs (Figure 3.k) also caused distinct effects, reducing stability at high TIM densities but 110 

increasing reactivity faster than baseline models at all TIM densities. Results for further analyses 111 

where trophic interactions negatively affected resources more than consumers benefitted followed 112 

broadly the same pattern, with the exception that the model with larger positive NTEs had reduced 113 

impact as the overall mean interaction strength remained negative (Figure S2 & S3). 114 

To assess the extent to which the interspecific interactions were non-randomly structured we 115 

examined the performance of two analytic criteria for local stability (That of May 1: 𝜆1 =116 

max ((𝑆 − 1)𝜇, √𝑆𝑉 – 𝜇) and Tang et al.33: 𝜆1 = 𝑚𝑎𝑥((𝑆 −  1) 𝜇, √𝑆𝑉(1 − 𝜌) − 𝜇), where S is the 117 

number of species, V is the variance in interaction strength, μ is the mean interaction strength and ρ 118 

is the pairwise correlation between interaction terms). Many of the TIM distributions we tested 119 

showed a reduced divergence of the true stability from that estimated by the stability criteria (Figure 120 

4c and 4d). This suggests that the TIMs are moving the systems closer to fulfilling the assumptions of 121 

random matrix theory under which the criteria are derived, namely that individual interactions are 122 

independently and identically distributed34,35, despite the observable structure being introduced (S.I. 123 

Table S2). However, the same TIM models that significantly impacted stability, increase the 124 

divergence between the true stability of a system and that estimated by either stability criteria, 125 
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showing that the TIMs are having consequences which are not captured by the mean, variance and 126 

correlation of the matrix elements. All three interference TIM models led to communities that were 127 

more stable than expected by the criteria while larger positive NTEs and facilitating TIMs were less 128 

stable. Simple, but plausible, distributions of TIMs can therefore be seen to push communities either 129 

closer or further (in either direction) from expectations based on the study of random matrices36 130 

than may be expected from analyses of trophic interactions alone. 131 

The structural feature of the resultant matrices that can best explain stability across the set of 132 

communities was ρ, the correlation between pairwise elements of the overall interaction matrix A, 133 

with an 𝑟2 of 0.884 over all the generated communities (Figure S4) This can also be observed in the 134 

marked superiority of the Tang et al. criterion over the May criterion (Figure 4c-d), although pairwise 135 

correlation, ρ, was a less good predictor of stability at weak (near zero) levels of correlation.  136 

Our results contrast with those of Bairey et al.25, who found that the classic negative relationship 137 

between complexity and diversity can be reversed with higher order interactions. Using 138 

unstructured random matrices, their findings were driven by a decrease in the variance of the 139 

resulting NTE matrices due to an increasing central tendency of the strength of resultant pairwise 140 

interactions when composed of an increased number of random elements drawn from higher-order 141 

array. It is clear from our results that non-random distribution of NTEs can have a considerable 142 

impact by introducing additional variance and structure to the overall interaction network. 143 

Mutual Interference TIMs 144 

The mutual interference model of TIMs is strongly destabilising, despite the lower variance in overall 145 

interaction strength (since negative non-trophic interactions overlap with positive trophic 146 

interaction terms), which would normally be expected to increase stability1. This effect is driven 147 

largely by emergent pairwise mutualism, long-recognised as destabilising for interaction matrices37. 148 

The NTEs induced by these TIMs are very efficient at breaking down the negative correlation 149 

between pairwise elements (Figure S4), inducing mutualistic effects between resources that share a 150 
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consumer. However, the maintained divergence from the Tang et al. criteria, which includes pairwise 151 

correlation, suggests additional higher-level structural contributions.  152 

The mutual interference models result in a high variance in the elements of the NTE matrix C since 153 

they tend to focus negative and positive NTEs on to distinct groups of species (the high-level 154 

consumers and low-level resources). However, since in this model resources exert negative NTEs 155 

upon their consumers, matrices B and C have a low covariance, and the resultant variance of A is 156 

lower than that derived from other NTE distributions. The importance of the sign structure of 157 

interference can also be seen in the comparative lack of distinction of the tightly reciprocal 158 

interaction modification distribution (Fig 3m) compared to random NTE distributions– it is the 159 

specific sign patterning of the links that drives the change to the dynamics, not the topological 160 

clustering of the modifications. 161 

Reciprocal negative effects between consumers can be generated by a range of mechanisms, 162 

including predator satiation38, adaptive foraging39 and associational defence40. These effects are 163 

widespread41 and are regularly included in general models of population dynamics42 through multi-164 

species functional responses43, yet the resultant dynamic links are rarely considered in network 165 

based analyses. The divergence with conclusions drawn from small community modules, where 166 

switching is generally considered stabilising44–46, reinforces the need to consider dynamics across 167 

scales and mechanisms. 168 

Sign Effects of TIMs 169 

Interfering TIMs, which are beneficial for resources and detrimental for consumers, have a strongly 170 

destabilising effect at high TIM densities. The interfering TIM model differs from the facilitating TIM 171 

model only in the sign patterning of the NTEs, yet it has greatly different effects on stability because 172 

of the relationship with the underlying trophic interactions. Under these distributions, species at 173 

either end of food chains are only susceptible to one sign of NTE, resulting in the banded sign 174 

pattern observable in Figure 3e and 3f. Since there are distinct patterns in the underlying trophic 175 
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interaction distributions (Figure 2) the covariance between matrices B and C is higher for facilitating 176 

modifications than interfering (Table S2). Hence, a large number of interfering interaction 177 

modifications tends to lead to weaker overall pairwise exploitative relationships, despite our model 178 

keeping underlying trophic interaction strength fixed. This reduces the variance and pairwise 179 

correlation, ρ, of A faster than randomly signed TIMs (e.g. with a TIM density of 10, ρ = -0.55 180 

compared to -0.61, Table S2). Conversely, facilitating modifications break down the pairwise 181 

correlation slightly slower (ρ = -0.62, at TIM density of 10) than random interactions. 182 

Both facilitating and interfering TIM distributions had similar effects on reactivity (Figure 4b). 183 

Reactivity47,48 is dependent on the eigenvalues of (𝐀 + 𝐀𝑇)/2, effectively a matrix composed of 184 

mean pairwise interaction strengths. Both facilitating and interfering TIM distributions result in 185 

strong row patterning of this matrix. In biological terms, certain species at either end of food chains 186 

accrue consistently stronger interactions, generating reactivity. While NTEs from TIMs are not 187 

directly reciprocal, if either interfering or facilitating modifications are more common, consistent 188 

patterns can develop across trophic levels. 189 

In the case where positive NTEs were larger than negative NTEs, changes in stability were driven by 190 

the increasingly positive mean interaction strength. This is highlighted by the stability criterion 191 

estimate being determined by the expected row sum component, (𝑆 − 1)𝜇, of the criterion for all 192 

but the fewest TIMs. There was no particular impact of the imbalance itself – both the unbalanced 193 

NTE model and the model where negative NTEs were consistently larger were not notably different 194 

from the random NTE case.  195 

At present, the empirical balance between facilitating and interfering modifications and their 196 

distribution throughout ecological communities is effectively unknown, as is the balance between 197 

resultant positive and negative consequences for interactors. While the all or nothing cases 198 

discussed here represent extreme cases, they show that this data will be essential in determining the 199 

impact of non-trophic effects on dynamics.  200 
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TIMs and Row Structuring 201 

It has been suggested that row-structuring (where the rows of A having markedly different means) is 202 

key for stability of empirical networks49, although the effects may be greater on the rate of return to 203 

equilibrium than the sign of the eigenvalue 50. Row structuring in trophic networks is a consequence 204 

of the consistent dependence of population level interaction strength on interactor density. TIMs 205 

may cause row and column structuring by two distinct mechanisms. Firstly, dominant species that 206 

take part in strong interactions may be expected to be the receiver of strong NTEs caused by 207 

interaction modifications – even a small change in a large interaction could be expected to have a 208 

large overall effect on the flow of energy through a community as a whole. Secondly, species that 209 

induce a disproportionate number of interaction modifications (ecological engineers 51,52) have the 210 

potential to introduce considerable column-structuring effects. Such ecological engineers causing a 211 

large number of interaction modifications may not necessarily be those involved in the strongest 212 

trophic interactions. NTEs exerted by such species may serve to break down or replace existing 213 

column structure. However, our results suggest that high variation in the number of TIMs each 214 

species exerts (out-degree heterogeneity, Figure 3d), representing such a scenario, does not affect 215 

stability differently to random NTEs in the artificial trophic networks. 216 

Empirical Trophic Networks 217 

When we repeated our analysis for five empirical marine fishery trophic networks in the set 218 

compiled by Jacquet et al.49 we found distinct results (Figure 5). In contrast to the artificial networks, 219 

models where NTEs scaled with the underlying trophic interactions had by far the most significant 220 

effects on dynamics of the empirical networks. This occurred despite the mean magnitude of 221 

individual NTEs being kept constant between methods of introducing TIMs. In 4 out of 5 cases 222 

mutual interference led to more instability, although in the one case (the ‘Newfoundland’ network) 223 

the effect was opposite – the unscaled mutual interference model was stabilising. In another case 224 
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(the ‘Mid-Atlantic Bight’ network), many of the TIM models led to a small increase in stability, with 225 

the largest effect from facilitating modifications. 226 

 227 

Figure 5. Stability, ℜ(𝜆1
𝐀), of five empirically parameterised food webs with increasing density of 228 

TIMs. TIM distribution models with distinctive responses are highlighted, the remainder are coloured 229 

grey and are plotted in Figure S5. Loess fitted lines have been added.  230 

The empirical networks studied here differ significantly from randomly generated networks (see 231 

Jacquet et al.49 for a full discussion). They include both significant row-structuring and an 232 

approximately log-normal interaction trophic strength distribution. A minority of very strong, mostly 233 

negative, interactions represent large transfers of biomass between dominant species in the 234 

community (SI 5), resulting in a highly leptokurtic (‘fat-tailed’) distribution of trophic interaction 235 

strengths and a very low correlation coefficient (range ρ = -0.014 : -0.001). In such a case, unless the 236 

TIMs are scaled with the underlying trophic interactions, most interaction modification distributions 237 

effectively only add noise. 238 

Consequently, the introduction of TIMs hardly changed the overall pairwise correlation - the largest 239 

value of ρ across all TIM iterations was just -0.016. The NTEs introduced by the scaled models 240 
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matched the highly leptokurtic distribution of the trophic interactions leading to an increased 241 

variance in NTEs. However, even the increase in variance of the ‘scaled’ distributions was several 242 

orders of magnitude smaller than the variance in the underlying trophic interactions (SI 6). Hence, 243 

the stability criteria were almost completely unresponsive to the introduction of TIMs (Figure S6). 244 

Nevertheless, a handful of strong NTE links can be observed to cause great destabilisation, while in 245 

most cases the comparatively weak links introduced by TIMs from constrained, unscaled, 246 

distributions had very little effect on stability.  247 

Discussion 248 

Our results show that interaction modifications have the potential to cause significant disruptive 249 

effects in ecological communities yet the inter-relationship between non-trophic and trophic 250 

interactions is critical to understanding their consequences. Our work reiterates the importance of 251 

the relationship between superimposed interaction networks 12,26. TIMs can influence the stability of 252 

systems through a number of distinct mechanisms beyond introducing additional connectance. They 253 

can shift the average interaction sign, change pairwise correlation coefficients, introduce additional 254 

row structure and change the interaction strength distribution. Furthermore, given the potential for 255 

interaction modifications to short-circuit established trophic interaction motifs, such as trophic 256 

cascades, the distribution of interaction motifs in ecological communities 53,54 may need to be re-257 

examined to incorporate non-trophic effects.  258 

Empirical data on the distribution of interaction modifications in real communities will be essential 259 

to discern their true effects. The distribution of interaction modifications in real communities is at 260 

present essentially unknown beyond a limited number of inter-tidal communities55,56. The fraction of 261 

interspecific interactions driven by interaction modifications is unknown, but likely to be large18,57. 262 

The set of TIM models used here attempt to map some of the properties real distributions of 263 

interaction modifications could have and identify features pertinent to dynamics. Thus, they provide 264 

a stepping stone between analytical random matrix approaches25 and empirically parameterised 265 
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systems. Ideally, empirical data will need to include information about both the topology and 266 

strength of the non-trophic, which is possible, but challenging, to acquire 22,29. This could lead to the 267 

identification of regular patterns across ecosystems in the features identified here as pertinent to 268 

community dynamics. Whilst it is unlikely that there will be strong mechanistic drivers of non-trophic 269 

network structure equivalent to the role of body-size within trophic interaction networks 58–60, there 270 

is nevertheless room for a great improvement in our phenomenological understanding of the 271 

distribution of interactions modifications. 272 

Studies focussed exclusively on trophic networks are missing a large portion of the dynamic 273 

interactions occurring in ecological communities. Ultimately, the dynamics of ecological 274 

communities are dependent on the strength of interactions not whether they are caused by trophic 275 

or non-trophic effects. Trophic interaction modifications can provide a framework to leverage our 276 

understanding of trophic networks to make significant inroads into the study of non-trophic effects. 277 

The key questions in ecological dynamics cannot be satisfactorily resolved until non-trophic 278 

interactions are fully integrated into community ecology. 279 

Methods 280 

Communities as Interaction Matrices 281 

We represent the complete set of interactions in a system as a Jacobian matrix A, also termed a 282 

community matrix 61, which is assumed to be derived from a set of populations each at a feasible 283 

equilibrium. Each element of A, aij, represents the instantaneous effect of a change in the 284 

population of species j on the population of species i. The community matrix is considered to be 285 

based on a linearisation of more complex processes that govern the relationships between the 286 

species and as such the description of the interactions is only strictly applicable close to the original 287 

non-trivial equilibrium. We determine A to be constructed from the combination of two matrices 288 

specifying the trophic (B) and non-trophic (C) interactions present in the community (Figure 2). For 289 
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all matrices, we only consider inter-specific interactions, all intra-specific diagonal terms (aii) were 290 

set to zero (see below). 291 

Generating Trophic Networks  292 

We determined the trophic topology of the artificial communities using the niche model31, a network 293 

generating algorithm that has been shown to reproduce many of the features of real food webs 62. 294 

We generated 100 networks each with 60 species (S) and target connectance of 0.2. We 295 

parameterised these interactions with draws from a bivariate normal distribution 𝒩(𝜇𝑥 = −1, 𝜇𝑦 =296 

1, 𝑠𝑑𝑥 =  0.5, 𝑠𝑑𝑦 = 0.5, 𝜌 = −0.8) to create each trophic interaction matrix B, following Allesina et 297 

al. 63. This specification maintains an average interaction strength of 0 and an overall symmetry in 298 

impacts between consumer and resource. This simplifies analysis but is known to be unrealistic 64. 299 

We therefore repeated the analysis with increased consumer effects on resources (𝜇𝑥 = -5 & -10, SI 300 

3). Since the draws are unbounded a small fraction of interactions had the ‘wrong’ sign for an 301 

exploitative interaction. As exploitative interactions still made up the overwhelming bulk of 302 

interactions, we did not remove these and for convenience we will refer to these underlying 303 

networks as trophic networks.  304 

Incorporating Interaction Modifications 305 

Trophic interaction modifications are ‘higher order interactions’ that act through at least three 306 

species 29. However, the short-term consequences of the interaction modification can be linearised 307 

to identify the effect of the modifier on the consumer and the resource 24,25 at the system state 308 

under consideration (Figure 1). These non-trophic effects (NTEs) can be used to construct a matrix, 309 

C, of ‘direct’ effects caused by the TIMs. In our representation the value of the original pairwise 310 

trophic interaction is left unchanged, i.e. it is assumed that the trophic interaction strengths in B 311 

already incorporates the consequence of the equilibrium level of the modifier species.  312 
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From the trophic networks, NTE matrices were generated from distributions of TIMs (detailed in 313 

Table S1, and summarised in Figure 2) that varied in topology, strength distribution and translation 314 

from TIM to NTEs. Since the distribution of interaction modifications in real communities is at 315 

present essentially unknown, this large collection of models is an attempt to span the range of 316 

potential distributions to identify key features pertinent to dynamics. In addition, we also tested an 317 

NTE distribution model where there was no underlying interaction modification structure and NTEs 318 

were independently randomly distributed with their strengths drawn from a Normal distribution. 319 

Each TIM was assigned an effect size parameter (𝑐𝑖𝑗𝑘), such that the mean magnitude of individual 320 

non-trophic effects (α) incorporated into a community is 0.5, in line with results from meta-analysis 321 

that suggests an approximate correspondence between the strength of trophic and non-trophic 322 

interactions 19. A positive 𝑐𝑖𝑗𝑘  indicates that an increase in the modifying species would increase the 323 

strength of the interaction. It follows that this would lead to a positive effect of the modifier on the 324 

consumer and a negative effect of the modifier on the resource. A negative 𝑐𝑖𝑗𝑘would cause the 325 

reverse. The 𝑐𝑖𝑗𝑘  values determined the NTEs of the modifier on the two interactors (𝐂𝑖𝑘, 𝐂𝑗𝑘) and 326 

were used to construct a TIM effect matrix C, Table S1. 327 

We only considered TIMs where species modified the interaction between two other species - we 328 

did not allow species to modify their own interactions. Multiple NTE from one species to another 329 

were combined additively. TIMs were introduced at a TIM density (defined as the expected number 330 

of TIMs in the network per species, ω) of 0, 1, 5, 10, 20, 30, 40 and 50. For a given trophic network, 331 

we identified each potential TIM that could exist following a particular distribution model, and 332 

assigned each potential TIM a probability of existing equal to 
𝜔 𝑆

𝜅
 , where κ is the total number of 333 

potential TIMs (i.e. combinations of consumer-resource and third species) and S the number of 334 

species. Note that TIM density as defined here is distinct to both ‘TIM connectance’ (the fraction of 335 

possible TIMs that are observed, which is dependent on the trophic connectance) and to non-trophic 336 
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connectance (the resultant fraction of non-zero elements of the consequent TIM effect matrix C, 337 

which is dependent on the distribution and overlap of the TIMs).  338 

We applied each of the 16 NTE distribution models at each TIM density across each of the 100 339 

underlying trophic networks for a total set of 11 200 community models including TIMs.  340 

Properties of Interaction Matrices 341 

Structural properties of the resultant interaction matrices were calculated: 342 

 Mean interaction strength (μ) of A  343 

 Connectance (fraction non-zero entries) of A and C,  344 

 Variance (V) of the off-diagonal elements of A and of C, 345 

 Degree heterogeneity of A as the variance of the normalised in and out-degree distribution, 346 

 Correlation (ρ) of the pairwise elements of A:, 
E(aijaji)−μ2

V
, (𝑎𝑖𝑗 , 𝑎𝑗𝑖)

𝑖≠𝑗
 347 

 Covariance between B and C, 348 

 Row structure 𝜁𝑟𝑜𝑤 as the variance in mean interaction magnitude across rows 𝑉𝑎𝑟(
∑ |𝑎𝑖𝑗|𝑗  

𝑆
) 349 

and likewise: 350 

 Column structure 𝜁𝑐𝑜𝑙, 𝑉𝑎𝑟(
∑ |𝑎𝑖𝑗|𝑖  

𝑆
). 351 

We separately compared the mean value of each of the above structural properties across the 100 352 

trophic networks for each of the TIM distribution models to the baseline TIM model at a 353 

representative TIM density of 10 using a linear model (two-tailed).  354 

Local asymptotic stability is determined by the sign of the real part of the leading (dominant) 355 

eigenvalue of A, ℜ(𝜆1
𝐀), under the assumption that the community is at an equilibrium. If negative, 356 

the system will eventually return to the original equilibrium after a small perturbation and is 357 

considered locally stable. The diagonal elements of A specify the self-regulation of each species. 358 

With sufficient self-regulation any community can be stabilised. Although the distribution of self-359 
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regulation effects can have important consequences 65 we follow previous work49,66 and set all 360 

diagonal elements of A to zero to focus on the impact of the inter-specific interactions. Without self-361 

regulation, ℜ(𝜆1
𝐀) will always be positive but can be interpreted as how far a system is from stability, 362 

i.e. how much self-regulation would be necessary to stabilise the system. Hence, although local 363 

stability is a binary property, we can use “less stable” to refer to a system farther from stability (a 364 

larger ℜ(𝜆1
𝐀)).  365 

The immediate response of a system to perturbation is described by its reactivity, the maximum 366 

instantaneous amplification of a small perturbation 47,48. This is computed as the leading eigenvalue 367 

of the Hermitian part of the community matrix: 𝜆1
𝐇, 𝐇 =  

𝐀+𝐀𝑇

2
. Since H is symmetric, its eigenvalues 368 

are real.  369 

To assess the extent to which the communities were non-randomly structured we tested the 370 

performance of two analytic criteria for local stability derived from generalisations of the circular law 371 

of random matrix theory 1,34,67. We refer to these as the May criterion: 𝑚𝑎𝑥((𝑆 − 1) 𝜇, √𝑆𝑉  − 𝜇) 372 

and the Tang et al. criterion: 𝑚𝑎𝑥((𝑆 −  1) 𝜇, √𝑆𝑉(1 − 𝜌) − 𝜇). S is the number of species (the 373 

size of the matrix), V is the variance in interaction strength, μ is the mean interaction strength and ρ 374 

is the pairwise correlation between interaction terms, 
E(aijaji)−μ2

V
 . The first term of each criteria 375 

specifies the eigenvalue derived from the expected row-sum 5. In most trophic networks (where 376 

μ<0), this term is usually the smaller and can be safely ignored, but this is not necessarily true with 377 

the addition of non-trophic effects. The second term estimates the radius of the ellipse containing 378 

the eigenvalues along the real axis, and hence the likely position of the right-most (dominant) 379 

eigenvalue, under the assumptions of random matrix theory: that the matrix is large and the entries 380 

are independent and identically distributed 34,35.  381 

Empirical Trophic Networks 382 
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The stability analysis was repeated for the five largest empirical trophic networks in the set compiled 383 

by Jacquet et al. 49. These are models of the trophic interactions in marine fisheries that had been 384 

parameterised by the EcoPath modelling approach 68 and converted to Jacobian matrices following 385 

the method of de Ruiter et al. (1995). These networks were: Chesapeake Bay (n = 41, links = 167, 386 

Christensen et al. 2009), Mid Atlantic Bight (n = 51, links = 515, Okey and Pugliese 2001), Moorea 387 

Barrier Reef (n = 39, links = 267, Arias-González et al. 1997), mid-1990s Newfoundland Grand Banks 388 

(n = 48, links = 525, Heymans and Pitcher 2002) and Tampa Bay (n = 48, links = 340, Walters et al. 389 

2005). 390 

Interaction modifications were introduced at densities of 1, 5, 10, 20, 30 and 40 TIMs per species 391 

with 100 replicates of each TIM distribution model at each density for each of the trophic networks 392 

for a total set of 48 000 communities. The mean strength of the interaction modifications (α) 393 

introduced to each trophic network was set at half the mean strength of the positive trophic 394 

interactions web (range 0.017-0.18) to be comparable with the artificial networks.  395 

Data and Code Availability 396 

All generated data and R scripts used in the analysis is available on OSF DOI:10.17605/OSF.IO/6FNAV 397 
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