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ABSTRACT 

 

Background   The number of glomeruli on a kidney biopsy slide followed by glomerular 

assessment constitute as standard components of a renal pathology report. The prevailing method for 

glomerular identification and assessment remains manual, labor intensive and non-standardized. In the 

era of digitized kidney biopsies, an automated method to identify, segment and count glomeruli is 

highly desirable.  

Methods and results  We developed an automated method to detect and segment the glomeruli 

within digitized kidney biopsy images by leveraging a deep learning architecture based on 

convolutional neural networks (CNN). A total of 275 trichrome-stained images (Average image size: 

2560x1920x3 pixels, 1-2 unique images per patient, Scale: 0.85 µm/pixel) processed at 40x 

magnification from renal biopsies of 171 chronic kidney disease patients treated at the Boston Medical 

Center from 2009-2012 were analyzed. A sliding window operation was defined to crop each 40x image 

to smaller images of size 300x300x3 pixels. Each cropped image was then evaluated by clinical experts 

to identify the presence of a unique glomerulus, and each identified glomerulus was included in the 

training dataset (n = 751). About the same number of cropped images, containing the non-glomerular 

regions of the kidney biopsy, served as control cases. The CNN model was constructed as a binary 

classification problem to discriminate glomerular images from the non-glomerular ones (Performance 

on test data - Accuracy: 97.47±0.31%; Sensitivity: 96.43±1.89%; Specificity: 98.76±1.44%). Using the 

trained CNN model, another sliding window operator was developed to scan the digitized biopsies. A 

heatmap was generated to highlight regions of intensity that the CNN model classified as glomerular 

regions. Subsequently, two independent image processing strategies, one using steps such as image 

binarization and image erosion, and the other using image binarization, distance transform and 

watershed segmentation, were performed on the heatmaps to generate discriminatory signatures of 

the identified glomeruli. The final step involved automatically drawing a box around the higher 

intensity areas leading to output images with segmented glomerular regions (Performance on test data 

- Accuracy: 99.97±0.0086%; Sensitivity: 54.37±0.23%; Specificity: 99.99±0.009%). 

Conclusion   While used in the context of nephropathology, this study demonstrates the 

power of artificial intelligence to assess complex histologic structures and identify structural variations. 

Adoption of such methods of counting and classifying glomeruli using standard histological staining 

without disturbing the workflow can expedite the assessment of slides by the pathologists and serve as 

a first step toward more comprehensive automated analysis.  
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INTRODUCTION 

 

Glomerular damage is a common manifestation in a spectrum of renal diseases that lead to kidney 

failure [1]. Morphological and ultrastructural alterations within the glomeruli provide valuable 

information on the mechanisms of renal impairment and facilitate accurate clinical diagnosis [1-3]. 

Identification and assessment of this highly relevant structure are therefore integral to 

histopathological analysis of kidney biopsies. A fundamental morphologic parameter in 

nephropathology is the quantification of normal and lesional glomeruli in the light microscopic 

material. Glomerular quantification is required for assessment of tissue sufficiency in kidney transplant 

pathology, for determination of severity of relatively common diseases such as lupus nephritis or IgA 

nephropathy, and for quantification of the extent of chronic damage in any kidney biopsy. Therefore, 

histological analysis of glomerular diseases involves careful examination of the entire kidney biopsy 

slide, and this includes in part, identification of all the glomeruli present, assessment of the state of 

each glomerulus, and integration of this data with other parameters to pinpoint the diagnosis of the 

glomerular disease [4-7]. While this seemingly tedious process of counting and assessing all the 

glomeruli can be handled efficiently at large medical centers under the supervision of an in-house 

nephropathologist, this expertise is not available at all locations across the globe. In addition, even for 

the institutions that have the expert nephropathologist, we need approaches that can automatically 

perform some of these tasks in order to assist clinical nephrology practice to maximize their efficiency. 

 

Machine learning (ML) techniques have the ability to perform these tasks in an efficient fashion. ML 

approaches give computers the ability to integrate discrete datasets in an agnostic manner to detect 

previously indecipherable patterns and generate a disease-specific fingerprint. Especially in 

subspecialties that rely on imaging, these tools are being adopted quite rapidly, since ML can leverage 

many images as inputs and correlate patterns and features with clinical outcomes. Building on the 

advances of ML, scientists recently have developed so-called “deep learning” frameworks such as 

convolutional neural networks (CNN) for object recognition and classification [8]. CNN techniques are 

now being rapidly adopted as unbiased, self-learning approaches for pathologic assessment [9-23]. 

 

Using an established CNN that can perform image classification, we developed a framework to 

automatically identify and segment the glomeruli present within digitized images of human kidney 

biopsies. Trichrome stained kidney biopsies obtained from 171 patients treated at the Boston Medical 

Center (BMC) were digitized to generate 275 unique images at 40x magnification. These images were 

further processed to generate a training dataset containing unique images of the glomerular (n=751) 

and non-glomerular compartments (n=751) of the kidney biopsy. CNN model training on this dataset 

followed by cross-validation generated a highly accurate classifier with the ability to discriminate 

between images containing glomerular and non-glomerular aspects of the kidney. The validated model 

was then used in the form of a sliding window operator to further process the original 40x test images 

that were not used for CNN training, to identify and segment the glomeruli. Sensitivity analyses 

underscored the robust performance of the CNN model to classify the glomeruli and the consistent 

ability for it to segment glomeruli within the digitized trichrome images.  
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MATERIALS AND METHODS 

 
Data collection 

Anonymized kidney biopsies were obtained and digitized after approval by the Boston University 

Medical Campus’ institutional review board. Biopsy procedures were performed on all patients treated 

at BMC between January 2009 and December 2012 (Table 1). More than 300 biopsy samples were 

processed, of which 171 biopsy slides were available for subsequent imaging. These biopsy samples 

were obtained from adult patients who had a native or an allograft biopsy, independent of the 

indication for the biopsy procedure [15]. The criterion for inclusion was the availability of pathological 

slides.  

 
Imaging  

Biopsy samples were obtained in the form of individual trichrome-stained slides prepared from 

formalin-fixed, paraffin-embedded core-needle biopsy tissue. A selected core visible on each slide was 

imaged at 40x magnification (indicating a 4x objective and a 10x eyepiece) using a Nikon Eclipse TE-

2000 microscope (Melville, NY; http://www.bumc.bu.edu/busm/research/cores/). Images were 

generated with a special consideration to cover the entirety of the biopsy sample which resulted in 

multiple 40x images per patient. All the images were manually focused using the NIS-Elements AR 

software (Nikon, Tokyo, Japan) that was installed on the computer connected to the microscope. A 

total of 275 unique images (~2 40x images per patient) were used and the average size of each image 

was about 2560x1920x3 pixels, resulting in a length scale of 0.85 µm/pixel.   

 

Glomerular dataset generation 

A sliding window method was developed to automatically crop the trichrome images from their 

original size into several independent images of size 300x300x3 pixels (Figure 1). After manual review, 

the window size was determined as the minimum required to fit the largest glomerulus observed within 

all the original images. For each original image, the sliding window operator began at the top left 

corner of the 40x image and moved right with a stride of 20 pixels after cropping the 300x300x3 

window. The stride size was empirically determined such that it resulted in each glomerulus being 

captured completely in at least one cropped image. In total, this process generated about 107525 

unique images of size 300x300x3 from 275 unique 40x images of size 2560x1920x3 pixels. In order to 

expedite the cropping process, windows consisting of purely non-biopsy portions (i.e. background) 

were automatically ignored. For each cropped segment, we computed the median intensity of all the 

pixels and selected only those cases with a median bin frequency value lower than an empirically 

estimated threshold intensity of 150 (Figure 2). Our idea of thresholding was based on selecting a single 

cutoff value for the bin frequency (=150). The underlying assumption was that an image with only the 

background had a higher frequency of pixels with the same intensity values (A1 in Figure 2), whereas a 

cropped image with tissue within it had a more distributed range of intensity values with lower 

frequencies (A2 in Figure 2). In order to compute the median, the histogram bins (x-axis) were arranged 

in the ascending order of their corresponding frequencies (y-axis). In case of the background segment, 

since the frequencies were concentrated in a very narrow bin range when arranged in the ascending 

order, the median turned out to be lesser than the threshold value of frequency (=150) (B1 in Figure 2). 

For the tissue segments, since the frequencies are distributed over a range of bins, when arranged in 

ascending order, the median frequency was found to be higher than the threshold value of frequency 

(=150) (B2 in Figure 2). Following histogram-based thresholding, we manually selected a unique set of 

glomerular and non-glomerular images from them that were then used for CNN model development. 

This process selected about 44438 images from the 107525 images. We then manually examined all the 

non-background images and then selected images that included a unique glomerulus (n=751). An equal 
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number of images were selected from the remaining non-background images with non-glomerular 

tissue as control cases. Together, these images formed the training data, with an output label of ‘0’ 

assigned to the non-glomerular images and ‘1’ for the glomerular images. Note that the non-glomerular 

images were selected across different portions of the biopsy in order to capture variability within a 

patient and to include several unique aspects of the biopsy (such as tubular elements, interstitial 

spaces, vascular regions, etc.).  

 

Model training     
We used Google’s Inception v3 CNN architecture, which was pre-trained on millions of images with 

1000 object classes [24], incorporated minor changes to fine-tune the framework and trained it to 

predict the presence or absence of a glomerulus within the cropped trichrome images (Figure 3). 

Specifically, we removed the final classification layer from the network and retrained it with our dataset 

using the 2 output labels. We then performed fine-tuning of the parameters at all layers. This 

procedure, known as transfer learning, is optimal, given the amount of data available. See 

Supplemental material for more details. 

 

The cropped image dataset was randomly split on a patient-by-patient basis. Specifically, in order 

to capture intra- and inter-patient variabilities, and to verify whether the CNN model works well on 

images and image characteristics which it has not been trained on, the patient list was randomly split 

into 2 parts in a 7:3 ratio (70% training, 30% testing). This resulted in 120 patients in the train set, and 51 

patients in the test set. Cropped images belonging to each patient in the list were included in the 

corresponding dataset (training vs testing). Also, for consistency, we repeated the process of random 

splitting 3 times. CNN model training and testing were performed on each split, and average 

performance values were recorded. 

 

Data augmentation 
Some of the glomeruli on the biopsy images were observed on the edges of the tissue sample. 

When cropping was performed to capture these cases, a portion of the cropped region had only the 

background pixels. All these images were used as part of the training data, but they were not in 

sufficient number to be able to generate a model that could accurately identify the glomeruli present 

on the edges of the biopsy. We therefore augmented the training data by creating copies (n=5) of each 

image by randomly whitening a small fraction (=0.2) of the total pixels in the images, resulting in 6 total 

images per original cropped image (Figure 4). See Supplemental material for more details. 

 

Image segmentation 
Using the CNN model with the best test performance, we tested 2 different image processing 

routines to scan the test images to identify and segment the glomeruli (Figure 5). The sliding window 

operation was used again to scan the entire test image of size ~2560x1920x3 pixels in increments of 

300x300x3 pixels. Each cropped image was then processed through the trained CNN model that 

predicted if there was a glomerulus. An output of ‘0’ indicated that the CNN model determined that no 

glomerulus was present whereas an output of ‘1’ indicated a glomerulus was detected within that 

cropped image. When a glomerulus was detected, the pixel coordinates of the four corners of that 

image were stored in an array. This process was repeated as the sliding window operation swept from 

one end of the corner to the other, which resulted in bright patches that corresponded to the areas that 

were predicted to contain a glomerulus. A heatmap was generated using these corners. The brightness 

of the patch in the heatmap was found to be directly proportional to how confident the model was in 

terms of detecting the presence of a glomerulus in that area. Every non-bright region (i.e., area with 

pixel intensity close to 0) on the heatmap then represents all the non-glomerulus regions.  
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Generated heatmaps were processed further to segment the identified glomeruli using a simple 

annotation defined as a ‘green box’ surrounding the glomerular region. We performed this task using 2 

different approaches. In the first approach, we first performed an erosion operation on the heatmap. 

Since most glomeruli possess a round shape, erosion helped in the separation of overlapping regions of 

heatmap intensities. We then binarized the heatmap with eroded objects to create ‘blobs’ representing 

identified glomeruli. Note that the threshold value for binarization was empirically determined (=20), 

after examining several images. This was the lowest value that was able to efficiently highlight the 

regions where the model predicted the presence of a glomerulus. Values lower than this resulted in 

missing some glomeruli, whereas values higher than this resulted in false detections. Image erosion 

operation was performed again to remove any overlapping boundaries from the blobs to finally 

generate the image objects identified as unique glomeruli. In the second approach, we first binarized 

the image using the Otsu’s method [25]. Subsequently, a distance transform was applied on the 

heatmaps, which simply calculated the distance of each foreground pixel from the nearest background 

pixel. We then performed watershed segmentation to separate the identified ‘blobs’ in the image. The 

watershed transformation treats the image it operates upon like a topographic map, with the 

brightness of each pixel representing its height, and finds the lines that run along the tops of ridges 

[26]. Finally, for both approaches, a green box was automatically placed by the segmentation algorithm 

to highlight the identified glomerulus. 

 

Performance metrics 

CNN and sliding window-based segmentation model performances were evaluated by computing 

overall mean accuracy, mean sensitivity and mean specificity on the test data for each train-test split 

that was generated. We also computed F1-score as a measure of model accuracy that considers both 

the precision and recall of a test. We also computed Matthews correlation coefficient (MCC), which is a 

balanced measure of quality for dataset classes of different sizes of a binary classifier. Mean receiver 

operating characteristic (ROC) curves were plotted along with the standard deviation observed across 

the runs, followed by estimation of area under curve (AUC) for these cases.  
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RESULTS 

 

Patient population 

Baseline characteristics describe a patient cohort representative of Boston’s inner-city population 

comprising 46% African American population. About 60% of the patients were male, about 84% had 

hypertension, about 75% cardiovascular disease and about 43% had diabetes. About 82% of patients 

had chronic kidney disease (CKD) stage 3 to 5; 6% had stage 2 CKD, and the rest had stage 1 CKD. 

About 35% of patients had nephrotic-range proteinuria (>3.5 g/day). On the basis of varied genetic 

background and several co-morbidities (described above), it is worth noting that the dataset that we 

generated provides a wide range of glomerular morphologies including few cases of normal glomeruli.   

 

Glomerular classification model 

Our first goal was to develop a classifier that could accurately detect the presence of a glomerulus 

in an image. Light microscopy images of Masson trichrome−stained sections were captured at 40x 

magnification and processed in NIS-Elements AR software (Nikon). We selected 40x as the level of 

magnification and generated 275 unique images from 171 patient biopsies, where each image size was 

about 2560x1920x3 pixels, corresponding to a field of 2.176 x 1.632 mm2. These images were then 

converted to 8-bit red−green−blue (RGB) color images in TIFF format. Each of these images represent a 

large portion of the digitized biopsy (Figure 2), and the information contained within them had to be 

filtered in order to train a glomerular image classifier. Therefore, we created a dataset that was more 

amenable for CNN model training using the sliding window operator. This operation allowed us to 

systematically crop the original images into smaller ones of size 300x300x3 pixels. The size of the 

cropped images was empirically chosen such that any glomerulus observed within the original 40x 

images was able to fit well within the bounds of the cropped image size.  

 

The sliding window operator with a small stride (20 pixels) generated a large number of cropped 

images, and histogram-based thresholding selected many of the images containing the kidney tissue 

from the ones that contained only the background (Figure 2). This thresholding method saved 

significant amount of time as it was able to filter more than half of the cropped images.  Using the 

selected data, binary classification models, constructed by fine-tuning a well-known pre-trained CNN 

architecture (Inception V3) [24], identified images with a glomerulus with high accuracy across 3 

different train-test splits (Table 2). Combining random whitening and other data augmentation 

strategies resulted in superior CNN model performance on the testing data as exemplified by model 

accuracy, sensitivity, specificity, F1-score, MCC and AUC (Table 2 & Figure 5). While F1-score can be 

viewed as a weighted average of precision and recall, MCC can be considered as a more robust measure 

of model performance.  

 

Glomerular segmentation model 

We developed two different methods to segment the identified glomeruli (Table 3, Figures 7 & 8). 

The threshold method involved binarization and using a fixed threshold value and the other method 

used the watershed algorithm (Approach 1 in Table 3). When the threshold method was tested, it was 

found to have high overall accuracy and specificity, but its sensitivity was low (Table 3). The watershed 

implementation of the segmentation program had also high accuracy and specificity, but with a slightly 

higher sensitivity than the previous method (Approach 2; Table 3). Although the threshold method 

yielded fewer false positives, the threshold method could not detect clumps of glomeruli. Also, the 

watershed method detected a higher percentage of glomeruli. In our test data there were a total of 364 

glomeruli and 131 were detected by Approach 1 and 197 by Approach 2. This shows that the approach 
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based on watershed segmentation was able to detect multiple glomeruli within a clump better than the 

threshold method.  

 

Another value that was compared between the two methods were the number of false positives 

detected. False positives in this case would be green rectangles that were drawn around areas that did 

not contain a glomerulus. The number of false positives detected using Approach 1 were 45, and 201 for 

Approach 2. Even though the number of false positives was higher and the precision was lower with 

Approach 2, it still had an accuracy of 99.97%. With an overall accuracy this high, the other aspects of 

the watershed method made it more ideal than the threshold method. These aspects include being able 

to detect multiple glomeruli that are closely associated and the fact that it is generalizable and can be 

used on different data sets.  
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DISCUSSION 

 

  Deep learning algorithms are transforming the way by which medical images and other forms of 

data are analyzed to uncover hidden patterns and facilitate patient diagnosis as well as to improve the 

delivery and effectiveness of patient care [27]. This is especially the case in the field of digital pathology 

where several researchers are employing these powerful techniques to address specific questions in a 

spectrum of disease scenarios [12, 15, 28-31]. For many of these cases, the clinical workflow is quite 

similar, i.e., a biopsy procedure is performed to extract a tiny portion of the organ, which is then 

subjected to a series of histological staining processes. Tissue slides that result from this effort are then 

digitized to generate image representations of the diseased organ. These computerized images then 

serve as the input data of interest, and the deep learning algorithms read and process these digital 

signatures to extract relevant quantitative information or associate them with corresponding outputs of 

interest. Once trained on sufficient number of cases, these models can have the ability to predict on 

new test cases that the model has never seen before with remarkable accuracy. Note that the process 

of biopsy digitization is not fully integrated within all clinical practices as of today. However, there is a 

growing interest in terms of moving in this direction as the community is realizing the enormous 

potential deep learning and other machine learning frameworks can have on quantitative assessment 

of biopsies and to assist the pathologist. 

 

Assessment of renal pathology slides has several features worthy of consideration. The biopsy 

report methodically deals with all the components of the slide with different staining and clinical 

correlation is pursued to eventually arrive at a diagnosis. Some of the features are objective (number of 

glomeruli) and some are descriptive (type of sclerosis). While the latter item calls upon the expertise of 

pathologist, the former can be automated. Also, the location (cellular or compartmental) and 

distribution (focal or diffuse or segmental or global) of the intra-glomerular damage determine the type 

of glomerular disease (glomerulonephritis vs glomerulosclerosis) [32-42]. Availability of digitized 

images provide an immense resource which has opened up opportunities to leverage different tools to 

improve the analysis of some of the features in an automated manner.  

 

The goal of this work was to develop a method by which to automate a seemingly straightforward, 

but rather important task of automatically identifying and segmenting glomeruli within digitized 

kidney biopsies. Several steps had to be undertaken to correctly perform glomerular segmentation. The 

first step was data generation for training the CNN model. The sliding window operator scanned the 

original 40x images of all the 120 patients that were used for model training to generate over 100,000 

cropped images. The task at this stage was for trained technicians to manually examine each cropped 

image further to determine whether it had a glomerulus or a non-glomerular compartment of the 

kidney biopsy. Note that the technicians had prior knowledge and skill needed to perform this task. 

Subsequently, a histogram-based thresholding approach filtered a large majority of the cropped 

images that were part of the background (Figure 2), and the remaining images were manually selected 

to ensure that no duplicate images were included as part of the training and testing data sets. Care was 

taken to not select cropped images containing the same glomerulus again. Similarly, no two cropped 

images containing the same non-glomerular part of the kidney biopsy were selected. For the glomeruli 

segments, we checked the segment against the complete image to ensure each glomerulus came up 

only once. For the non-glomerular segments, the segments were taken from different parts of the 

biopsy image, thus ensuring there was no overlap. This entire process was fairly time consuming and by 

no means trivial but was critical to train an accurate CNN model that detected glomerular images from 

those that did not have a glomerulus. 
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Our CNN model identified the presence of a glomerulus with high accuracy on the test data (Table 

2). The transfer learning approach turned out to be very effective, given the number of cropped images 

(n=1502) used for model training. Moreover, techniques such as random whitening and other known 

data augmentation techniques performed only on the training data enhanced the overall model 

performance on the testing data. Note that the datasets for training and testing were divided in such a 

fashion that none of the images belonging to patients in the testing set were available to the model 

while training. This implies that the training-testing split was done at the patient level as opposed to 

the image level and the variability in the test images was not part of the images which the model was 

trained on. This helped us evaluate how well the model performed on completely new patient data. 

Also, the process of introducing additional noise/variability using random whitening and other data 

augmentation strategies over than what could possibly be contained within the cropped images has 

shown to limit model overfitting and increase model generalizability (Table 2).  

 

Even though the CNN model demonstrated a remarkable performance in terms of identifying the 

presence of a glomerulus, our sliding window strategy segmented the glomeruli with high accuracy and 

high specificity but with low sensitivity. Several factors may have contributed to this outcome. First, the 

sliding window operator begins scanning an image from the top left corner and moves forward with a 

pre-defined stride. At each instant, it scans the region within the sliding window, and the trained CNN 

model predicts whether there is a glomerulus present in that portion, and if so, it generates a bright 

patch on the heatmap. This process continues until the last portion at the bottom right corner of the 

image is scanned and processed by the CNN model. During this process, the stride length of the sliding 

window plays a major role; choosing a small stride can create redundant heatmaps whereas choosing a 

large stride can simply not capture all the glomeruli. After several experiments, we selected the stride 

length as 20 pixels as this gave us the best compromise between precision and recall of the sliding 

window operator in terms of identifying a glomerulus.  

 

The segmentation process did not end at this stage as the heatmaps had to be further processed to 

represent the identified glomeruli. Our two image analysis pipelines processed the heatmaps to 

complete the segmentation process that resulted in output images with highlighted areas of the 

selected glomeruli. While one pipeline used a series of standard image erosion and binarization 

processes, the other followed well-known techniques such as Otsu binarization and computing a 

distance transform followed by watershed segmentation. Both methods had strengths and weaknesses 

as some images when processed through both the pipelines gave a similar output (Figure 6), whereas 

one image processing routine outperformed the other in few cases (Figures 7 & 8). Note that while 

simple binarization involves thresholding an image based on a pre-selected value, Otsu’s binarization 

assumes that an image contains two classes of pixels, and then searches for a threshold that minimizes 

intra-class variance between the classes [25]. For the erosion process, a local minimum gets computed 

over the area of a kernel with a pre-determined size and replaces the image pixel under the anchor 

point. On the other hand, the watershed transformation treats the image it operates upon like a 

topographic map, with the brightness of each point representing its height, and finds the lines that run 

along the tops of ridges [26]. Ultimately, the nature of the locations of the glomeruli dictated the 

performance of each of the image processing pipelines.  

  

We selected trichrome-stained kidney biopsy images as our data set under consideration primarily 

due to its use as a standard staining for kidney biopsies at most centers, but our paradigm can be easily 

extended to images generated using other staining protocols. Recent studies have also shown 

interesting results in terms of identifying glomeruli from digitized kidney biopsies [43, 44]. For all these 

cases, a carefully generated dataset of images with glomerular and non-glomerular compartments is 
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needed in order to train an accurate CNN model. The subsequent steps associated with the image 

segmentation pipeline may be different than what were used for this paper, and it would depend on the 

type of images generated using different staining protocols (i.e. H&E, Periodic-acid Schiff, Jones’ silver 

stain, Congo red, etc.). Another limitation in our study is that we relied on manually observing cropped 

images and classifying them as the ones containing glomerular or non-glomerular aspects of the 

biopsy. A “gold standard” for glomerular identification can help minimize the bias associated with 

manual selection.   

 

Ultimately, we envision that the glomerular segmentation strategy proposed here can be 

integrated within a software application (or “App”) to derive predictions based on a digitized kidney 

biopsy image. The input for this App can simply be a digitized kidney biopsy in a common image 

format, which will then be first processed by the CNN model in conjunction with the sliding window 

operator to generate heatmaps highlighting the areas that are predicted to contain the glomeruli. The 

App would then automatically process these heatmap signatures using customized image 

segmentation steps to derive a final representation of the digitized kidney biopsy with segmented 

regions of glomeruli highlighted on them (Figures 6-8).  Such a tool could save time and improve 

accuracy in the routine but complex evaluation of a kidney biopsy.  Ultimately, this tool could serve as 

one among a set of automated morphologic assessments available within a more comprehensive 

software application. Such an App might even include AI-based tools which reveal entirely new 

diagnostic information, which the pathologist may incorporate into their decision-making process. 

 

 

CONCLUSION 

We demonstrated the effectiveness of using a deep learning strategy combined with a series of 

image processing operations to accurately identify and segment glomerular regions from trichrome-

stained histologic images obtained at the time of kidney biopsy. This rapid, scalable method can be 

utilized in the form of a software tool at the point-of-care to assist nephropathologists. This framework 

can also be adapted to other images obtained via different histological staining protocols. Further 

validation of the deep learning framework along with the image processing operations across different 

clinical practices and image datasets is necessary to validate this technique across the full distribution 

and spectrum of lesions encountered in a typical nephropathology service. 
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FIGURE CAPTIONS 

Table 1. Patient and digitized kidney biopsy characteristics used for this study. All the patients 

underwent treatment for chronic kidney disease at the Boston Medical Center between 2009 and 2012.  

 

Figure 1. Cropped images. The sliding window operator was used to generate different sets of images 

to train the CNN model. The first row contains images with a single glomerulus in each image, and the 

second row contains images with non-glomerular aspects of the tissue in each image. Each cropped 

image is of size 300x300x3 pixels. 

 

Figure 2. Histogram-based thresholding. A sliding window operator scanned the entire original image 

of size 2560x1920x3 pixels and generated cropped images of size 300x300x3 pixels. For each cropped 

image, a histogram based on pixel intensity was generated (A1 for a cropped image representing the 

background and A2 representing a portion of the kidney biopsy). These histograms were then 

reordered according to the bin frequency. A threshold value of 150 was empirically selected as a cutoff 

and median value for the bin frequency was computed. Images with a median value below the cutoff 

were selected as the ones representing the background (B1), and the ones with a median value above 

the cutoff were selected as part of the kidney biopsy (B2).  

 

Figure 3. Deep neural network model. Our classification technique is based on using a transfer learning 

approach on Google Inception V3 convolutional neural network (CNN) architecture pre-trained on the 

ImageNet dataset (1.28 million images over 1000 generic object classes) and fine-tuned on our dataset 

(see Methods). Inception v3 CNN architecture reprinted with permission from the Google blog “Train 

Your Own Image Classifier With Inception in TensorFlow” 

(https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html).  

 

Figure 4. Whitening transformation used for data augmentation. On each cropped image with a single 

glomerulus (A, B) or a non-glomerular aspect (C & D) of the kidney biopsy, about 20% of the pixels were 

randomly selected and a whitening transform was applied on them. This process generated images that 

still contained a major portion of the original content that represented either the glomerular or non-

glomerular aspects of the kidney biopsy (E, F, G & H).  

 

Table 2. CNN model performance. Four different models were developed to understand the effect of 

random whitening as well as other data augmentation strategies on the CNN model performance. 

Model performance is shown on test data that was not used for model training.  

 

Figure 5. ROC curves for the CNN models. Four different model performances are shown: (A) No 

whitening, no augmentation, (B) No whitening, augmentation, (C) Whitening, no augmentation, and 

(D) Whitening and augmentation.  

 

Figure 6. Segmentation pipeline. The trained CNN model was used in conjunction with the sliding 

window operator to scan a test image (A) that was not used in model training. (B) A heat map was 

generated based on how the CNN model detected the presence of glomeruli. Two different 

segmentation routines were developed to further segment the heatmap. In one case, an erosion 

operation (C1), followed by image binarization (D1), followed by another erosion operation (E1). In the 

other case, an Otsu binarization operation was attempted on the heatmap (C2), followed by a distance 

transform (D2) and then watershed segmentation (E2). For this test image (A), both image processing 

pipelines resulted in segmentation of 4 distinct glomeruli (F).  
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Table 3. Segmentation model performance. Two different approaches were developed to segment the 

glomeruli. Approach 1, in this case, took the generated heatmap and performed an erosion operation 

followed by image binarization followed by another erosion operation. Approach 2 used the heatmap 

and performed an Otsu binarization followed by a distance transform and then a Watershed 

segmentation. The two approaches performance is shown on the test data that was not used for model 

training.  

 

Figure 7. Segmentation pipeline. The trained CNN model was used in conjunction with the sliding 

window operator to scan a test image (A) that was not used in model training. (B) A heat map was 

generated based on how the CNN model detected the presence of glomeruli. Two different 

segmentation routines were developed to further segment the heatmap. In one case, an erosion 

operation (C1), followed by image binarization (D1), followed by another erosion operation (E1). In the 

other case, an Otsu binarization operations was attempted on the heatmap (C2), followed by a distance 

transform (D2) and then watershed segmentation (E2). For this test image (A), the erosion operation 

resulted in the segmentation of 3 distinct glomeruli (F1) while the watershed operation resulted in the 

same segmentation of 3 distinct glomeruli but also drew an extra, incorrect box (label F2a) around non-

glomerular tissue (F2). 

 

Figure 8. Segmentation pipeline. The trained CNN model was used in conjunction with the sliding 

window operator to scan a test image (A) that was not used in model training. (B) A heat map was 

generated based on how the CNN model detected the presence of glomeruli. Two different 

segmentation routines were developed to further segment the heatmap. In one case, an erosion 

operation (C1), followed by image binarization (D1), followed by another erosion operation (E1). In the 

other case, an Otsu binarization operations was attempted on the heatmap (C2), followed by a distance 

transform (D2) and then watershed segmentation (E2). For this test image (A), the erosion operation 

resulted in the segmentation of 1 distinct glomerulus but was unable to correctly identify the second 

glomerulus (F1). The watershed operation resulted in the segmentation of the 2 distinct glomeruli (F2). 

 

Supplemental table 1. Train and test data used for training the models. Each model, incorporating 

different combinations of whitening and augmentation, was trained using different training data 

therefore resulting in different test data for each model. 
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Characteristic Value

Number of patients 171

Magnification 40x

Full biopsy image size 2560x1920x3 pixels

Cropped image size 300x300x3 pixels

Number of non-glomerular images 751

Number of glomerular images 751

Table 1
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Figure 1
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Figure 3
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Figure 4
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Table 2

Whitening

factor

Augmentation

factor

Accuracy Specificity Sensitivity F1 score MCC

0 0 0.944±0.2750 0.966±0.0631 0.922±0.0248 0.942± 0.0262 0.889±0.0532

0 10 0.927±0.0051 0.919±0.0069 0.935±0.0101 0.926±0.0032 0.856±0.0092

5 0 0.965±0.0031 0.994±0.0144 0.937±0.0189 0.965±0.0025 0.931±0.0102

5 10 0.975±0.0031 0.988±0.0144 0.964±0.0189 0.976±0.0025 0.953±0.0102
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Figure 6

Heat map generation

Otsu binarizationErosion

Erosion Watershed segmentation

Glomerular identification

Distance transformBinarization

A

B

C1 C2

D1 D2

E1 E2

F

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 12, 2018. ; https://doi.org/10.1101/345579doi: bioRxiv preprint 

https://doi.org/10.1101/345579


Accuracy Specificity Sensitivity F1 Score MCC

Approach 1 0.9998±0.0001 0.9999±0.0001 0.3601±0.0776 0.4844±0.0788 0.5235±0.0672

Approach 2 0.9997±0.0001 0.9999±0.0001 0.5437±0.0023 0.5248±0.0873 0.5291±0.0837

Table 3
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Figure 7
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Figure 8
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Supplemental Table 1

Dataset Whitening Aug. Train Images 

(Total)

Test Images (Total) Model

Round 1

Case 11 No No 1063 439 Model 11

Case 12 No Yes 1063 439 Model 12

Case 13 Yes No 6534 413 Model 13

Case 14 Yes Yes 6534 413 Model 14

Round 2

Case 21 No No 1040 462 Model 21

Case 22 No Yes 1040 462 Model 22

Case 23 Yes No 6192 470 Model 23

Case 24 Yes Yes 6192 470 Model 24

Round 3

Case 31 No No 1044 458 Model 31

Case 32 No Yes 1044 458 Model 32

Case 33 Yes No 6204 468 Model 33

Case 34 Yes Yes 6204 468 Model 34
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