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Abstract: 11 

Frameshifting errors are common and mRNA quality control pathways, such as nonsense-12 

mediated decay (NMD), exist to degrade these aberrant transcripts. Recent work has shown 13 

the existence of a genetic link between NMD and codon-usage mediated mRNA decay. Here 14 

we present computational evidence that these pathways are synergic for removing 15 

frameshifts. 16 

 17 

Frameshifting errors in gene expression 18 

 19 

All biochemical pathways are intrinsically stochastic processes. Transcription, splicing, and 20 

translation are especially error prone, with error rates 4-6 orders of magnitude higher than 21 

that of DNA polymerase (1–6). Such errors can result in single-amino acid substitutions, as 22 

well as truncation of the protein due to nonsense mutations or frameshifting errors. The latter 23 

can occur due to insertion and deletion events during transcription, splicing errors, and 24 

ribosomal slippage during translation (Figure 1). 25 
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 26 

Frameshifts in protein coding genes are likely to be among the most damaging events, as they 27 

result in truncated proteins which may be misfolded or form dominant negative alleles (7,8) 28 

(Figure 1). This justifies an evolutionary pressure for cells to contain mRNA surveillance 29 

pathways that remove transcripts bearing frameshifts. Suppression of frameshift errors is 30 

thought to be one of the major roles of the mRNA quality control machinery (9).  31 

 32 

Nonsense-mediated decay for removing frameshifting errors 33 

In eukaryotes, nonsense-mediated decay (NMD) is a conserved mRNA surveillance pathway 34 

that is often assumed to fulfill a frameshift-removing role (10). This follows from the 35 

observation that frameshifts generate premature termination codons (PTCs), recognition of 36 

which targets the transcript for NMD. However, the quantitative effects of NMD, when 37 

measured, are often small (11,12). In addition, a large fraction native transcripts (between 38 

5%-30% depending on the genome) are targeted by NMD (13). In the context of mRNA 39 

quality control, these are poor evidence for NMD being an effective quality control pathway.  40 

 41 

The mechanism of NMD may be species-specific (10,12) and has even been proposed 42 

to be a passive result of the degradation of unprotected transcripts (14). In yeast, NMD is 43 

thought to act on long 3’UTRs (15,16), so that transcripts bearing 3’UTRs longer than 250 44 

nucleotides are targeted by NMD (Figure 1). Recent work from our group has shown that 45 

this is mostly true and, importantly, the strength of NMD depends linearly on 3’UTR length 46 

(11) (Figure 3B). However, native 3’UTR lengths are highly variable, ranging from 0 to 47 

1461 nucleotides (17). Frameshifts in native transcripts with short 3’UTRs are unlikely to 48 

result in efficient NMD. 49 

  50 
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These data suggest that NMD is both inaccurate and inefficient discretizing “correct” vs 51 

“incorrect” transcripts. We propose that an efficient quality control pathway should be better 52 

able to distinguish and degrade incorrect transcripts. 53 

 54 

Codon bias and mRNA quality control 55 

 56 

Recent work from our group (11) provides an unexpected clue towards understanding 57 

mRNA quality control. We found that two mechanisms of co-translational regulation, NMD 58 

and codon bias-dependent mRNA expression (18,19) (Figure 2A) are genetically linked; 59 

both pathways  are regulated by the DEAD-box RNA helicase Dbp2 and by promoter 60 

architecture. A quantitative analysis of the impact of these pathways on mRNA levels gives 61 

rise to the hypothesis that they may act in a synergistic manner to remove transcripts with 62 

frameshifts. In addition to generating a PTC, frameshifts generate a second signal of “wrong 63 

transcript”: a run of normally out-of-frame codons between the frameshift and the PTC that 64 

are now translated (Figure 1). Below we provide computational support of this hypothesis. 65 

 66 

The meaning and role of codon bias 67 

 68 

All transcriptomes exhibit imbalances in the synonymous codons used for each amino acid. 69 

Not all synonymous codons are equally abundant, a phenomena called “codon bias”(20,21). 70 

Highly expressed genes use codons translated by abundant tRNAs (22) and are coded by 71 

optimized codons (Figure 2), leading to efficient protein synthesis. Highly expressed genes 72 

with efficient translation initiation but with suboptimal codon usage are deleterious and affect 73 

the expression of the rest of the proteome (23).  74 

 75 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 2, 2018. ; https://doi.org/10.1101/345595doi: bioRxiv preprint 

https://doi.org/10.1101/345595


It was previously noted that use of optimal codons increased not only protein levels, but also 76 

mRNA levels (24–26), suggesting that ribosome speed might regulate mRNA stability. 77 

Recently, a pathway that involves the DEAD-box RNA helicase Dhh1 was found to target 78 

transcripts with suboptimal codon usage for decay in a translation-dependent manner (18,27). 79 

Even short stretches of twelve suboptimal codons reduce mRNA levels (19), likely due to  80 

slower translation (28). 81 

 82 

While most genes do not have highly optimized codon usage, the majority of the yeast 83 

transcriptome is populated by highly optimized mRNAs (Figure 2B). The top 10% of 84 

expressed genes have highly optimized codon usage. In yeast these genes account for 77% of 85 

the transcripts in a cell. Translational selection (29) will result in the optimized codon usage 86 

of constitutively highly expressed genes but will act less efficiently on genes with lower 87 

expression, genes that are rarely expressed, and of course on out-of-frame codons.  88 

 89 

Codon optimality for removing frameshifting errors 90 

 91 

In addition to producing PTCs, frameshifts are likely to introduce a stretch of non-optimized 92 

codons at the 3’end of the ORF (Figure 1). In genes with optimized codons, this will result in 93 

a sudden changes in translation efficiency after the frameshift, which will reduce protein 94 

synthesis and target the transcript for decay (Figure 3A). This reasoning follows the 95 

observation that the impact of low codon optimality on translation efficiency and mRNA 96 

decay is local and can act over as few as twelve codons (19,28). The magnitude of the 97 

decrease in codon optimality will be highest for transcripts with high codon optimization 98 

(most of the mRNAs in the cell (Figure 2B)), which correspond to highly expressed genes 99 

that likely bear most of the frameshifts (assuming a uniform distribution of errors across 100 
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transcripts (1)). Our hypothesis is that frameshift-removing mechanisms are especially 101 

relevant for such highly-expressed genes. Furthermore, the impact of low codon optimality 102 

close to the 3’ end of the mRNA is higher (Mishima and Tomari 2016). In the case of a 103 

frameshift, the enrichment of non-optimal codons should be towards the end of the ORF, 104 

which predicts that the destabilizing effect will be even stronger.  105 

 106 

To compare the role of NMD and codon bias in mRNA quality control we ran a frameshift-107 

introducing simulation on yeast transcripts. We generated random single-base deletions in 108 

native transcripts and calculated codon optimality (tRNA adaptation index, tAI (30)) and 109 

3’UTR length with and without the frameshift. Because errors occur on a per transcript basis, 110 

each gene received a number of errors proportional to its mRNA expression level (Figure 111 

3C). 112 

  113 

We found that almost all frameshifts produce a large decrease in tAI after the mutation 114 

(Figure 3D). The change in tAI range due to frameshifts decreases mRNA levels (11) 115 

(Figure 3A). In contrast, ~50% of errors produce 3’UTRs in the range of native 3’UTR 116 

lengths (Figure 3D), likely unaffected by NMD (11) (Figure 3B). These findings indicate 117 

that selection for codon-optimality (which acts on highly expressed genes) can be a robust 118 

way to define “correct transcripts” and thus remove transcripts that contain frameshifts 119 

Conclusions and open questions 120 

 121 

Cells needs to remove transcripts with errors; mutants with increased error rates or that are 122 

unable to remove transcripts with errors grow slowly (1,31). Frameshift errors are likely to be 123 

deleterious, both by generating deleterious protein isoforms, and because suboptimal codons 124 

titrate away both tRNAs and ribosomes (23,32). However, both the sequence features that 125 
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cells recognize and the mechanisms by which they do so remain poorly understood. Many 126 

open questions remain.  127 

 128 

NMD is weak (11,12) and affects 5-20% of the native transcriptome (13), so it may be both 129 

inefficient and unspecific for removing errors. Removing transcripts with low codon 130 

optimality may be more accurate and efficient. This is consistent with the fact that NMD 131 

strength follows a linear relationship with 3’UTR length, while codon optimality has a 132 

sigmoidal impact on expression (Figure 3). Small changes in codon optimality can lead to a 133 

large decrease in expression. 134 

 135 

We observe that ~50% of frameshifts generate 3’UTRs within the range of native transcripts, 136 

likely unaffected by NMD. This exemplifies how a model based on a qualitative basis 137 

(“NMD removes frameshifts because these have longer 3’UTRs”) can fail to  predict of the 138 

quantitative behavior of a system. 139 

 140 

Our recent work suggests a genetic link between codon bias and NMD (11). Here we report a 141 

possible explanation of this interaction, but it remains to be seen which is the impact on 142 

measured expression levels of both processes. The mechanism of this link also remains to be 143 

established. 144 

 145 

In frameshifted mRNAs, the quantitative impact of the low-tAI stretches of ORF in 146 

expression remains elusive. It will be interesting to see if they can explain more or less 147 

quality control than NMD. In addition, the effect of codon bias on expression is expected to 148 

impact protein levels (20,23), not only mRNA . This predicts that the impact of codon bias on 149 

expression is higher than reported here (Figure 3A), which is not true for NMD. This could 150 
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explain why we observe a lot of splice isoforms that have PTCs in humans, which may arise 151 

from frameshifting splicing errors. NMD does not remove them (as we can detect them), but 152 

it is likely that they have lower codon adaptation and reduced protein levels. 153 

 154 

Finally, this work raises a possible explanation for an adaptive benefit of imbalanced tRNA 155 

repertoires (22), which would confer the ability to degrade transcripts that are not supposed to 156 

be highly expressed. It is almost certain that cells avoid selecting the expression of ORFs 157 

with a random composition of codons. Frameshifts generate such random stretches, that are 158 

likely targeted for decay. Thus, there may be an evolutionary pressure for imbalanced tRNA 159 

repertoires to ensure proper mechanisms of mRNA quality control. It will be interesting to 160 

determine if this process has driven the evolution of codon bias and codon-usage associated 161 

mRNA stability, or it is a passive result due to the fact that almost any frameshift will reduce 162 

the optimality of the already very optimal genes. 163 

 164 
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 176 

Figure 1: The impact of frameshifting errors in gene expression. Gene expression can 177 

result in frameshifting errors (indicated as *) due to transcriptional insertion/deletion 178 

epimutations, errors in splicing or ribosomal slippage during translation (top). These 179 

processes potentially generate deleterious proteins, which justifies the need of mRNA quality 180 

control mechanisms in cells (bottom). In the absence of errors, mRNAs are translated leading 181 

to physiological protein levels. The current model indicates that frameshifting errors generate 182 

Premature Termination Codons (PTC) that trigger Nonsense-Mediated Decay (NMD) on 183 

them, mainly because of the generated long 3’UTR (in yeast). Our hypothesis is that NMD is 184 

often nonspecific for errors, so that other quality control mechanisms must exists. We note 185 

that another signal of “incorrectness” may appear in transcripts with frameshifts: a stretch of 186 

poorly-optimized codons (in blue, indicating worse tRNA adaptation) between the error and 187 

the PTC. This should lead to reduced translation efficiency, mRNA decay and lower protein 188 

concentrations of the frameshifted transcript. 189 
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 190 

Figure 2: The meaning of codon bias in the transcriptome. (A) Highly expressed genes 191 

are often selected to have optimized codons in agreement with the cellular tRNA pool, 192 

allowing efficient translation of them (purple). This is known as “translational selection” (20–193 

23). On the other hand, genes with a poor codon optimization are inefficiently translated and 194 

targeted for mRNA decay (blue) (18). (B) Top: in yeast, most native genes (purple) exhibit a 195 

tRNA Adaptation Index (tAI, as a measure of codon optimality) in the range of ORFs 196 

predicted from random transcription throughout the genome (blue). Such random ORFs 197 

simulate the absence of codon bias in terms of tRNA adaptation. A small fraction of genes 198 

have non-random tAI, which corresponds to genes “selected for translation”. Bottom: most 199 

native transcripts (purple) have high tAI, as compared to random ORFs (blue). This 200 

histogram was generated weighting each gene by mRNA expression level (which is 201 

exponentially distributed), which indicates the per-transcript distribution of tAI.  202 
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 203 

Figure 3: Codon bias can implement quality control of mRNAs with frameshifts. (A) tAI 204 

follows a negative sigmoidal relationship with mRNA expression levels. Expression was 205 

calculated as the log2-ratio between mRNA and DNA abundance of a synthetic ORF library 206 

of random fragments from the yeast genome, expressed in a plasmid (11). The dashed line 207 
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represent a threshold in which decreasing tAI reduces expression. (B) NMD strength follows 208 

a positive linear relationship with 3’UTR length. NMD was measured as the expression 209 

(calculated as in A) log2-ratio between identical ORF libraries built in a Δupf1 or a wt strain 210 

(11). This ratio indicates the impact of NMD for each sequence in the library (which has 211 

variable 3’UTR lengths), as UPF1 is responsible for NMD (10). The dashed line represent a 212 

threshold in which increasing 3’UTR generates NMD (positive values in the Y axis). (C) A 213 

pipeline for predicting the impact of NMD and codon on frameshift quality control. As an 214 

example of frameshift, we simulated 105 random single-base deletions  on native transcripts. 215 

Each gene includes a number of mutations proportional to its expression level. For each error 216 

(and corresponding native transcript) we calculated tAI between the frameshift and the PTC 217 

(local tAI) and the resulting 3’UTR length. We used these as measures of the impact of error 218 

on translation efficiency and/or NMD targeting. (D) Transcripts with frameshifts (blue) have 219 

lower tAI (top) and longer 3’UTRs (bottom), when compared to native mRNAs (purple). The 220 

dashed lines represent the thresholds described in A,B. 221 

 222 
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