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Abstract

Quantification and identification of cellular phenotypes from high content mi-
croscopy images have proven to be very useful for understanding biological ac-
tivity in response to different drug treatments. The common approach has been
to use classical image analysis to quantify changes in cell morphology, which
requires several non-trivial and independent analysis steps. Recently convolu-
tional neural networks have emerged as a compelling alternative, offering good
predictive performance and the possibility to replace traditional workflows with
a single network architecture. In this study we applied the pre-trained deep
convolutional neural networks ResNet50, InceptionV3 and InceptionV2 to pre-
dict cell mechanisms of action in response to chemical perturbations for two
cell profiling datasets from the Broad Bioimage Benchmark Collection. These
networks were pre-trained on ImageNet which lead to much quicker model train-
ing. We obtain higher predictive accuracy than previously reported, between
94 and 97%. The ability to quickly and accurately distinguish between different
cell morphologies from a scarce amount of labelled data illustrates the com-
bined benefit of transfer learning and deep convolutional neural networks for
interrogating cell-based images.

1 Introduction

High-content screening (HCS) has proven to be a useful and successful tech-
nique to identify and quantify cell phenotypes [1, 2]. Although conventional
approaches for classification of phenotypes using cell-images have shown posi-
tive results [3, 4, 5, 6, 7], they require several non-trivial data analysis steps. An
example is Ljosa et al. [7] and their pipeline workflows which include cellular
segmentation, feature extraction, profiling methods (e.g. factor analysis) and
a nearest neighbour classifier. Cell segmentation algorithms typically require
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manual adjustments for each new experimental setup [4] and feature extraction
tends to rely on ”hand-crafted” features, such as those related to texture and
shape (several of which are computationally expensive to measure). PCA, as-
suming a linear mapping, is then often used to reduce the dimensionality of
these high dimensional (> 500) and highly correlated feature sets [8].

Convolutional neural networks (CNNs) have recently brought about break-
throughs in computer vision and image processing — CNNs automatically dis-
cover the features needed for classification of images based solely on the raw pixel
intensity data [9]. This supervised feature learning technique has shown to be
superior to using traditional hand-crafted features [10, 11], and the combination
of segmentation and classification in a single framework [12] means that image
classification can be performed without the need for prior cell segmentation. A
recent survey shows a rapid growth in the application of deep learning to medical
image analysis [13], with several studies outperforming medical expert classifi-
cation. A convenient property of CNNs is that the pipeline workflow of the
traditional methods are taken care of by the network itself; and by convolving
layers with filters (or feature maps), local connectivity and parameter sharing
keeps the number of parameters relatively low, even for a deeper network.

A major bottleneck when applying supervised CNNs to cell images is the
scarcity of labelled data. Importantly, studies have shown that reusing models
trained on different tasks reduced these problems [14, 15]. Jason et al. [16]
notes that transferability of features depends on the distance between the base
task and the target task. However, the features from distant tasks may still
perform better than random features. The study also illustrated that initializing
the network with pre-trained features improved the generalization even after
considerable fine-tuning to the target dataset. Further, Zhang et al. [17] showed
that features trained on natural images (ImageNet [18]) could be transferred to
biological data. Neslihan et al. [19] used pre-trained models on natural images
and facial images for cell nucleus classification where the performance of transfer
learning and learning from scratch were compared. Their results showed that
all their pre-trained models not only improved predictive performance, but also
required less training time. Phan et al. [20] also successfully utilized transfer
learning on bioimages outperforming all other methods on the mitosis detection
dataset of the ICPR2012 contest. As the initial layers of CNNs capture low-level
features, like edges and blobs — features usually shared between different types
of images — transfer learning can be successfully applied to a different task.

The bbbc (broad bioimage benchmark collection) is an important publicly
available collection of microscopy images intended for validating image-analysis
algorithms [21]. Various algorithms have been tested and validated on these
datasets — ranging from traditional pipeline workflows to deep learning tech-
niques [5, 7, 22, 23, 24]. Pawlowski et al. [23] utilized transfer learning without
fine-tuning to extract features, and Ando et al. [22] used a pre-trained model on
consumer images and further transformation techniques to attain the top accu-
racy on this benchmark dataset of 96%. However, research on transfer learning
and fine tuning of CNNs on these bbbc datasets is scarce — it is therefore
important to investigate this technique and to compare with the various high
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performing analysis tools that have already been applied to the bbbc datasets.
In this study we present state-of-the-art deep convolutional neural networks

pre-trained on natural images, with minor image pre-processing and without
segmentation. These models are used to predict mechanisms of action (MoA)
and nucleus translocation, based only on pixel intensities which automatically
pass through the network to give final predictions. We used two different bbbc
datasets: bbbc021v1 and bbbc014v1 [21], to evaluate the models’ predictive per-
formance as well as to visualize the feature maps throughout the network. This
visualization was done to understand the different levels of abstraction processed
and also to understand the transferability of the networks. After the parameter
values were transferred we fine-tuned our network to fit the data, the transferred
parameters could thus be thought of as good initial parameter values. Although
no comparison with randomized initialization of parameter values was done, we
hypothesized that the pre-trained parameters would improve performance both
in terms of accuracy and learning time.

2 Method

2.1 Data

bbbc021v1 The first dataset, bbbc021v1, used in this study contains MCF-7
breast cancer images available from the Broad Bioimage Benchmark Collec-
tion [21] — wells were fixed, labeled for DNA, F-actin, B-tubulin, and imaged
by fluorescence microscopy as described by Caie et al [25]. We used 38 out of
113 compounds (1-7 concentrations each) which were annotated with one MoA,
resulting in a total of 103 treatments (compound-concentration pairs) and 12
different MoAs (for more information see https://data.broadinstitute.org/
bbbc/BBBC021/).

bbbc014v1 The second dataset used in this study was the bbbc014v1 pro-
vided by Ilya Ravkin, and is also available from the Broad Bioimage Benchmark
Collection [21]. The images are Human U2OS cells of cytoplasm to nucleus
translocation of the MCF-7 and A549 (human alveolar basal epithelial) in re-
sponse to TNFα concentrations. For each well there was one field with a nuclear
counterstain (DAPI) and one field with a signal stain (FITC). A total of 96-wells
with 12 concentration points and 4 replicate rows for each cell type (for more in-
formation see https://data.broadinstitute.org/bbbc/BBBC014/). In this study,
the four highest (labelled positive) and four lowest concentrations (including 0
concentration; labelled negative) were used for each cell type.

Image preprocessing For the bbbc021v1 dataset, the three different chan-
nels (labelled for DNA, F-actin, B-tubulin) of 16-bit range were stacked into a
three channelled image. The images were then normalized plate-wise, by sub-
tracting the mean pixel intensities of DMSO images (the control samples) and
then dividing by the standard deviation of their pixel intensities. After the
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normalization an Anscombe transformation [26] was performed followed by a
mapping to an 8-bit range.

Similarly, for the bbbc014v1 dataset, the different channels (in this case 2)
of each sample were stacked with an addition of a zero matrix to create a three-
channel input. These images were in 8-bit range and were variance stabilized
by the Anscombe transformation, and then mapped back to an 8-bit range.

The resulting images for both datasets were cropped into 16 images (bbbc014v1)
and 4 images (bbbc021v1) to increase the number of training samples.

2.2 CNN architectures

Three different state-of-the-art architectures were implemented in Keras [27]:
Resnet50 [28], Inceptionv3 [29] and InceptionResnetv2 [30]. They were all pre-
trained on the ImageNet dataset, containing 13 million natural images [18].

Residual Network Utilizing a very deep CNN can have a negative effect on
model performance — arising from the difficulty in finding suitable parameters
for the deeper layers. Adding further layers to a suitably deep model can lead
to higher training error not caused by overfitting [28, 31, 32]. Residual networks
use residual mapping H(x) = F (x) + x, where x is the original feature vector
(identity mapping) added to the deeper version of the network F (x) (output
of the stacked layers). Importantly, if the mappings were optimal, it would
be easier for the network to push the residuals to zero than fitting an identity
mapping with stacks of nonlinear layers [28]. The implication of this is that
although F(x) is not learning anything, the output will simply be an identity
mapping x. Thus, the worst-case scenario is that output equals input, and the
best-case scenario is that some important features are learned. Residual map-
pings therefore assist in avoiding the degradation problem that occurs for very
deep CNNs. Another important aspect of residual networks is the intermediate
normalization layers (also called batch normalization), which help to solve the
problem of vanishing and exploding gradients.

The Residual network used in this study had 50 layers (49 convolutional
layers and a final fully connected classification layer), based on ResNet50 from
the paper ”Deep Residual Learning for Image Recognition” [28].

Inception network It is often difficult to determine the best filter sizes for
your network, and whether to use pooling layers. To overcome this inception
architectures use many different filter sizes and pooling layers in parallel (an
inception block), the outputs of which are concatenated and inputted to the
next block. In this way the network chooses which filter sizes or combinations
thereof to use. To solve the problem of a large increase in computational cost,
the inception networks utilize 1x1 convolutions to shrink the volume of the
next layer. This network architecture was introduced by Szegedy et al. [33]
to make a network deeper and wider, hence more powerful, but keeping the
computational cost low. The Inception network could thus go very deep and,
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like Resnet, utilizes intermediate normalization layers to avoid vanishing and
exploding gradients.

The inception network used in this study was the InceptionV3 from the paper
”Rethinking the Inception Architecture for Computer Vision” [29], excluding the
auxiliary classifiers. This network had 95 layers in total, a number much larger
than ResNet50 due to the width of each inception block.

Inception-Resnet network Szegedy et al. [30] evaluated a network com-
bining inception blocks and residuals (similar to the ResNet50 residuals). They
showed an improvement in training speed after introducing these residuals, mak-
ing it possible to implement even deeper networks at a reasonable cost.

In this study, we implemented an inception-resnet architecture based on the
InceptionResnetV2 from the paper ”Inception-v4, Inception-ResNet and the
Impact of Residual Connections on Learning” [30]. This network is even deeper
and bigger than ResNet50 and InceptionV3 respectively — totalling 245 layers.

Downsampling and data augmentation Before the images were inputted
into the network, they were downsampled to the same dimensions as the images
used for the pretrained network: 224x224x3 for ResNet50 and 299x299x3 for
InceptionV3 and InceptionResnetV2. To increase the number of training exam-
ples the input images were randomly rotated and mirrored, as well as randomly
blurred and shaded — the latter preventing the network from identifying noise
as important features.

2.3 Model evaluation and deep visualization

Cross-validation To evaluate the models of the bbbc021v1 dataset we used
a “leave-one-compound-out” cross-validation — resulting in a 38-fold cross-
validation. In each fold predictions were made for all the treatments of the
excluded compound. An element-wise median over the replicates was first cal-
culated to obtain a prediction vector for each well. These vectors were then used
to calculate the element-wise median over the wells, to obtain prediction vectors
for each treatment. Finally, the highest values in the resulting 12-dimensional
prediction vectors, containing the MoA predictions for the treatments, decided
the models’ final predictions for the treatments. This procedure was repeated
for all cross-validation folds, resulting in a total of 103 final predictions.

For the bbbc014v1 dataset we used a 2-fold cross-validation where one cell-
line was ”left-out” as the test set, while the other was used for training. At test
time, a prediction was made for each image (well) — resulting in 32 predictions
for each fold.

Activation maximization To compare the pre-trained models and the fine-
tuned models (fit to our MoA data), we contrast a selection of their feature
maps. We used the high-level Keras visualization toolkit keras-vis [34] to do
this and applied an activation maximization function to generate an input image
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that maximizes certain filter output activations with a gradient descent method.
This allows us to understand the input patterns that activate certain filters. At
deeper levels within the network the filters learn more abstract representations
and as a consequence show more complexly structured visualizations.

3 Results and Discussion

We illustrate the accuracy of the deep CNN models on the bbbc021v1 dataset
using confusion matrices. ResNet50 attained a 97.1% accuracy (Figure 1), In-
ceptionV3 and InceptionResnetV2 both attained an accuracy of 94.2% (Fig-
ure 2 and Figure 3). In terms of accuracy these models compare well with
previous state-of-the-art algorithms, where our ResNet50 application reached
greater accuracy than any model yet reported based on the Broad Bioimage
Benchmark Collection [21].
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Figure 1: ResNet50. Confusion matrix for predictions of compound-
concentration pairs, with a mean accuracy of 97.1%. Zeros are excluded
for better visualization.

Furthermore, ResNet50 attained an accuracy of 100% on the bbbc014v1
dataset after just a single epoch of training. The quick learning is arguably a
strong indication of transferability of the pretrained parameters.

To further analyze the transferability of the pretrained parameters, we illus-
trate the resulting images from the activation maximization (Figure 4). Notably,
the early feature maps/filters of the two models showed similar patterns of ac-
tivation, whereas the deeper filters, activated by higher level abstractions, were
more dissimilar.
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Figure 2: InceptionV3. Confusion matrix for predictions of compound-
concentration pairs, with a mean accuracy of 94.2%. Zeros are excluded for
better visualization.
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Figure 3: InceptionResnetV2. Confusion matrix for predictions of
compound-concentration pairs, with a mean accuracy of 94.2%. Zeros are
excluded for better visualization.
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Figure 4: Activation maximization. Images that maximize certain filter
output activations in the different layers of ResNet50 using keras-vis toolkit. A
comparison between the pre-trained model and the fine-tuned model.

Limitations Although studies have been done on the topic, and techniques
have been developed, the interpretation of deep neural networks are still chal-
lenging. It is not always clear what the machine has learned and how it learns,
however it evidently performs well on computer vision tasks.

Finally, although the bbbc021v1 dataset is one of the very few good bench-
marking datasets publicly available, it no longer presents significant challenges
for many of the current state-of-the-art models, many of which have already
reported accuracies of 90% and above. It would therefore be interesting to eval-
uate these models on more difficult classification tasks of MoAs, and evaluate
them further in the field of high content imaging.

4 Conclusions

Transfer learning and deep CNNs, when used in combination, produce highly
accurate classification of MoAs. These models were able to quickly distinguish
the different cell phenotypes despite a limited quantity of labelled data.
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Additional Files

Additional file 1 — GitHub Repository

Code used for this study can be found at https://github.com/pharmbio/

kensert_CNN.
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