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Abstract 

Although genome-wide association studies (GWAS) for prostate cancer (PrCa) have identified 

more than 100 risk regions, most of the risk genes at these regions remain largely unknown. 

Here, we integrate the largest PrCa GWAS (N=142,392) with gene expression measured in 45 

tissues (N=4,458), including normal and tumor prostate, to perform a multi-tissue transcriptome-

wide association study (TWAS) for PrCa. We identify 235 genes at 87 independent 1Mb regions 
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associated with PrCa risk, 9 of which are regions with no genome-wide significant SNP within 

2Mb. 24 genes are significant in TWAS only for alternative splicing models in prostate tumor 

thus supporting the hypothesis of splicing driving risk for continued oncogenesis. Finally, we use 

a Bayesian probabilistic approach to estimate credible sets of genes containing the causal gene 

at pre-defined level; this reduced the list of 235 associations to 120 genes in the 90% credible 

set. Overall, our findings highlight the power of integrating expression with PrCa GWAS to 

identify novel risk loci and prioritize putative causal genes at known risk loci. 

Introduction 

Prostate cancer (PrCa) affects ~1 in 7 men during their lifetime and is one of the most common 

cancers worldwide, with up to 58% of risk due to genetic factors1; 2. Genome-wide association 

studies (GWAS) have identified over 100 genomic regions harboring risk variants for PrCa 

which explain roughly one third of familial risk3-7. With few exceptions8, the causal variants and 

target susceptibility genes at most GWAS risk loci have yet to be identified. Multiple studies 

have shown that PrCa- and other disease-associated variants are enriched near variants that 

correlate with gene expression levels9-13. In fact, recent approaches have integrated expression 

quantitative trait loci (eQTLs) with GWAS to implicate several plausible genes for PrCa risk 

(e.g., IRX4, MSMB, NCOA4, NUDT11 and SLC22A3)5; 14-21. While overlapping eQTLs and 

GWAS is powerful, the high prevalence of eQTLs22 coupled with linkage disequilibrium (LD) 

renders it difficult to distinguish the true susceptibility gene from spurious co-localization at the 

same locus23. Therefore, disentangling LD is critical for prioritization and causal gene 

identification at risk loci. 

Gene expression imputation followed by a transcriptome-wide association study24-26 (TWAS) 

has been recently proposed as a powerful approach to prioritize candidate risk genes underlying 

complex traits. By taking LD into account across SNPs, the resulting association statistics reflect 

the underlying effect of steady-state gene or alternative splicing expression levels on disease 

risk25; 27, which can be used to identify new regions or to rank genes for functional validation at 

known risk regions24-28. Here we perform a multi-tissue transcriptome-wide association study24-26 

to identify new risk regions and to prioritize genes at known risk regions for PrCa. Specifically, 

we integrate gene expression data from 48 panels measured in 45 tissues across 4,448 

individuals with GWAS of prostate cancer from the OncoArray in 142,392 men29. Notably, we 

include alternatively spliced and total gene expression data measured in tumor prostate to 

identify genes contributing to prostate cancer risk or to continued oncogenesis. We identify 235 

gene-trait associations for PrCa with 24 (11) genes identified uniquely using models of 
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alternative spliced (total) expression in tumor. Significant genes were found in 87 independent 

1Mb regions, of which 9 regions are located more than 2Mb away from any OncoArray GWAS 

significant variants, thus identifying new candidate risk regions. Second, we use TWAS to 

investigate genes previously reported as susceptibility genes for prostate cancer identified by 

eQTL-based analyses. We find a significant overlap with 57 out of 104 previously reported 

genes assayed in our study also significant in TWAS. Third, we use a novel Bayesian 

prioritization approach to compute credible sets of genes and prioritize 120 genes that explain at 

least 90% of the posterior density for association signal at TWAS risk regions. One notable 

example, IRX4, had 97% posterior probability to explain the association signal at its region with 

the remaining 3% explained by 9 neighboring genes. Overall, our findings highlight the power of 

integrating gene expression data with GWAS and provide testable hypotheses for future 

functional validation of prostate cancer risk. 

Results 

Overview of methods 

To identify genes associated with PrCa risk, we performed a TWAS using 48 gene expression 

panels measured in 45 tissues22; 30-36 integrated with summary data from the OncoArray PrCa 

GWAS of 142,392 individuals of European ancestry (81,318/61,074 cases/controls; see 

Methods)29. We performed the summary-based TWAS approach as described in ref25 using the 

FUSION software (see Methods). Briefly, this approach uses reference linkage-disequilibrium 

(LD) and reference gene expression panels with GWAS summary statistics to estimate the 

association between the cis-genetic component of gene expression, or alternative splicing 

events, and PrCa risk25. First, for each panel, FUSION estimated the heritability of steady-state 

gene and alternative splicing expression levels explained by SNPs local to each gene (i.e. 1Mb 

flanking window) using the mixed-linear model (see Methods). Genes with nominally significant 

(� �  0.05) estimates of SNP-heritability (cis-��
�), are then put forward for training predictive 

models. Genes with non-significant estimates of heritability are pruned, as they are unlikely to 

be accurately predicted. Next, FUSION fits predictive linear models (e.g., Elastic Net, LASSO, 

GBLUP37, BSLMM38) for every gene using local SNPs. The model with the best cross-validation 

prediction accuracy (out-of-sample ��) was used for prediction into the GWAS cohort. This was 

repeated for all expression datasets, resulting in 117,459 tissue-specific models spanning 

16,052 unique genes using total expression and 5,140 using alternatively spliced introns for a 

combined 17,023 unique genes. The average number of models per expression panel was 

2397.6 (see Table S1). Gene expression measured in normal prostate tissue from GTEx22 
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resulted in only 854 gene models, which can be explained due to smaller sample size (	 
 87) 

compared with the average (	 
 234; see Table S1). Indeed, the number of gene models per 

panel was highly correlated with sample size, which implies that statistical power to detect 

genes with cis-regulatory control is limited by sample size (see Figure S1). Focusing only on 

models capturing total gene expression, genes on average had heritable levels of expression in 

6.4 different panels (median 3) with 11,364 / 16,052 genes having heritable expression in at 

least 2 panels (see Figure 1). Predictive power of linear gene expression models is upper-

bounded by heritability; thus, we use a normalized �� to measure in-sample prediction accuracy 

(��/ cis-��
�). We found the average ��/ cis-��

� across all tissue-specific models was 61%, which 

indicates that most of the signal in cis-regulated total expression and alternative splicing levels 

is captured by the fitted models (see Figure 1). To assess the predictive stability for models of 

normal prostate gene expression, we compared measured and predicted gene expression for 

TCGA36; 39 samples using models fitted in GTEx22 normal prostate. We found a highly significant 

replication (��  
  0.07; � 
  1.5 � 10���), explaining 39% of in-sample cross-validation �� (see 

Figure S2), which is consistent with previous out-of-sample estimates24; 25. We performed a 

cross-tissue analysis within TCGA and found tumor prostate gene expression models replicated 

in normal prostate (total expression �� 
  0.06; splicing ��  
  0.05; see Table S2). Given the 

large number of genes having evidence of genetic control across multiple tissues, we next 

aimed to measure the similarity of different tissue models (see Methods). Across all reference 

panels for each gene we observed an average ��  
  0.64 (see Figure S3). Similarly, when 

averaging across genes, reference panels displayed an average cross-tissue �� 
 0.52 (see 

Figure S4). Together, these results suggest that trained models predict similar levels of cis-

regulated expression on average, despite reference panels measuring expression in different 

tissues, from varying QC, and capture technologies. Next, we performed simulations to measure 

the statistical power of TWAS under a variety of trait architectures (see Supplementary Note). 

Consistent with previous work, we found TWAS to be well-powered at various effect-sizes and 

heritability levels for gene expression. Importantly, we found no inflation under the null when cis-

regulated gene expression has no effect on downstream trait (see Figure S5). 

Multi-tissue TWAS identifies 235 genes associated with PrCa status 

In total, we tested 117,459 tissue-specific gene models of expression for association with PrCa 

status and observed 932 reaching transcriptome-wide significance (�����  �  4.26 � 10�	), 

resulting in 235 unique genes, of which 118 were significant in more than one panel (see Table 

S3; Figure 2). On average, we found 16.8 tissue-specific models associated with PrCa per 
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reference expression panel (see Table S1). In 1Mb regions with at least 1 transcriptome-wide 

significant gene, we observed 10.7 tissue-specific associated models on average, and 2.7 

associated genes on average, indicating that further refinement of association signal at TWAS 

risk loci is necessary. To quantify the overlap between non-HLA, autosomal risk loci in the 

OncoArray PrCa GWAS and our TWAS results, we partitioned GWAS summary data into 1Mb 

regions and observed 131 harboring at least one genome-wide significant SNP. Of these, 

126/131 overlapped at least one gene model in our data and 68/131 overlapped at least one 

transcriptome-wide significant gene (see Figure S6). Associated genes were the closest gene to 

the top GWAS SNP 20% of the time when using 26,292 RefSeq genes. This result is consistent 

with previous reports9; 25; 26 and suggests that prioritizing genes based on distance to index 

SNPs is suboptimal. We found gene model associations were largely consistent, further 

supporting the predictive stability of models using cis-SNPs (see Figure S7; Supplementary 

Note). We observed little evidence of prediction accuracy introducing biased results (see Figure 

S8; Supplementary Note). As a partial control, we compared TWAS results with S-PrediXcan, a 

related method for predicting gene expression into GWAS summary statistics, using 

independently trained models and observed a strong correlation (� 
 0.87; see Figure S9; 

Supplementary Note), further supporting the validity of the TWAS approach. 

Most of the gene models captured total expression levels in normal tissues, however as a 

positive control we included models for total expression in tumor prostate tissue (see Methods). 

Predicted expression using tumor prostate models accounted only for 42/235 significant genes 

compared with 6/235 in normal prostate which is likely due to the large difference in sample size 

between the original reference panels (see Table S1). Given this, we found no significant 

increase in proportion of tumor prostate associated models compared with normal prostate 

(Fisher’s exact � 
 0.27). Of the 335 genes with models trained in both reference panels a 

single shared gene, MLPH (OMIM: 606526, a gene whose function is related to melanosome 

transport40), was associated with PrCa risk (see Table S2). 11/42 genes were significant only in 

tumor prostate models of total expression. 7/11 genes were modeled in other panels but did not 

reach transcriptome-wide significance while the other 4/11 were not significantly heritable, and 

thus not testable, in other panels. We also tested models of alternatively spliced introns for 

association to PrCa risk. We identified predicted expression of alternatively spliced introns in 

tumor prostate accounted for 69/235 genes, with an average of 2.5 (median 1) alternatively 

spliced intron associations per gene. We next quantified the amount of overlap between results 

driven from models of alternative splicing events versus models of total gene expression.  24/69 

genes were found only in alternatively spliced introns, and 16/24 genes had models of total 
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gene expression but did not reach transcriptome-wide significance. The remaining 8/24 were 

tested solely in alternatively spliced introns, due to heritability of total gene expression not 

reaching significance. Together these results emphasize earlier work demonstrating that sQTLs 

for a gene commonly capture signal independent of eQTLs41.  

TWAS analysis increases power to find PrCa associations 

Most of the power in the TWAS approach can be attributed to large GWAS sample size. 

However, two other factors can increase power over GWAS. First, TWAS carries a reduced 

testing burden compared with that of GWAS, due to TWAS having many fewer genes compared 

with SNPs. 10/235 genes were located at 9 novel independent 1Mb regions (i.e. no overlapping 

GWAS SNP), all of which remained significant under a summary-based permutation test 

(� �  0.05 / 10; see Table 1; Table S2; Methods). We found this result was stable to increasing 

region sizes (see Table S4) and unlikely be the result of long-range tagging with known GWAS 

risk (see Table S5; Supplemental Note). We observed increased association signal for SNPs at 

these regions compared to the genome-wide background after accounting for similar MAF and 

LD patterns (see Figure S10), which, together with observed TWAS associations, suggests that 

GWAS sample size is still a limiting factor in identifying PrCa risk SNPs. As a partially 

independent check, we performed a multi-tissue TWAS using summary data from an earlier 

PrCa GWAS (	 
 49,346)7 and found 2 novel regions. We found both regions to overlap a 

genome-wide significant SNP within 1Mb in this data further supporting the robustness of TWAS 

(see Table S6). Second, we expect to observe increased association signal when expression of 

a risk gene is regulated by multiple local SNPs25. We observed 90/932 instances across 31 

genes where TWAS association statistics were stronger than the respective top overlapping 

GWAS SNP statistics (one-sided Fisher’s exact � �  2.2 � 10�
�; 7% higher �� statistics on 

average). For example, GRHL3 (OMIM:608317; a gene associated with suppression of 

squamous cell carcinoma tumors42) exhibited stronger signal in TWAS using expression in 

prostate tumor (����� 
 9.38 � 10�
�) compared with the lead SNP signal (�
��� 
  1.49 �
 10��). Similarly, POLI (OMIM:605252, a DNA repair gene associated with mutagenesis of 

cancer cells43; 44) resulted in larger TWAS associations (����� 
  2.01 �  10�	) compared with 

the best proximal SNP (�
��� 
  5.44 � 10�	).  

TWAS replicates previously reported genes 

We next sought to quantify the extent of overlapping results between TWAS and previous 

studies that integrated eQTL data measured in normal and tumor prostate tissues at PrCa risk 
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regions (see Methods; see Table S7)5; 14-20. We considered only autosomal, non-HLA genes 

which resulted in 130 previously reported genes. We found a significant overlap between 

reported genes, with 104/130 assayed in our study and 57/104 reaching transcriptome-wide 

significance in at least one of our panels (Fisher’s exact � �  2.2 �  10�
�; see Tables S7-S8). 

For example, MLPH was reported in 4/8 studies. We found significant associations suggesting 

that decreased expression of MLPH in normal and tumor prostate tissue increases risk for PrCa 

(e.g., GTEx prostate MLPH ����� 
 �5.80; �����  
  6.69 �  10��; TCGA prostate ����� 

�6.77; �����  
  1.25 � 10�

). Predicted MLPH in tumor prostate remained significant under 

permutation, which suggests that chance co-localization with GWAS risk is unlikely (Table S2). 

To assess the amount of residual association signal due to genetic variation in the GWAS risk 

region after accounting for predicted expression of MLPH we performed a summary-based 

conditional analysis (see Methods). We found MLPH to explain most of the signal at its region 

(lead SNP �
��� 
 4.03 � 10�

; conditioned on MLPH lead SNP �
���  
  1.13 � 10��; see 

Figure 3). Our findings are consistent with recent work that found decreased expression levels 

of MLPH to be associated with increased PrCa risk45. Despite previous eQTL data focusing on 

normal and tumor prostate tissue, we observed associations in 49 expression panels 

overlapping the 57 observed genes in total, underscoring earlier works demonstrating the 

consistency of cross-tissue cis-regulatory effects46. 

Bayesian prioritization pinpoints a single gene for most TWAS risk regions 

TWAS genes are indicative of association and do not necessarily reflect causality (e.g., due to 

co-regulation at the same region). To prioritize genes at regions with multiple TWAS signals 

(Figure 2), we used a Bayesian formulation to estimate 90%-credible gene sets (see Methods). 

We found 120 unique genes across 87 non-overlapping 1Mb regions comprising our 90% 

credible sets (see Tables S9-S10). 71/87 credible sets contained either a single gene or the 

same gene in multiple tissues. The average number of unique genes per credible set was 1.38 

(median 1). 27/120 prioritized genes were previously reported in eQTL analyses5; 14-20, which 

supports the hypothesis that TWAS followed by Bayesian prioritization refines associations to 

relevant disease genes. For example, MLPH was the sole gene defining its region’s 90% 

credible set with a posterior probability of 94%. Similarly, SLC22A3 (OMIM: 604842; a gene 

involved in polyspecific organic cation transporters47 and previously implicated in PrCa risk18) 

exhibited > 94% posterior probability to be causal. 
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Expression and splicing events predicted in prostate tissue have largest average effect 

Given the large number of significant associations observed for non-prostate tissues in our data, 

we wanted to quantify which tissue is most relevant for PrCa risk. We first grouped TWAS PrCa 

associations into prostate/non-prostate and tested for enrichment in normal and tumor prostate 

expression models. Predicted expression and splicing events in normal and tumor prostate 

made up 223/932 associations with PrCa (see Table S2) which was highly significant compared 

to the grouping of all other tissues (Fisher’s exact � 
 7.8 � 10���. This measure only quantifies 

the total amount of observed associations and neglects average association strength. Next, we 

computed the mean TWAS association statistic using all genes predicted from each expression 

reference panel (see Figure 4). We observed the largest average TWAS associations in genes 

predicted from normal and tumor prostate tissue, which reaffirms our intuition of expression and 

slice events in prostate being the most relevant for PrCa risk. We re-ranked mean associations 

using only genes found to be transcriptome-wide significant and observed a similar ordering 

with total expression in normal prostate ranked highest (average ��  
  176.2; see Figure S11). 

Discussion 

Prostate cancer is a common male cancer that is expected to affect more than 180,000 men in 

the United States in 2017 alone48. While GWAS has been successful in localizing risk for PrCa 

due to genetic variation, the underlying susceptibility genes remain elusive. Here, we have 

presented results of a transcriptome-wide association study using the OncoArray PrCa GWAS 

summary statistics for over 142,000 case/control samples. This approach utilizes imputed 

expression levels and splicing events in the GWAS samples to identify and prioritize putative 

susceptibility genes. We identified 235 genes whose expression is associated with PrCa risk. 

These genes localized at 87 genomic regions, of which 9 regions do not overlap with a genome-

wide significant SNP in the OncoArray GWAS.  We found 24 genes using predictive models for 

alternatively spliced introns in tumor prostate, which supports the its role in continued risk for 

tumor oncogenesis. A large fraction of identified genes was confirmed in earlier work, with 57 

genes previously reported in eQTL/PrCa GWAS overlap studies. We used a novel Bayesian 

prioritization approach to refine our associations to credible sets of 120 genes with statistical 

evidence of causality under standard assumptions. Our results provide a functional map for 

PrCa risk which can be explored for follow-up and validation. 

In this study, we compared our reported TWAS results with genes identified in previous works 

focusing on expression measured in normal and tumor prostate tissue. Several of these studies 
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considered an eQTL and GWAS risk SNP to overlap if they are in linkage at a specified 

threshold. While these approaches are sound, they may be limited in statistical power for 

several reasons. First, if multiple local SNPs independently contribute to risk, overlap studies 

relying only on the top risk SNP will lose power. Second, earlier overlap studies used thresholds 

for association signal (i.e., GWAS � �  5 �  10��) and linkage strength (i.e., LD > 0.5) to 

consider pairs of SNPs for evidence of expression influencing risk of PrCa. TWAS is largely 

agnostic to both issues as it jointly considers all SNPs in the region, regardless of reported 

GWAS association strength. However, when expression of a risk gene is regulated by a single 

causal SNP, we expect TWAS and earlier overlap approaches to have similar levels in power25. 

Previous works have strongly implicated expression of certain genes in PrCa risk that were not 

assayed in our study (e.g., MSMB18; 49) due to non-significant heritability estimates. TWAS 

operates by fitting predictive linear models of gene expression based on local genotype data, 

followed by prediction into large cohorts and subsequent association testing. Expression of 

genes that are not significantly heritable at current sample sizes are not included in the pipeline. 

This is the consequence of heritability providing an upper bound on the predictive accuracy 

under a linear model for genotype; therefore, if a gene has undetectable heritability at a given 

sample size, it will be difficult to predict using linear combinations of SNPs. To compute TWAS 

weights for normal prostate tissue, we used samples collected in the GTEx v6 panel (� 
 87). 

Thus, our inability to detect heritable levels of gene expression can be explained due to the 

relatively small number of samples compared with other tissues. Indeed, previous work has 

shown a strong correlation between sample size in expression panels and the number of 

identified eGenes27; therefore, as sample size increases for relevant tissues, we expect the 

number of genes included in the TWAS framework to increase. TWAS will lose power in 

situations where gene expression is a non-linear function of local SNPs, or when trans (or distal) 

regulation is a major component in modulating expression levels. 

We conclude with several caveats and possible future directions. First, while TWAS 

associations are consistent with models of steady-state gene expression levels altering risk for 

PrCa, they may be the result of confounding25; 26. Imputed gene expression levels are the result 

of weighted linear combinations of SNPs, many of which may tag non-regulatory mechanisms 

driving risk and result in inflated association statistics. Second, since genes with eQTLs are 

common, associations may be the result of chance co-localization between eQTLs and PrCa 

risk. Lastly, we note recent work has extended TWAS-like methods to expose regulatory 

mechanisms for susceptibility genes by incorporating chromatin information50. An extension to 
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our work would be to pinpoint chromatin variation regulating expression levels at identified risk 

genes, thus describing a richer landscape of the molecular cascade where SNP → chromatin → 

expression → PrCa risk. 
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URLs 

1000Genomes Phase3: http://www.internationalgenome.org/ 

Fire Hose v2016_1_28: http://gdac.broadinstitute.org/ 

FUSION: http://gusevlab.org/projects/fusion/ 

GCTA v1.26: http://cnsgenomics.com/software/gcta/ 

GEMMA v0.94: http://www.xzlab.org/software.html 

GOseq v1.26: http://bioinf.wehi.edu.au/software/goseq/ 

MapSplice v2: http://www.netlab.uky.edu/p/bioinfo/MapSplice2 

PLINK v1.9: https://www.cog-genomics.org/plink2/ 

OncoArray: https://epi.grants.cancer.gov/oncoarray/ 
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Methods 

OncoArray GWAS summary statistics 

Genome-wide association summary statistics for the OncoArray PrCa study were obtained from 

ref29. Summary statistics were computed using a fixed-effect meta-analysis for 142,392 total 

samples of European ancestry from the OncoArray (81,318/61,074 cases/controls), UK stage 1 

(1,854/1,894) and UK stage 2 (3,706/3,884), CaPS 1 (474/482) and CaPS 2 (1,458/512), BPC3 

(2,068/3,011), NCI PEGASUS (4,600/2,941) and iCOGS (20,219/ 20,440). The initial summary 

data contained association statistics for 19,726,430 variants. We filtered out summary statistics 

for SNPs with MAF < 0.01 and any SNPs with ambiguous alternative alleles (e.g., A→T; C→G; 

or vice-versa). Lastly, we kept only SNPs with rsIDs defined by dbSNP144. Our QC pipeline 

resulted in association statistics at 10,516,237 SNPs for downstream TWAS analyses. 

Previous studies investigating the overlap of eQTL in prostate with risk of PrCa 

We collected previous studies that investigated the overlap of eQTLs in normal and tumor 

prostate tissue at known PrCa risk loci5; 14-20. We compared TWAS statistics versus reported 

eQTL overlap results as aggregated in refs14; 15. Across these studies, overlap of eQTLs and 

PrCa risk loci are computed by one of two possible methods. The first method tests known PrCa 

risk SNPs for association with expression levels of nearby genes/transcripts. The second 

method takes a two-step approach. First, genes nearby PrCa risk loci are tested for harboring 

eQTLs at some significance level. Next, genes with identified eQTL SNPs are tested to be in LD 

with known PrCa risk variants at some level (e.g., ��  �  0.5). 

Reference gene expression data sets and predictive models of expression 

We downloaded the FUSION software (see URLs) along with its prepackaged weights for gene 

expression data. FUSION is an R package that implements the TWAS scheme described in 

ref25. Weights for gene expression measured using RNA sequencing data were obtained from 

the CommonMind Consortium30 (dorsolateral prefrontal cortex, � 
 452), the Genotype-Tissue 

Expression Project22 (GTEx; 44 tissues; � 
 449), the Metabolic Syndrome in Men study32; 33 

(adipose, � 
 563), and The Cancer Genome Atlas (TCGA; prostate adenocarcinoma, � 

483)39. Expression microarray data were obtained from the Netherlands Twins Registry35 (NTR; 

blood, � 
 1,247), and the Young Finns Study31; 34 (YFS; blood, � 
 1,264). All non-TCGA 

expression panel individuals were PrCa controls. Detailed description of quality control 

procedures on measured gene expression and genotype information for all non-TCGA 

reference panels are described in refs25; 27. TCGA genotype, gene expression, and exon-
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junction data for 525 samples were downloaded using the Broad GDAC FireHose version 

2016_1_28 (see URLs). Genotypes were imputed to the Haplotype Reference Consortium51 and 

restricted to well-imputed (INFO > 0.9) HapMap352 sites. Genes (exon junctions) missing in 

more than half of samples were removed. RPKM and log-adjusted gene expression levels were 

estimated in a generalized linear model controlling for 3 gene-expression PCs and rank-

normalized. We estimated alternatively spliced introns using the software MapSplice version 2 

(see URLs). A total of 482 samples passed quality control procedures in both genotype and 

gene expression data.  

We filtered genes that did not exhibit cis-genetic regulation at current samples sizes by keeping 

only genes with nominally significant (� �  0.05) estimates of cis-SNP heritability (cis-��
�), which 

resulted in 117,459 total tissue-gene pairs from 17,023 unique genes. We refrain from reporting 

genes from the HLA region due to complicated LD patterns. 

To train predictive models, FUSION defines gene expression for � samples (�
�� as a linear 

function of � SNPs ( � in a 1Mb region flaking the gene as 

�
� 
 !" #  $
� # %, 

where $
� are the � SNP weights, !" are covariates (e.g., sex, age, genotype principal 

components, genotyping platform, PEER factors) and their effects, and % is random 

environmental noise. FUSION estimated weights for expression of a gene in a tissue using 

multiple penalized linear models. Generally, FUSION optimizes for 

&$' 
�"( ) 
 arg min���,� 0�
� �  $
� � !"0�
� # 12$
��, 

where 12$
�� is a parameterized penalty function specific to each model (e.g., GBLUP37, 

LASSO, the Elastic Net). The exception to this optimization criterion is the Bayesian sparse 

linear mixed model (i.e. BSLMM)38 which fits the posterior mean for $
� using MCMC in the 

GEMMA v 0.94 software (see URLs) to obtain weights. To determine which model has the best 

prediction accuracy for a given gene-tissue pair, FUSION computes out-of-sample �� by 

performing 5-fold cross-validation for each model. Weights from the model with the largest �� 

were used to compute TWAS association statistics. We compute the normalized prediction 

accuracy for a gene as min 2��

��
� , 1�.  
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Cis-heritability of gene expression 

FUSION reports the estimated SNP-heritability (i.e. ��
�) for measured gene expression levels 

explained by SNPs in the cis-region (1 Mb region surrounding the TSS). This is modeled under 

a mixed-linear model as 

var2�4
�� 
 5σ�
� # 78�

�, 
where �4
� is the residual gene expression after regressing out fixed-effect covariates !,  5 is 

the estimated kinship matrix from SNPs in the cis-region and σ�
� (σ�

�) is the variance explained 

by the cis-SNPs (environment). SNP-heritability is then defined to be ratio of genotypic variance 

and total trait variance as, ��
� 
  ��

�

��
�� ��

�. Variance parameters are estimated using the AI-REML 

algorithm implemented in GCTA v1.26 (see URLs) with the top 3 genotypic principal 

components, sex, age, genotyping platform, and PEER factors as covariates. 

Measuring cross-tissue similarity in predicted expression 

We took an unbiased approach to identify susceptibility genes for PrCa by using gene 

expression panels measured in various tissues. To quantify how similar predicted expression 

levels are for the same gene across different tissues we measured the squared Pearson 

correlation (��). This value represents how well predicted expression from one tissue may be 

used to predict expression in another tissue. To dissect similarities and differences of tissue-

specific models, the ideal scenario would be to inspect effects at individual SNPs defining the 

models. In practice this is not possible due to predictive models not including the same set of 

SNPs due to QC and technological differences in the original studies. Therefore, as a proxy  we 

predict gene expression into the 489 samples of European ancestry from 1000 Genomes53 and 

compute �� across shared genes for pairs of tissues (see Supplementary Note). 

Transcriptome-wide association study using GWAS summary statistics 

FUSION estimates the strength of association between predicted expression of a gene and 

PrCa (9����) as function of the vector of GWAS summary Z-scores at a given cis locus :
��� 

(i.e. vector of SNP association Wald statistics) and the LD-adjusted weights vector learned from 

the gene expression data $
� as 

9���� 
 $
�
� :
���

;<=�2$
�
� :
���� 
 $
�

� :
���

;$
�
� >$
�
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where > is a correlation matrix across SNPs at the locus (i.e. LD) and “‘” indicates transpose. A 

P-value for 9���� is obtained using a two-tailed test under 	20, 1�. In this work, we estimated > 

using 489 samples of European ancestry in 1000 Genomes53. To account for the large number 

of hypotheses tested, we perform a conservative Bonferroni correction at ? 
  0.05 / @, where 

@ 
 117,459 is the number of predictive models. As reported by ref25, there may be inflation at 

GWAS risk loci, due to chance co-varying of SNP effects between expression and PrCa. The 

same work described a permutation procedure that assesses likelihood of observing association 

by chance conditioned on GWAS signal. The algorithm works by permuting the eQTL weights 

$
� while keeping :
��� fixed and computing 9����,����. FUSION implements an adaptive 

procedure that stops once enough scores (i.e. A9����,����A B  |9����|� have been observed 

such that the empirical null cannot be rejected at a specified level. We define novel risk regions 

as a flanking region around a transcriptome-wide significant gene (splicing event; �����  �
4.26 �  10�	) that does not harbor a genome-wide significant SNP (�
���  � 5 �  10��). We 

consider 2Mb windows by default (i.e. TSS ± 1Mb) and show that the results are robust to the 

choice of window size (see Table S4). 

GWAS analyses conditional on predicted expression 

To assess the extent of residual association of SNP with PrCa risk after accounting for predicted 

gene expression levels, FUSION estimates conditional SNP association scores using GWAS 

summary statistics. Namely, define > as LD for SNPs in the region,  >�  as the correlation 

between predicted expression levels, and ! as the correlation between SNPs and predicted 

expression. The least-squares estimates of  :
���|:���� are determined by, 

:
���|:���� 
 :
��� � !>� 
�!  :���� . 

The variance of the residual association strength is given by, 

<=�D:
���|:����E 
 <=�D:
���E � <=�D!>� 
�!  :����E 
  > �   !>� 

�!!�. 
This results in the final conditional association score for the Fth SNP as, 

9" 
 G:
��� � !>� 
�!  :����H

"
/√JF=KG> �   !>� 

�!!�H
""

. 
Bayes factors and posterior inference of causal genes 

Complex correlations between predicted expression levels at a given region can yield multiple 

associated genes in TWAS (see Figure 2). Thus, for the vast majority of risk regions it remains 

unclear which gene is causally influencing PrCa risk. Here we model under the assumption of a 
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single causal gene per risk region and relying on the central limit theorem for normality, we can 

compute the Bayes Factor that the Fth gene in a region is causal as, 

LM" 
 	29����,"|0, 1 #  �8#
��

	29����,"|0, 1� 
 21 # �8#
���
/� exp Q9����,"

�

2
�8#

�

1 #  �8#
�

R,  
where 9����,"

�  is the squared TWAS association statistic for the Fth gene, � is the GWAS sample 

size, and 8#
� is prior effect-size variance for gene expression on PrCa risk (see Supplementary 

Note). This model is structurally similar in form to earlier works54-56 describing Bayes Factors for 

fine mapping SNPs at GWAS risk regions. The important distinction is that here, we formulate a 

Bayes Factor for genes at TWAS risk regions. The Bayes Factor for each gene quantifies the 

amount of evidence in favor of the causal model (Fth gene drives risk) versus the null (Fth gene 

has no causal effect). We extend individual Bayes Factors for S genes at a PrCa risk region to 

compute the posterior probability that a gene is causal as, 

Pr2gene F is causal | :���� , �8#
�� 
 LM"∑ LM%%

. 
Equipped with our definition of posterior probability for each gene being causal, we define Z-

credible gene sets for a PrCa risk region. Formally, a set of indices F [  \ defines a Z-credible 

gene set if 

Z 
 ] Pr2gene F is causal |:���� , �8#
��.

"&'

 

For a fixed Z we optimize over k genes at a region by greedily adding genes until the total 

density is at least Z. 

To ensure that our Z-credible sets are well-calibrated we performed simulations by predicting 

expression levels into 489 samples of European ancestry from 1000 Genomes53 and estimating 

the local correlation structure to sample TWAS Z-scores directly (see Supplementary Note). 

Under the assumption of a single causal gene at a risk region, we sampled TWAS Z-scores for 

1000 independent regions. We then performed Bayesian prioritization at each region and 

computed Z-credible sets for various levels of Z while counting the proportion of causal genes 

identified across all simulations.  

Pathway analyses 

To determine which pathways may be enriched with genes identified from our Bayesian 

prioritization approach, we used the R package GOseq57 which internally links gene identifiers 
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to GO terms (GO db: 2017-09-02). We categorized all 17,023 genes into prioritized/not-

prioritized and ran the analysis using custom R scripts linking GOseq. GOseq obtains P-values 

for overrepresented genes using the Wallenius approximation to the non-central hypergeometric 

distribution. We limited analysis to Gene Ontology Biological Pathways (GO:BP). GOSeq drops 

genes without GO categories from analysis. We observed 5,005 genes dropped from analyses 

resulting in 12,018 genes put forward for enrichment tests (see Table S10; Supplementary 

Note). 
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Tables 

Table 1. Novel risk loci. TWAS associations that did not overlap a genome-wide significant 
SNP (i.e. ± 1Mb transcription start site). Study denotes the original expression panel used to fit 
weights. P-value for TWAS computed under the null of no association between gene expression 
levels and PrCa risk under a Normal(0, 1) distribution. An asterisk (*) indicates associations that 
are nominally significant (� �  0.05/ 10) under a permutation test. 

Gene Chr Tx Start Tx End Exon/Exon Junction Expression Reference 

BEST 

GWAS 

SNP 

BEST

GWAS

GRHL3 1 24645811 24690970 
- TCGA.PRAD.TUMOR 

rs11589294 1.49E-
chr1:24668763:24669184 TCGA.PRAD_SP.TUMOR 

RHOA 3 49396578 49449526 - GTEx.Adipose_Visceral_Omentum rs34890793 1.17E-

FAM83H 8 144806102 144815914 - CMC.BRAIN.RNASEQ rs7831467 3.32E-

TLE4 9 82186687 82341796 

- TCGA.PRAD.TUMOR 

rs10117770 2.47E-

chr9:82189851:82191048 TCGA.PRAD_SP.TUMOR 

chr9:82268990:82319698 TCGA.PRAD_SP.TUMOR 

chr9:82319817:82320804 TCGA.PRAD_SP.TUMOR 

chr9:82320857:82321662 TCGA.PRAD_SP.TUMOR 

chr9:82321814:82323033 TCGA.PRAD_SP.TUMOR 

chr9:82323165:82323508 TCGA.PRAD_SP.TUMOR 

chr9:82323701:82324538 TCGA.PRAD_SP.TUMOR 

chr9:82324614:82333637 TCGA.PRAD_SP.TUMOR 

chr9:82333886:82334961 TCGA.PRAD_SP.TUMOR 

chr9:82335208:82336656 TCGA.PRAD_SP.TUMOR 

chr9:82336803:82337366 TCGA.PRAD_SP.TUMOR 

chr9:82337516:82337874 TCGA.PRAD_SP.TUMOR 

chr9:82337950:82339952 TCGA.PRAD_SP.TUMOR 

STXBP1 9 130374485 130454995 

- TCGA.PRAD.TUMOR 

rs1318074 1.79E-

chr9:130374719:130413882 TCGA.PRAD_SP.TUMOR 

chr9:130413931:130415994 TCGA.PRAD_SP.TUMOR 

chr9:130416075:130420654 TCGA.PRAD_SP.TUMOR 

chr9:130420730:130422309 TCGA.PRAD_SP.TUMOR 

chr9:130422387:130423381 TCGA.PRAD_SP.TUMOR 

chr9:130423484:130425484 TCGA.PRAD_SP.TUMOR 

chr9:130425632:130427526 TCGA.PRAD_SP.TUMOR 

chr9:130428575:130430359 TCGA.PRAD_SP.TUMOR 

chr9:130430466:130432177 TCGA.PRAD_SP.TUMOR 

chr9:130432237:130434330 TCGA.PRAD_SP.TUMOR 

chr9:130434395:130435460 TCGA.PRAD_SP.TUMOR 

chr9:130435540:130438083 TCGA.PRAD_SP.TUMOR 

chr9:130438221:130438923 TCGA.PRAD_SP.TUMOR 

chr9:130439032:130440710 TCGA.PRAD_SP.TUMOR 

MIR3911 9 130452965 130453074 chr9:130444839:130453054 TCGA.PRAD_SP.TUMOR 

RP11-

57H14.2 
10 114710405 114711634 

- GTEx.Esophagus_Muscularis 

rs11196152 1.61E-

- GTEx.Lung 

- GTEx.Nerve_Tibial 

- GTEx.Pituitary 

- GTEx.Thyroid 

- GTEx.Whole_Blood 

TM7SF3 12 27124505 27167339 chr12:27129290:27132717 TCGA.PRAD_SP.TUMOR rs16931510 3.06E-
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POLI 18 51795773 51824604 

- NTR.BLOOD.RNAARR 

rs11083046 5.44E-

- GTEx.Adipose_Subcutaneous 

- GTEx.Artery_Aorta 

- GTEx.Artery_Tibial 

- 
GTEx.Brain_Cerebellar_Hemispher

e 

- GTEx.Brain_Cerebellum 

- 
GTEx.Brain_Putamen_basal_gangl

ia 

- GTEx.Breast_Mammary_Tissue 

- 
GTEx.Cells_EBV-

transformed_lymphocytes 

- GTEx.Colon_Sigmoid 

- 
GTEx.Esophagus_Gastroesophag

eal_Junction 

- GTEx.Esophagus_Mucosa 

- GTEx.Esophagus_Muscularis 

- GTEx.Heart_Atrial_Appendage 

- GTEx.Nerve_Tibial 

- GTEx.Spleen 

- GTEx.Testis 

- GTEx.Thyroid 

- GTEx.Whole_Blood 

- METSIM.ADIPOSE.RNASEQ 

- YFS.BLOOD.RNAARR 

KDSR 18 60994959 61034743 - GTEx.Adipose_Subcutaneous rs1541296 3.98E-
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Figures 

 
Figure 1. Tissue-specific predictive models for gene expression. A) Cross-validation 
prediction accuracy of cis-regulated expression and splicing events (��) for all 117,459 tissue-
specific models. B) Normalized prediction accuracy (��/^F_-��

�  ) for all 117,459 tissue-specific 
models. C) Histogram of the number of reference panels per gene. The majority of genes were 
heritable in a small number of tissues, but many genes exhibited heritable levels across many 
tissues. 
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Figure 2. OncoArray PrCa TWAS and GWAS. The top figure is the TWAS Manhattan plot. 
Each point corresponds to an association test between predicted gene expression with PrCa 
risk. The red line represents the boundary for transcriptome-wide significance (4.26 �  10�	). 
The bottom figure is the GWAS Manhattan plot where each point is the result of a SNP 
association test with PrCa risk. The red line corresponds to the traditional genome-wide 
significant boundary 25 � 10��).  
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Figure 3. Predicted expression of MLPH explains majority of GWAS signal at its genomic 
region. Each point corresponds to the association between SNP and PrCa status. Gray points 
indicate the marginal association of a SNP with PrCa status (i.e. GWAS association). Green 
points indicate the association of the same SNPs with PrCa after conditioning on predicted 
expression of MLPH using models trained from normal prostate (GTEx) and tumor prostate 
(TCGA). The dashed gray line corresponds to the genome-wide significant threshold (i.e. � 
 5 � 10��). MLPH was discussed in previous works as a possible susceptibility gene for 
PrCa. Association between total expression of MLPH and PrCa risk was transcriptome-wide 
significant in normal and tumor prostate tissue.  
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Figure 4. Average TWAS association statistics for genes predicted in each expression 
panel. Each bar plot corresponds to the average TWAS association statistic using all gene 
models from a given expression reference panel. Lines represent 1 standard-deviation 
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estimated using the median absolute deviation under normality assumptions. Normal and tumor 
prostate tissues are marked in green. 
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