
Holistic optimization of an RNA-seq workflow for

multi-threaded environments

Ling-Hong Hung

Institute of Technology, University of Washington

Box 358426, Tacoma, WA 98402, USA

Wes Lloyd

Institute of Technology, University of Washington

Box 358426, Tacoma, WA 98402, USA

Radhika Agumbe Sridhar

Institute of Technology, University of Washington

Box 358426, Tacoma, WA 98402, USA

Saranya Devi Athmalingam Ravishankar

Institute of Technology, University of Washington

Box 358426, Tacoma, WA 98402, USA

Yuguang Xiong

Ichahn School of Medicine at Mount Sinai

1468 Madison Ave, New York, NY 10029, USA

Eric Sobie

Ichahn School of Medicine at Mount Sinai

1468 Madison Ave, New York, NY 10029, USA

Ka Yee Yeung∗

Institute of Technology, University of Washington

Box 358426, Tacoma, WA 98402, USA

June 21, 2018

∗Corresponding author: kayee@uw.edu

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Summary: For many next-generation sequencing pipelines, the most
computationally intensive step is the alignment of reads to a reference
sequence. As a result, alignment software such as the Burrows-Wheeler
Aligner (BWA) is optimized for speed and and is often executed in parallel
on the cloud. However, there are other less demanding steps that can also
be optimized and significantly increase the speed especially when using
many threads. We demonstrate this using a Unique-molecular-identifier
(UMI) RNA sequencing pipeline consisting of 3 steps: split, align, and
merge. Optimization of all three steps yields a 40% increase in speed
when executed using a single thread. However, when executed using 16
threads, we observe a 4-fold improvement over the original parallel imple-
mentation and more than an 8-fold improvement over the original single-
threaded implementation. In contrast, optimizing only the alignment step
results in just a 13% improvement over the original parallel workflow us-
ing 16 threads.

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 Introduction

Due to advances in next generation sequencing (NGS) there are now more
than half a million datasets in the Gene Expression Omnibus (GEO) (Barrett et al.,
2012). A major bottleneck for the analyses of these data is aligning the
reads to a reference genome. Many efficient methods for sequence align-
ment or pseudo-alignment have been developed, such as the Burrows-
Wheeler Aligner (BWA) (Li and Durbin, 2009), STAR (Dobin et al., 2013),
Kallisto (Bray et al., 2016), Salmon (Patro et al., 2017)). With the ready
availability of cheap multi-threaded and distributed computing on cloud
platforms, the alignment step is often run in parallel, greatly reducing the
time required for analyses of the data. However, as noted by Amdahl more
than 50 years ago (Amdahl, 1967), there are diminishing returns with
greater numbers of threads as the non-parallelizable components even-
tually become rate-limiting. Optimization and partial parallelization of
these less computationally intensive components can yield significant im-
provement in a highly parallel environment. We demonstrate this with a
pipeline for the analyses of Unique Molecular Identifier (UMI) RNA-seq
data. In UMI RNA-seq, a sequence tag with a barcode and random se-
quence identifies which well on the 96 or 384 well plate the read originates
from and controls for amplification artifacts (Islam et al., 2013).

2 A three-step UMI RNA-seq workflow

The RNA-seq alignment workflow is designed for the Unique Molecular
Identifier (UMI) RNA-seq data generated by the LINCS Drug Toxicity
Signature (DToxS) Generation Center at Icahn School of Medicine at
Mount Sinai in New York (Xiong et al., 2017). The workflow described
in the the Standard Operating Procedure (SOP 3.1) and the scripts and
supporting files for the analytical workflow originate from the Broad In-
stitute (Soumillon et al., 2014). There are 3 steps in the original pipeline
implemented by two Python scripts. The first step (split) takes the se-
quence tag in the first read and appends it to the sequence identifier in
the second read creating a new set of fastq files. The second read contains
the actual cDNA sequence derived from the native transcripts. The sec-
ond step (align) aligns the second reads to the human reference genome
using BWA. The third step (merge) takes the resulting SAM files, filters
out the counts contributed by reads tagged with identical UMIs and then
consolidates the transcript counts for each of the wells. Our optimized
pipeline consists of the following three major changes.

1. Demultiplexing the reads by wells: In addition to appending
the sequence tag to the title of the read, reads from the same wells
are combined, resulting in 96 new fastq files. Since each well is an
independent experiment, the subsequent steps can operate on these
files in parallel. The smaller files also greatly reduced the RAM
needed, an important consideration as multi-threaded applications
often require more RAM.

2. Parallelism is increased.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Split: The original split step was not multi-threaded. The split
step now operates on different fastq files simultaneously when
there were multiple threads available.

• Align: The original align step used BWA aln to generate ini-
tial alignments which are piped to BWA samse to combine the
results and generate a SAM file. BWA aln can use multiple
threads but samse is single-threaded. The new align step spawns
multiple instances of BWA, each operating on a different file.
This parallelizes both BWA aln and BWA samse.

• Merge: The original merge step compiled the counts using a
single thread and a single large hash table. The new merge can
have threads working simultaneously on different files.

3. Python scripts are replaced by C++ executables Even though
Python uses the same libraries for CPU-intensive operations such as
decompressing files, there is a significant amount of text manipu-
lation that is handled by the Python scripts. Converting to C++
removes the overhead from dynamic typing and automatic garbage
collection when using Python.

Additional details of our optimizations are found in the Appendix.

3 Benchmarking results

We compared the execution time and memory usage between the opti-
mized and original workflows when the number of threads is varied using
an Amazon Web Services (AWS) EC2 spot instance. In Figure 1, we see
that when using a single thread the dominant contribution to the execu-
tion time is the align step. The situation changes when using 16 threads.
The CPU-intensive align step now takes the least amount of time in the
original workflow. Improving the parallelization of the align step results
in a 70% improvement in this step but only a 13% improvement in the
overall workflow. See Table 3 in the Appendix for details. However, opti-
mizing all the steps results in almost a 4-fold improvement in speed over
the original parallel workflow and more than an 8-fold increase in speed
over the original single-threaded workflow. While memory requirements
increase with the number of threads used, this is offset by the memory
saved from examining reads from individual wells. The optimized work-
flow takes less than half the memory of the original workflow even with
16 threads.

4 Conclusions

The ready availability of on-demand cloud computing means that com-
putationally demanding workflows are now typically run with multiple
threads. Optimization efforts have largely and correctly focused on the
most computationally intensive components of the pipeline. However, due
to diminishing returns, optimization of other less obvious computational
modules for improvement can yield dramatic benefits in a multi-threaded
cloud environment.

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Comparison of execution time (panel A) and memory usage (panel
B) between the optimized and original workflows. The upper bars represent the
original workflow and the lower bars the optimized workflow. The speedups for
1 thread, 4 threads and 16 threads are shown. All workflows were executed on
m4.4xlarge Amazon Web Services (AWS) EC2 spot instances with 64 GB of
RAM and 16 vCPU cores. The input data were 6 pairs of fastq files totaling
47 GB on an attached EBS volume. The execution time and memory usage
represent the median values across 3 runs. Values are comparisons of the total
execution time and the RAM required. The numerical values are in Tables 1
and 2 in Appendix 2

Acknowledgements

LHH, WL, ES and KYY are supported by NIH grant R01GM126019.
LHH and KYY are also supported by NIH grant U54HL127624 and the
AMEDD Advanced Medical Technology Initiative. YX and ES are also
supported by NIH grant U54HG008098. AWS Cloud Credits for Research
(WL and KYY) were used to run the benchmarks.

References

Amdahl, G. M. (1967). Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April 18-20,

1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages
483–485, New York, NY, USA. ACM.

Barrett, T. et al. (2012). Ncbi geo: archive for functional genomics data
setsupdate. Nucleic acids research, 41(D1), D991–D995.

Bray, N. L. et al. (2016). Near-optimal probabilistic rna-seq quantification.
Nature Biotechnology , 34, 525 EP –.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dobin, A. et al. (2013). Star: ultrafast universal rna-seq aligner. Bioin-

formatics, 29(1), 15–21.

Islam, S. et al. (2013). Quantitative single-cell rna-seq with unique molec-
ular identifiers. Nature Methods, 11, 163 EP –.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment
with burrows-wheeler transform. Bioinformatics, 25(14), 1754–60.

Patro, R. et al. (2017). Salmon provides fast and bias-aware quantification
of transcript expression. Nature Methods, 14, 417 EP –.

Soumillon, M. et al. (2014). Characterization of directed differentiation
by high-throughput single-cell rna-seq. bioRxiv .

Xiong, Y. et al. (2017). A comparison of mrna sequencing with random
primed and 3′-directed libraries. Scientific Reports, 7(1), 14626.

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Appendix 1: Details of optimized imple-

mentation

4.1 Original implementation structure

The original implementation consisted of a master bash script which ba-
sically handled the setup of the directories and passing of parameters to
the two Python scripts that performed the UMI based quantitation of the
RNA-seq data. The output files were text files that had the counts for
each gene. For the purposes of the benchmarking we moved the system
call to BWA from within the Python script to a the shell script. This
allowed us to time and measure the memory consumption of that compo-
nent separately.

4.2 Optimized implementation

The original implementation consisted of a master bash script which ba-
sically handled the setup of the directories and passing of parameters to
the two Python scripts that performed the UMI based quantitation of the
RNA-seq data. The output files were text files that had the counts for
each gene. For the purposes of the benchmarking we moved the system
call to BWA from within the Python script to a the shell script. This
allowed us to time and measure the memory consumption of that compo-
nent separately.

4.3 Optimized implementation

The optimized workflow duplicated the bash script and replaced the Python
scripts with compiled C++ executables that took the same arguments
(and have some additional configuration options such as the number of
threads).

The details of the implementation for the three components of the
workflow, split, align, merge follow:

• Split: The split executable reads and decompresses if necessary, a
list of pair-end fastq files and splits them into separate fastq files
with the sequence tag as part of the title line. Files are organized
by the well as specified by the barcode in the sequence tag.

The software asks the user for a file which lists the barcodes and
wells that they map to. It also asks the user the maximum number
of base pair variation due to sequence errors that is tolerated when
matching the wells. Since the barcodes are small (6 bases), the split
software maps the sequence to an integer and generates a lookup
table for all possible tags and maps them to a well when the identity
of the well is unambiguous and the variation in base pairs is within
tolerance. All other sequences are mapped an ”unmatched” well
value. This is a constant time operation and is very fast due to the
small size of the table.

The fiear read sequence is then read and the barcode matched. This
is appended to the title line for the read. The actual sequence of

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


from the cDNA is read from the second read. The well is determined
from the barcode and the newly constructed read is written to the
corresponding fastq file. Unmatched barcodes are written to a un-
matched fastq file. This task is parallelized using OpenMP. Each
thread operates on a separate pair of input pair-end fastq files and
generates a separate set of output well-specific files.

The major optimizations are in the parallelization at the level of
input files, the fast lookup and resolution of barcodes and the sepa-
ration of the reads by wells. The last step is a key optimization for
later steps.

• Align: The align step is performed using a shell script. The script
asks the user how many threads to use (parameter nThreads). The
master thread assembles a list of all the fastq files from the split
step (typically the number of pairs of input files times the number
of wells). It then spawns nThread processes that call BWA. Each
thread goes through the list of fastq files, and checks whether an-
other thread has written a lock file indicating that another thread is
working on that file. When it finds a fastq file to work on, it writes
a new lock file to prevent another thread from working on the same
file. The added parallelism increases the speed of the align step by
70% when using 16 threads.

• Merge: The original merge step did not have reads organized by
file and compiled the counts using a single thread and a single large
hash table. The new merge uses OpenMP to generate and manage
threads that work simultaneously on different files.

The division of files by wells also reduces the size of the the hash
(since the barcode part of the sequence tag is the same in each
file) and the hash table (the number of reads is also reduced). The
code further increases the efficiency of hashing by first mapping the
sequence tag to an integer and using an unordered set to check for
uniqueness. The original implementation used the sequence concate-
nated with metadata to form a string and which is hashed default
Python text hashing function. Hashing of a long string requires sev-
eral passes of the hash function and is slower than hashing a 64 bit
integer. However, the major savings in speed and memory are due to
the division of the data into files sorted by wells. This is especially
important when 384 well plates are used instead of 96 well plates
and when using many threads, which will consume more memory.

A major implementation difference in the merge procedure is the fil-
tering by UMI. The original UMI paper assumes that any additional
reads with the same UMI that map to the same position are amplifi-
cation artifacts and should be discarded. The merge module follows
this recipe by default but also allows the user flexibility to exclude
reads with the same UMI that map nearby, which could happen, for
example, due minor sequencing errors or ambiguities. The original
merge implementation excluded duplicate UMI’s that mapped to the
same gene.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.4 Testing of optimized implementation

Testing of the optimized implementation is complicated by 3 factors. The
first is the difference in the manner that UMI filtering is performed. The
second is the fact that BWA will produce slightly different alignments
even when the same reads are organized in different files. This is due to
the way that it handles the equally scoring alignments by choosing one at
random. Finally, the implementations of the sorting by Python and C++
differ, again on how ties are handled.

During initial development, we split the files and filtered duplicate
UMI’s in the same manner as the original. This produced the identical
counts as the original. Some results were sorted slightly differently due
the differences in sorting between Python and C++. However, the split-
ting and the filtering are key to the optimization and correctness of the
new implementation and will produce slightly different results from the
original implementation. Consequently, after these features were added,
we only tested whether the optimized software produced the same results
as previous implementations. For all benchmarks, the output files were
compared to the single thread runs and were identical except for the or-
der of items which had not been sorted and were written to the file in a
different order by the different threads.

4.5 Software availability

Code, supporting scripts and Dockerfiles are available at https://github.com/BioDepot/LINCS_RNAseq_cpp
and Docker images at https://hub.docker.com/r/biodepot/rnaseq-umi-cpp/

Appendix 2: Benchmark data

See Table 1 and Table 2 in the Appendix show the raw median data in
Figure 1.

Table 1: Execution times in hours:minutes:seconds. The median execution time
across three trials are shown.
Implementation Threads Split time Align time Merge time Total time
Original 1 5:31:06 19:38:09 4:16:12 29:25:27
Optimized 1 3:14:51 17:10:16 0:50:37 21:15:44
Original 4 5:48:43 6:33:31 4:19:17 16:41:31
Optimized 4 1:04:18 5:06:22 0:17:59 6:28:39
Original 16 5:22:31 4:02:41 4:17:49 13:43:01
Optimized 16 0:53:02 2:24:58 0:12:43 3:30:43

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://github.com/BioDepot/LINCS_RNAseq_cpp
https://hub.docker.com/r/biodepot/rnaseq-umi-cpp/
https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Memory usage in Gigabytes. The median memory usage across three
trials are shown.
Implementation Threads Split RAM Align RAM Merge RAM Max RAM
Original 1 1.710 0.350 13.228 13.228
Optimized 1 0.008 0.351 0.923 0.923
Original 4 1.710 1.398 13.228 13.228
Optimized 4 0.021 1.402 1.477 1.477
Original 16 1.710 5.592 13.228 13.228
Optimized 16 0.069 5.609 3.571 5.609

Table 3: Effect of optimized computational module (combinations of split, align,
merge) on total median run time.

Optimization Total run time (16 Threads)
None 13:43:01
Split 9:13:32
Align 12:05:18
Merge 9:37:55
Split and Align 7:35:49
Split and Merge 5:08:26
Align and Merge 8:00:12
Split, Align and Merge 3:30:43

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2018. ; https://doi.org/10.1101/345819doi: bioRxiv preprint 

https://doi.org/10.1101/345819
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	A three-step UMI RNA-seq workflow
	Benchmarking results
	Conclusions
	Original implementation structure
	Optimized implementation
	Optimized implementation
	Testing of optimized implementation
	Software availability


