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Abstract

Motivation: Read alignment is an important step in RNA-seq
analysis as the result of alignment forms the basis for further down-
stream analyses. However, recent studies have shown that published
alignment tools have variable mapping sensitivity and do not necessar-
ily align reads which should have been aligned, a problem we termed
as the false-negative non-alignment problem.

Results: We have developed Scavenger, a pipeline for recovering
unaligned reads using a novel mechanism which utilises information
from aligned reads. Scavenger performs recovery of unaligned reads by
re-aligning unaligned reads against a putative location derived from
aligned reads with sequence similarity against unaligned reads. We
show that Scavenger can successfully recover unaligned reads in both
simulated and real RNA-seq datasets, including single-cell RNA-seq
data. The reads recovered contain more genetic variants compared to
previously aligned reads, indicating that divergence between personal
and reference genomes plays a role in the false-negative non-alignment
problem. We also explored the impact of read recovery on downstream
analyses, in particular gene expression analysis, and showed that Scav-
enger is able to both recover genes which were previously non-expressed
and also increase gene expression, with lowly expressed genes having
the most impact from the addition of recovered reads. We also found
that the majority of genes with >1 fold change in expression after
recovery are categorised as pseudogenes, indicating that pseudogene
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expression can be affected by the false-negative non-alignment prob-
lem. Scavenger helps to solve the false-negative non-alignment problem
through recovery of unaligned reads using information from previously
aligned reads.

Availability: Scavenger is available via an open source license in
https://github.com/VCCRI/Scavenger/

Contact: j.ho@victorchang.edu.au

1 Introduction

Read alignment is the process of mapping high-throughput sequencing reads
against a reference genome or transcriptome to identify the locations from
which the reads originate. This step is typically one of the first steps in the
analysis of RNA sequencing (RNA-seq) data prior to downstream analyses
such as variant calling and gene expression analysis. There have been a
number of published tools which have been developed to perform RNA-
seq alignment, such as HISAT2 [13], STAR [7] Subread [17], CRAC [21],
MapSplice2 [24] and GSNAP [25]. More recently, new alignment-free tools
have been developed specifically for gene expression analysis which skips the
alignment of reads to the reference and instead performs pseudoalignment.
However, these alignment-free tools are only applicable to specific types of
analyses and have limitations compared to traditional alignment methods
[10]. The correctness of alignment programs are crucial to the accuracy
of the downstream analyses. Unfortunately, previous studies have shown
that while these tools have low false positive rates, they do not necessarily
have low false negative rates [3, 1]. This means that while many of the reads
were likely to be correctly aligned, there are still many incorrectly unaligned
reads which should have been aligned. These incorrectly unaligned reads, or
false negative non-alignments, adversely affect the accuracy of the alignment
produced and can also affect the result of downstream analyses, such as
variant calling, indel (insertion-deletion) detection and gene fusion detection
[1].

There are a number of factors which contribute to the false negative
non-alignment problem. One such factor is the type of algorithm utilised
in the alignment tool. In order to efficiently perform alignment against a
typically large reference genome in an acceptable amount of time, and to
account for splicing events inherent in RNA-sequencing data, many align-
ment tools use heuristic-based matching of seed sequences generated from
read sequences. Due to the typically short length of a seed sequence and
the existence of repetitive regions within the genome, there may be multiple
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locations assigned to a given read which results in the alignment tool exclud-
ing the read due to ambiguity – a problem known as multi-mapping reads.
Another factor which causes false negative non-alignment problems is the
divergence between the reference genome and the personal genome of the
organism being sequenced. The reference genome is typically constructed
from a small number of samples and thus will only represent a limited degree
of the organism’s diversity. Alignment of reads to the reference genome will
thus be imperfect due to natural variation present in an individual organ-
ism. While alignment tools do take into account the variability between the
reference genome and an individual’s genome by allowing for mismatches,
insertions and deletions during alignment, they are unable to handle a sub-
stantial degree of genetic variation, such as hyper-edited sites, gene fusion
and trans-splicing.

Correcting for a false negative non-alignment problem is much more dif-
ficult compared to correcting false positive reads. For false positive reads,
there are a number of strategies which can be employed to help filter these
type of reads, such as by removing lower quality alignments, removing reads
with multiple alignment locations and re-aligning reads with a more specific
alignment tool. Recovering false negative reads, on the other hand, is not
as straightforward as it is not possible to identify their putative alignment
region in the genome. One possible strategy for solving the false negative
non-alignment problem is to tune the parameters used for alignment in or-
der to maximise the amount of reads aligned, such as by increasing the
threshold for multi-mapping reads and/or increasing the number of mis-
matches allowed. However, this approach is limited as there is no ground
truth in real data to help with optimisation, and increasing the number of
reads aligned will also result in an increase in the number of false positive
reads. Another strategy for solving the false-negative non-alignment prob-
lem is by incorporating variation information during alignment, in the form
of utilising alternate loci sequences within the reference genome [15] or inte-
gration of a single nucleotide polymorphism database to the reference [13],
to help minimise the effect of divergence of the personal genome compared
to the reference genome. This approach is also limited as it requires existing
variation information, which may not be available in non-model organisms.

We have recently applied the idea of Metamorphic Testing – a software
testing technique designed for the situation where there is an absence of an
oracle (a method to verify the correctness of any input) – for performing
software testing on the STAR sequence aligner [23]. Metamorphic testing
involves multiple executions of the program to be tested with differing in-
puts, constructed based on a set of relationships (Metamorphic relations
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- MR), and checking that the outputs produced satisfy the relationships
[5, 6]. In our previous study [23], we developed an MR to test the re-
alignability of previously aligned reads in the presence of irrelevant ’control’
chromosomes constructed from previously unaligned reads. We discovered
that a non-trivial amount of reads that were previously aligned to the ref-
erence genome were now aligned to the control chromosomes consisting of
reads which were unable to be aligned to the reference. Further investiga-
tion indicated that some of the unaligned reads have high similarity to the
aligned reads, indicating the possibility of these reads being false negative
non-alignments.

In this chapter, we aim to tackle the problem of false-negative non-
alignments by taking inspiration from our previous work on metamorphic
testing. We have developed Scavenger, a pipeline designed to recover in-
correctly unaligned reads by exploiting information from reads which are
successfully aligned. We applied the Scavenger pipeline on a number of
simulated and actual RNA-seq datasets, including both bulk (normal) and
single-cell RNA-seq datasets, and demonstrated the ability of Scavenger
in recovering unaligned reads from these datasets. We then analysed the
impact of adding these recovered reads on downstream analyses, in partic-
ular gene expression analysis, and discovered that lowly expressed genes,
in particular genes of the pseudogenes category, are more affected by the
false-negative non-alignment problem. We also verified that the divergence
between the personal genome and the reference genome is a contributing
factor to the false-negative non-alignment problem and showed that Scav-
enger is able to recover reads which are unaligned due to higher degree of
variability within the reads sequence.

2 Methods

Scavenger is a python-based pipeline designed to recover unaligned reads by
utilising information from aligned reads. The pipeline takes in sequencing
reads in FASTQ format as the input, along with a reference genome sequence
in FASTA format and a corresponding index for the alignment tool built us-
ing the reference genome. There are 4 main steps in the Scavenger pipeline
- source execution of alignment tool, follow-up execution using aligned reads
as input and unaligned reads as index, consensus filtering of follow-up ex-
ecution result to obtain putative alignment location, and re-alignment of
unaligned reads to the reference genome (Figure 1). The unaligned reads
which are able to be successfully re-aligned back to the genome are then
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re-written back to the alignment result from the source execution.

2.1 Source execution

The first step of the Scavenger pipeline is the source execution where se-
quencing reads are aligned to the reference genome using a sequence align-
ment program. The alignment program used must satisfy the three prop-
erties which are required to validate the metamorphic relation underly-
ing the read recovery pipeline - deterministic alignment, realignability of
mapped reads, and non-realignability of unmapped reads. Currently, STAR
is utilised for aligning RNA sequencing reads in the Scavenger pipeline as it
has been previously evaluated as being a reliable general-purpose RNA-seq
aligner, with good default performance, [3] as well as satisfying the three
properties above [23]. The source execution step can be skipped if the user
has previously performed alignment of sequencing reads by passing in the
alignment file produced in either SAM or BAM format as input to the Scav-
enger pipeline.
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Figure 1: Overview of the Scavenger pipeline. Scavenger first aligns sequencing reads against the reference
genome using the STAR alignment tool in the source execution step. Scavenger then extracts both the aligned
and unaligned reads from the source alignment result and creates a sequencing reads file based on the aligned reads
and an artificial genome file containing chromosomes built using sequences of unaligned reads. The sequences of
aligned reads are then aligned to the artificial genomes using the same alignment tool from the source execution
(STAR) in the follow-up execution steps to find aligned reads which have similar sequences to unaligned reads.
Next, consensus filtering is performed to select putative sites for re-aligment based on where the majority of aligned
reads originate from in the reference genome. Finally, re-alignment is performed for unaligned reads which pass
consensus filtering and the source alignment result is updated based on the result of re-alignment.
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2.2 Follow-up execution

In the follow-up execution step, both aligned and unaligned reads are first
extracted from the alignment file produced during source execution. For
reads which have been successfully and uniquely aligned, a sequencing reads
file (in FASTQ format) is created using the reads’ sequence and qualities re-
trieved from the alignment records. In the case of reads which did not align
to the reference genome, reads with identical sequences are first grouped
together in order to minimise computational complexity and to reduce the
potential location for alignment. The unique unaligned sequences are then
extended with spacer sequences (sequence of N nucleotides) in order to form
sequence bins of equal length and to ensure that aligned reads do not align
between two unaligned sequences. These sequence bins are concatenated
into artificial chromosomes and stored into a new temporary genome file.
Depending on the alignment program utilised, a new index will then need
to be created based on the temporary genome containing the artificial chro-
mosomes prior to alignment. Finally, sequencing reads of previously aligned
reads are aligned to the temporary genome containing unaligned read se-
quences using the alignment tool used in source execution. In the current
Scavenger pipeline, STAR is again utilised in the follow-up execution with a
number of extra parameters in order to disable spliced alignment to ensure
that input reads only align to one unaligned read sequence and to remove
the restriction of the number of locations (i.e. unaligned read sequence) that
the input reads can align to in the temporary genome.

2.3 Consensus Filtering

The next step of the Scavenger pipeline is consensus filtering. Reads which
align during the follow-up execution step are extracted from the alignment
file produced from the previous step to obtain information regarding sim-
ilarity between reads aligned during source execution and reads which did
not align during source execution. Each unaligned sequence may have align-
ments to multiple aligned reads from the source execution. As these aligned
reads may be aligned to different regions in the reference genome, consen-
sus filtering is performed to select putative sites for re-alignment. For each
unaligned sequence, intervals are created based on the reference genome
location of previously aligned reads that align to the unaligned sequence.
Overlapping intervals are then merged to form longer intervals to both re-
duce the number of putative sites and to increase the support for the interval
to be selected as a putative site. An interval is considered as being a puta-
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tive site if there is more than one read within the interval and the level of
support for the interval (i.e. the number of aligned reads that fall within the
interval) is greater than the consensus threshold, which is set to 60% of the
number of previously aligned reads that align to the unaligned sequence by
default. During this step, there is also an optional filtering criteria that can
be utilised to remove unaligned sequences which likely originate from a low
complexity region or tandem repeat region. The filtering method is based
on the tandem repeat detection step used in the ROP tool [19], which uses
MegaBLAST [4] to align reads against a repeat sequence database, such as
RepBase [2].

2.4 Re-alignment

The final step is the re-alignment step where unaligned sequences which
pass the filtering steps are re-aligned to the reference genome using the
putative location obtained from reads aligned during source execution as a
guide. For each unaligned sequence, the reference genome sequence around
the putative location (extended 100 base pairs at both the start and the
end of the putative location) is extracted and stored as the new genome for
aligning the unaligned sequence. Alignment of the unaligned sequence is
then performed against the new genome using either MegaBLAST or STAR
depending on the putative location of the unaligned sequence originate from
the unspliced alignment or from the spliced alignment during the source
execution, respectively. MegaBLAST is utilised for unspliced alignment due
to its high sensitivity, though a strict parameter of 64% overlap and 85%
query identity (which replicates the result of STAR alignment) is also utilised
to reduce the false positive recovery of sequences. Unaligned sequences which
are successfully and uniquely aligned back to the reference genome are then
added back to the alignment file of the source execution by modifying the
alignment records of previously unaligned reads whose sequence matches the
recovered unaligned sequence.

2.5 Parallelising Scavenger

Both the consensus and re-alignment steps of the Scavenger pipeline are
computationally expensive due to the potentially large number of unaligned
reads to be processed. However, the processing of the inputs are independent
to each other thus allowing for parallelisation of processing unaligned reads
in order to reduce the overall runtime of the pipeline. Scavenger takes
advantage of Python’s built-in multiprocessing library in order to parallelise
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the consensus and re-alignment steps across the available CPU cores of the
machine.

To enhance the scalability of Scavenger, a framework has been provided
to enable parallel computation of a read recovery session on cloud computing
resources. Cloud computing enables convenient, on-demand network access
to a shared pool of configurable computing resources [20]. Central to the
model of cloud computing is the virtualisation of computing resources to
enable sharing of pooled resources. These resources can be commissioned
and decommissioned as the user requires. Scavenger has a framework that
employs the resources offered by the cloud provider Amazon Web Services
(AWS). The cloud provider enables the user, using their own account cre-
dentials, to create a number of computing ”instances”, which are the virtual
machines upon which the user can perform their computational workload.
In the case of AWS, such resources are termed ”EC2 instances”. An instance
typically can be provisioned within minutes of the user request, and the user
is charged by the hour. Some cloud providers, such as AWS, offer reduced
price ”spot” instances at a greatly reduced price, such that the user places a
”bid” for a spot instance on the proviso that the instance will be terminated
should the current market price for the instance exceed the initial bid price.
To minimise the cost for users, Scavenger utilises AWS spot instances.

The cloud computing feature of Scavenger, after initial configuration on
the user’s controlling computing resource, uses the AWS EC2 cloud instances
to perform the various steps of read recovery, and also uses AWS cloud
storage (S3) to store test data and results. The Scavenger cloud processing
feature co-ordinates all interactions with the cloud resources, with logging
information stored both locally and on the cloud. The user can elect to have
a large job to be spread among a number of cloud instances, with Scavenger
creating the instances and distributing the work load evenly amongst the
instances. The cloud computing feature of Scavenger is optional, and the
user can elect to use their own computing resources if desired.
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Table 1: List of datasets used for Scavenger testing and evaluation. The datasets are divided into three sections:
1. Datasets from selected non-reference mouse strain, 2. Normal (bulk) RNA-seq dataset from either human or
mouse, and 3. Single-cell RNA-seq dataset from mouse.

Accession ID Samples ID Organism Tissue/Source

SRP039411 SRR1182782 - SRR1182783 Mus Musculus Liver
ERP000614 ERR032989 - ERR032991; ERR032997 - ERR032998;

ERR033006 - ERR033009; ERR033017 - ERR033019
Mus Musculus Brain

SRP020636 SRR826292 - SRR826299; SRR826308 - SRR826315;
SRR826340 - SRR826347; SRR826356 - SRR826363

Mus Musculus Liver

SRP068123 SRR3087147 - SRR3087158; SRR3087171 -
SRR3087176

Mus Musculus Hippocampus

SRP013610 SRR504764 - SRR504766 Mus Musculus Eye
SRP076218 SRR3641982 - SRR3641983; SRR3641990;

SRR3642003 - SRR3642005; SRR3642012 -
SRR3642014

Mus Musculus Heart

SRP045630 SRR1554415 - SRR1554417 Mus Musculus Retina
SRP016501 SRR594393 - SRR594401 Mus Musculus Brain; Colon; Heart;

Kidney; Liver; Lung;
Skeletal Muscle; Spleen;
Testes

SRP075605 SRR3578721 - SRR3578725 Homo sapiens Fibroblasts
SRP122535 SRR6337339 - SRR6337344 Homo sapiens ESC
SRP013027 SRR4422503 - SRR4422506; SRR4422535 -

SRR4422538; SRR4422626 - SRR4422629
Mus Musculus Hindbrain; Limb; Heart

SRP045452 80 randomly selected samples Mus Musculus Hippocampus
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2.6 Datasets

Three different types of RNA-seq datasets – simulated, normal (bulk) and
single-cell – were utilised to evaluate the Scavenger pipeline. The simulated
datasets were obtained from a previous study [3] which generated 3 sets of
simulated RNA-seq datasets from the hg19 reference genome using BEERS
simulator [8] with varying parameters to emulate different level of dataset
complexity. As the simulated datasets were formatted in FASTA format,
high quality scores were added to each of the simulated reads to produce
corresponding FASTQ files. These files were then input into Scavenger for
both source alignment and read recovery with either STAR v2.5.3a or Sub-
read v1.6.0 as the alignment tool. The GRCh37.p13 reference genome was
obtained from GENCODE [9] and modified to contain reference chromo-
somes only, and used to create the indexes for each alignment tool. For
STAR specifically, the annotation file was extracted from a previous study
[3] and utilised in index creation to help increase the accuracy for alignment
across splice junctions. In the evaluation of alignment results for simulated
datasets, we used the analysis script that was used in the previous study [3]
to analyse the correctness of the alignment results.

The normal and single-cell RNA-seq datasets were obtained from pub-
licly available human and mouse datasets which were deposited to the NCBI
Sequence Read Archive [16] (Table 1). Pre-processing of the datasets was
performed using Trimmomatic v0.36 to remove low quality sequence and
short reads. The pre-processed datasets were then analysed by Scavenger
using STAR v2.5.3a as the alignment tool in the source execution and for
re-alignment of spliced reads, together with BLAST v2.6.0 for re-alignment
of unspliced reads. Indexes used for aligning of both human and mouse
datasets were generated from GRCh38 and GRCm38 reference genomes re-
spectively, which were obtained from GENCODE together with the corre-
sponding annotation files (version 27 for human and version 15 for mouse).
As before, annotation was used to augment the index to increase accuracy for
alignment. The Repbase database [2] was also utilised to remove low com-
plexity reads and reads from repetitive regions. For human datasets, the
simple, humrep and humsub sequence files from Repbase were concatenated
and used to create a BLAST database. Reads that passed consensus were
aligned to this database and the aligned reads that have a minimum of 90%
sequence identity and 80% sequence coverage were removed for further pro-
cessing in Scavenger. A similar approach was used for the mouse datasets,
but the simple and mousub sequence files were used instead. For mouse
strain analysis, strain-specific VCF files for non-reference mouse strains con-

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2018. ; https://doi.org/10.1101/345876doi: bioRxiv preprint 

https://doi.org/10.1101/345876
http://creativecommons.org/licenses/by-nc-nd/4.0/


taining SNPs derived against the reference C57BL/6J mouse genome were
downloaded from the Mouse Genome Project (MGP) [12].

For running the alignment using STAR, the following command is used:
STAR --runThreadN <threads> <aligner extra args> --genomeDir <genome index>

--readFilesIn <read files> --outFileNamePrefix <output prefix>. As
for running the alignment using subread, the following command is used:
subread-align -T <threads> -t 0 <aligner extra args> -i <genome index>

<read files> -o <output file> <bam option>. And lastly, for running
the alignment using BLAST, the follow command is used: blastn -query

unmapped read -subject target genome -task megablast -perc identity

<identity> -qcov hsp perc <coverage> -outfmt "17 SQ SR" -out <sam output>

-parse deflines. During follow-up alignment using STAR, the following
parameters are additionally used: --outFilterMultimapNmax <num reads>

--alignIntronMax 1 --seedSearchStartLmax 30.

3 Results

3.1 Recovery of reads on simulated data

To evaluate the ability of the Scavenger pipeline to recover false-negative
non-aligned reads, we first tested Scavenger using previously published hu-
man simulated data. The varying level of complexity of the simulated
datasets represents the degree of divergence between the sequencing reads
generated compared to the reference genome, ranging from low polymor-
phism and error rate (T1), moderate polymorphism and error rate (T2) and
high polymorphism and error rate (T3). The results of the source execu-
tion of STAR with default parameters are consistent with the previously
published result, with >99% of reads being aligned in both T1 and T2 and
>90% of reads being aligned in T3 (Table 2). After running the Scavenger
pipeline, we were able to recover between 4-30% of the previously unaligned
reads in the three datasets, resulting in an increase of aligned reads ranging
from ∼1,500 to ∼160,000. The majority of reads recovered by Scavenger are
aligned in the correct position, with 79.4% of reads being correctly recovered
in T1 and >98% of reads being correctly recovered in T2 and T3.

The difference in the number of aligned reads between the three datasets
can be explained by the degree of divergence between the sequencing reads
and the reference genome; and the limitation of the alignment tool in aligning
reads which display a high degree of polymorphism. The simulated sequenc-
ing reads in both T1 and T2 have high homology to the reference genome
due to the lower degree of polymorphism and error rate introduced meaning
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that the majority of these reads will be accurately mapped to the reference
genome with a very small number of mismatches during alignment. In con-
trast, the sequencing reads in T3 – with the higher polymorphism and error
rate – have a much higher degree of divergence compared to the reference
genome thus resulting in more mismatches during alignment and therefore
causing it to fail to be aligned. The Scavenger pipeline is able to recover
more reads in T2 and T3 compared to T1 due to the greater number of
aligned reads that contain mutations within the sequence. During follow
up execution, Scavenger exploits the fact that these aligned reads will have
closer similarity to the unaligned reads, which will also contains mutations,
therefore resulting in the alignment of the aligned reads to the unaligned
reads to obtain the putative location for the unaligned reads for recovery.
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Table 2: Alignment statistics for simulated datasets before and after recovery of reads with Scavenger using default
parameters for STAR.

Dataset Source execution Scavenger pipeline Unaligned % recovered % recovered
Aligned
correctly

Aligned
incor-
rectly

Unaligned Aligned
correctly

Aligned
incor-
rectly

Unaligned reads recov-
ered

reads correct reads incor-
rect

T1 9,671,586 8,022 33,486 9,672,770 8,330 31,994 1,492 79.4 20.6
T2 9,617,585 17,163 56,827 9,634,469 17,496 39,610 17,217 98.1 1.9
T3 8,595,549 67,559 933,274 8,753,899 67,995 774,488 158,786 99.7 0.3

The result shown is an average from 3 samples.

Table 3: Alignment statistics for simulated datasets before and after recovery of reads with Scavenger using
optimised parameters for STAR.

Dataset Source execution Scavenger pipeline Unaligned % recovered % recovered
Aligned
correctly

Aligned
incor-
rectly

Unaligned Aligned
correctly

Aligned
incor-
rectly

Unaligned reads recov-
ered

reads correct reads incor-
rect

T1 9,673,309 6,861 15,660 9,673,362 6,948 15,519 141 37.8 62.2
T2 9,643,573 14,570 11,237 9,643,715 14,675 10,990 246 55.5 44.5
T3 9,437,748 75,395 83,687 9,445,855 75,448 75,527 8,160 99.4 0.6

The result shown is an average from 3 samples.
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Another method to solve the false-negative non-alignment problem is to
adjust the parameters of the alignment tool utilised in order to allow align-
ment of reads with a higher degree of polymorphism. As has been shown
previously, alignment of the simulated datasets using STAR with optimised
parameters results in >99.2% of the reads being aligned, with T1 and T2
reaching nearly 99.9% of reads being aligned (Table 3). The Scavenger
pipeline is unable to obtain the high degree of alignment achieved with pa-
rameter optimisation due to limitations in Scavenger’s approach to recover
reads. Since Scavenger utilises information from aligned reads to find the
putative location of unaligned reads for recovery, it is not possible to re-
cover any unaligned reads from regions which have no read alignments. As
such, the reads that the Scavenger pipeline is able to recover are reads from
regions which already have alignment. This is unlike parameter optimisa-
tion, which allows for alignment with a higher threshold of mismatches in
any region irrespective of whether there was alignment in the region. This
observation can be seen in the high degree of overlap (>96.5%) of the reads
recovered by the Scavenger pipeline compared to the reads recovered by
optimised parameters. The Scavenger pipeline is still able to recover some
reads which are unaligned with optimised parameters, particularly in T3
where Scavenger recovered ∼9.75% of previously unaligned reads. Unlike
Scavenger recovery with default parameters, the majority of recovered reads
after alignment with optimised parameters are incorrectly aligned in both
the T1 and T2 datasets. Given the very high degree of alignment in these
lower complexity datasets, it is likely that the unaligned reads are reads
which can align to many locations in the genome and thus correctly recov-
ering these reads is very difficult and error prone. These results indicate
that parameter optimisation provides a solution to the false-negative non-
alignment problem, performing better than Scavenger. However, given that
performing parameter optimisation is not trivial due to lack of ground truth
in real datasets, these results also show that Scavenger can be utilised as an
alternative to help recover false-negative non-aligned reads.
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Table 4: Unaligned reads identified by ROP in the simulated dataset.

Dataset Unaligned
reads
identi-
fied

Low
Quality
Reads

Low
Com-
plexity
Reads

rRNA
reads

Lost
Reads

Repeat
reads

NCL
Reads

Immune
Reads

Microbial
Reads

T1 31,469 1 188 251 30,398 502 9 120 1
T2 27,328 0 306 148 23,508 1,690 28 1,639 9
T3 58,544 3 2,469 13 3,085 7,123 132 45,696 24

The result shown is an average from 3 samples.

Table 5: Alignment statistic for unaligned reads recovered by ROP lost read identification step .

Dataset Unaligned reads
recovered

% recovered read
correct

% recovered read
incorrect

T1 29,614 5.1% 94.9%
T2 22,032 6.6% 93.4%
T3 2,986 7.4% 92.6%

The result shown is an average from 3 samples.
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We also performed a comparison of the Scavenger pipeline against a
recently published tool, Read Origin Protocol (ROP), which is primarily
designed to identify the origin of unaligned reads [19]. The ROP tool con-
sists of 6 steps, with each step designed to identify different causes for un-
aligned reads: reads with low quality, lost human reads, reads from repeat
sequences, non-colinear RNA reads, reads from V(D)J recombination and
reads belonging to microbial communities. The result of running ROP on
the simulated dataset shows that ROP is able to identify an average of
∼29,000 reads in the T1 and T2 datasets, and ∼58,500 reads in T3 dataset
(Table 4). In particular, the majority of reads in the T1 and T2 dataset are
correctly identified as lost human reads, while the majority of reads in T3
dataset are incorrectly identified as immune reads. Checking the correctness
of ROP identified reads is not straightforward given that most steps within
ROP does not produce alignment information. Thus, correctness testing
was performed only on the genome-based alignment information produced
during the lost reads steps. The result of the correctness testing shows that
>92.6% of the reads identified by ROP are incorrectly aligned (Table 5).

3.2 Divergence of personal genome results in false-negative
non-aligned reads

One factor which may affect the false-negative non-alignment problem is the
divergence of sequences between the reference genome and personal genome
which results in alignment tools being unable to properly align the reads due
to the higher number of mismatches. To evaluate the ability of Scavenger in
recovering these false-negative non-aligned reads which arise due to diver-
gence of the personal genome, an experiment was devised where reads from
non-reference inbred laboratory mouse strains were aligned to the reference
C57BL/6J mouse genome to imitate alignment of reads from the personal
genome against the reference genome. Multiple non-reference mouse strains
– 129S1/SvImJ, A/J, CAST/EiJ, DBA/2J and NOD/ShiLtJ – were utilised
as the genomes of these strains have previously been characterised by the
Mouse Genome Project (MGP), with variations from each strain identified
relative to the reference mouse genome. We collected 80 publicly available
RNA-seq samples from the selected mouse strains, with each strain having
a minimum of 13 samples from at least 3 different projects with varying
characteristics, and performed alignment of these samples against the refer-
ence genome using STAR with default parameters. The result of the source
alignments shows that there is generally a high degree of mappability of the
reads, ranging from 82.2% up to 98.1%. After recovery with Scavenger, we
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Figure 2: The number of reads containing SNPs found within reads aligned
in source execution and reads recovered by Scavenger. A. The number of
reads with ≥ 1 SNPs found within reads. B. The number of reads with high
number of SNPs (> 5) found within reads.
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were able to re-align ∼4.75% of unaligned reads in the source execution,
corresponding to an increase in the number of aligned reads ranging from
17,000 to 396,000 reads (Table 6).

Further analysis was performed to evaluate the hypothesis that reads
recovered by Scavenger have a higher degree of polymorphism due to the di-
vergence between the ’personal’ non-reference mouse strain genome against
the reference genome. We randomly selected 1,000 unspliced reads which
are aligned in the source execution and 1,000 unspliced reads recovered by
Scavenger from each sample, and then calculated the number of single nu-
cleotide polymorphisms (SNP) found within the location of the aligned reads
from the list of strain-specific SNPs published by MGP against the reference
mouse genome. The same analysis was then repeated a further 9 times, for
a total of 10 iterations, to allow for significance testing. The majority of
the reads which are either successfully aligned or recovered did not contain
any of known SNPs. However, the number of reads which contain SNPs is
significantly higher (p-value < 10−27) in the reads recovered by Scavenger
compared to the reads aligned in the source execution for 4 of the 5 strains
analysed (Figure 2A). Furthermore, the number of reads with a high number
of SNPs (> 5) are also significantly higher (p-value < 10−21) in the reads
recovered by Scavenger for all of the strains analysed indicating that Scav-
enger is able to recover reads which are more polymorphic compared to the
reads aligned during the source execution (Figure 2B). These results vali-
date the hypothesis that reads recovered by Scavenger have a higher degree
of polymorphism as a result of the divergence between the personal genome
and the reference genome and further demonstrates the ability of Scavenger
in dealing with the false-negative non-alignment problem.
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Figure 3: Distribution of number of SNPs found within reads recovered
during source alignment and reads recovered by Scavenger. Scavenger is
able to recover reads with a higher number of SNPs (>5) compared to source
alignment.
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Table 6: Alignment statistics for all RNA-seq datasets in source alignment with STAR and after recovery of reads
with Scavenger.

Accession ID Read
length

Total reads Source
aligned
reads

Source
un-
aligned
reads

Source
mappa-
bility

Scavenger
aligned
reads

Scavenger
un-
aligned
reads

Scavenger
mappa-
bility

Scavenger
recov-
ered
reads

Unaligned
reads
recov-
ered
(%)

SRP039411 97 47,077,051 44,052,994 3,024,056 93.6% 44,162,052 2,915,000 93.8% 109,057 3.61%
ERP000614 73 30,406,321 29,529,186 877,136 97.1% 29,571,416 834,905 97.3% 42,230 4.72%
SRP020636 93 10,695,056 10,023,946 671,110 93.8% 10,053,119 641,937 94% 29,173 4.43%
SRP068123 89 36,237,495 29,132,806 7,104,689 82.2% 29,342,165 6,895,330 82.7% 209,360 2.9%
SRP013610 54 21,039,752 20,514,308 525,444 97.5% 20,531,454 508,298 97.6% 17,146 3.19%
SRP076218 86 20,183,248 19,802,286 380,962 98.1% 19,822,443 360,805 98.2% 20,157 5.49%
SRP045630 99 15,931,928 15,550,706 381,221 97.6% 15,578,309 353,618 97.8% 27,603 7.24%
SRP016501 48 85,677,826 82,218,772 3,459,055 96.2% 82,614,984 3,062,842 96.6% 396,213 8.86%

SRP075605 51 30,851,404 29,278,793 1,572,611 95% 29,356,220 1,495,184 95.2% 77,427 5.26%
SRP122535 50 15,658,933 15,121,371 537,562 96.6% 15,133,718 525,214 96.7% 12,347 2.58%
SRP013027 100 28,031,517 26,043,731 1,987,786 92.9% 26,092,526 1,938,992 93.1% 48,794 2.49%

SRP045452 51 2,286,199 1,307,716 978,483 57.3% 1,313,084 973,116 57.5% 5,368 0.621%

The result shown is an average of all samples per accession ID.
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Figure 4: Gene expression in source alignment and after Scavenger recovery for genes whose reads are recovered.
Coloured points indicates genes with expression difference of greater than 1 fold change.
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3.3 Effect of Scavenger recovery pipeline on downstream anal-
ysis

While alignment of reads is an important step in RNA-seq analysis, further
downstream analyses are required in order to interpret the data into mean-
ingful results. As one of the most common applications of RNA-seq analysis
is gene expression analysis, we focused on identifying the effect of adding
reads recovered by Scavenger on the expression of genes. The dataset utilised
for testing consisted of 23 publicly available RNA-seq samples selected from
3 separate projects of varying characteristics, with 11 samples originating
from two human projects and 12 samples originating from a single mouse
project. The result of source execution using STAR with default parameters
shows a high degree of mappability in all datasets, ranging from ∼95.9% in
human datasets and ∼92.9% in the mouse dataset (Table 6). After recovery
of reads with Scavenger, we were able to recover ∼3.1% of unaligned reads
on average across the three datasets, corresponding to an increase ranging
from 7,000 reads up to 102,000 reads. While the number of reads recovered
are quite low relative to the number of previously aligned reads, the addi-
tion of tens and hundred of thousands of reads is still likely to affect the
expression of the genes.

Gene quantification of aligned reads is performed using featureCounts
[18] to produce read counts per gene, which is then normalised to reads per
million (RPM). In the source alignment, the number of genes expressed,
defined as having non-zero read counts, in the human datasets average to
26,000 genes, while the number of genes expressed in the mouse dataset is
25,800 genes. In Scavenger recovered alignment, we see an increase of up to
3 expressed genes per sample, indicating the ability of Scavenger to recover
genes which are falsely considered as non-expressed in the source alignment
(Figure 5A). The recovery of reads in previously non-expressed genes is likely
due to the extension of putative alignment locations, which may introduce
regions which have no alignment in the source execution. Further investi-
gation into the reads recovered by Scavenger shows that the reads are not
distributed evenly across all the expressed genes – only ∼2150 and ∼5900
genes receiving an increase in read counts in human and mouse datasets,
respectively. The majority of genes with increased read counts do not see
much change in gene expression, with only ∼14 genes having more than 1
fold-change difference between source expression and recovered expression.
Interestingly, genes which have substantial difference after recovery are gen-
erally genes with low expression in the source execution (log2(RPM) < 5),
potentially indicating that some lowly expressed genes may actually have
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higher true expression than what is reported due to the alignment tool be-
ing unable to pick up these reads (Figure 4). This also has implications in
further downstream analyses as lowly expressed genes are typically excluded
from analysis, when instead it should not have been excluded as their true
expression is actually higher.

We then performed further investigations into the genes with more than
1 fold-change difference after recovery to study the types of genes affected
by the false-negative non-alignment problem. The majority of genes with
recovered expression in the human and mouse dataset are classified as pseu-
dogenes (>60%), with the second most frequent type being protein coding
genes (22% and 9% for human and mouse dataset, respectively) (Figure
5B). Moreover, most genes with very low expression in the source align-
ment (log2(RPM+1) < 5) are in the pseudogenes category implying that
many pseudogenes expression are likely to be under-reported due to reads
originating from pseudogenes not being picked up by the alignment tool
(Figure 4). Frequency analysis of the recovered genes also shows that some
genes are consistently recovered across at least half of the samples in hu-
man and mouse datasets respectively, potentially indicating that these genes
are harder to be picked up by the alignment tool due to its sequence being
highly polymorphic. The finding that expression of pseudogenes are partic-
ularly affected by the false-negative non-alignment problem is significant as
recent studies have shown that pseudogenes are incorrectly assumed to be
non-functioning and actually have a role in regulating biological processes,
particularly in diseases such as cancer [11, 22]. The reason that pseudo-
genes are more affected by Scavenger recovery is likely due to a number of
factors, including the large number of mutations accumulated which results
in divergence between pseudogene sequences and personal genomes; and the
typically low expression of pseudogenes and correspondingly, the number of
reads from pseudogenes, which therefore are more affected by increase an in
reads as a result of recovery by Scavenger (Figure 7).
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Figure 5: Effect of Scavenger read recovery on gene expression for normal
(bulk) RNA-seq datasets. A. The number of genes whose reads are recovered
by Scavenger, categorised based on the fold change in normalised expression
(RPM) between source alignment and after Scavenger recovery. B. The
number of genes with more than 1 fold change in normalised expression
categorised based on their gene types.
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Figure 6: Genome browser view of alignment in source execution and after recovery with Scavenger for FTH1P5
pseudogene from one human bulk RNA-seq dataset (SRR6337341). FTH1P5 gene was chosen as it is the only
pseudogene consistently recovered in at least half of the human bulk RNA-seq dataset.
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Figure 7: The number of reads recovered by Scavenger categorised by gene
type for A. normal (bulk) RNA-seq datasets and B. single-cell RNA-seq
datasets. In general, most reads are located in a region without a feature or
within a protein coding gene. However, a high percentage of reads in human
bulk RNA-seq datasets are located in other gene types, more specifically
mitochondrial genes, due to the high source expression of these genes.

3.4 Applying Scavenger recovery on single-cell RNA-seq data

Single cell RNA-sequencing (scRNA-seq) is fast becoming a mainstream
method for transcriptomics analysis due its ability to elucidate transcrip-
tional heterogeneity of individual cells. However, there are a number of
challenges when dealing with scRNA-seq datasets due to systematically low
read counts, as a result of the small amount of transcripts which are cap-
tured during library preparation, and a high degree of technical noise [14].
Given Scavenger’s ability in recovering false-negative non-recovered reads in
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normal bulk RNA-seq datasets and the effect it has on downstream analyses,
we hypothesise that recovery of unaligned reads in scRNA-seq datasets with
Scavenger will likely have a greater impact on downstream analysis due to
limited amount of reads available, while also helping with reducing technical
noise. To test this hypothesis, 80 randomly selected samples were collected
from a mouse brain scRNA-seq dataset and which are then aligned with
STAR, followed by recovery of reads with Scavenger. The scRNA-seq sam-
ples have an average read depth of ∼2.3 million reads (after pre-processing),
with ∼57.3% of the reads able to be aligned in the source execution (Table
6). Scavenger was only able to recover 0.6% of the unaligned reads, corre-
sponding to an increase of ∼5,400 reads. The low number of reads which
are able to be successfully recovered by the Scavenger pipeline is likely due
to the low number of aligned in reads in source alignment, which provides
less information that Scavenger can utilise during the follow-up execution.

As per the norm for scRNA-seq datasets, the number of genes with non-
zero read counts is much lower compared to the number of non-expressed
genes in bulk RNA-seq datasets, averaging 5,800. Of these expressed genes,
only 12% of the genes (∼700) have an increase in read counts, with the
majority of these genes having little difference in expression and ∼12 genes
having a fold-change difference greater than 1 (Figure 8A). Unlike in bulk
RNA-seq datasets, genes with substantial difference after recovery range
from lowly expressed genes up to highly expressed genes, though genes with
the greatest difference in expression are still those with low expression in
the source alignment (Figure 4). Furthermore, a different pattern was also
observed in the types of genes which have substantial difference in scRNA-
seq datasets, with the protein coding category being the majority, followed
by the pseudogene category (Figure 8B). The difference in pattern is likely
due to comparatively higher abundance of protein coding genes and the low
capture efficiency of scRNA-seq methods, meaning that reads from pseu-
dogenes are less likely to be captured and therefore rescued. This can be
seen from the much lower number of pseudogenes expressed in scRNA-seq
dataset (∼150) compared to bulk RNA-seq datasets (∼3,500).

4 Discussion

The false-negative non-alignment problem is a prevalent problem in many
of the published RNA-seq alignment tools, resulting in loss of information
from incorrectly unaligned reads. To help solve the false-negative non-
alignment problem, we have developed Scavenger – a pipeline for recovery
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Figure 8: Effect of Scavenger read recovery on gene expression for single-cell
RNA-seq datasets. A. The number of genes whose reads are recovered by
Scavenger, categorised based on the fold change in normalised expression
(RPM) between source alignment and after Scavenger recovery. B. The
number of genes with more than 1 fold change in normalised expression
categorised based on their gene types.
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of unaligned reads using a novel mechanism based on sequence similarity
between unaligned and aligned reads. Scavenger utilises the follow-up exe-
cution concept adapted from our previous work on metamorphic testing to
find aligned reads from the source execution which have similar sequences to
the unaligned reads by aligning the aligned reads against unaligned reads.
The location of the aligned reads are then used as a guide to re-align the
unaligned reads back to the reference genome using either BLAST or the
original alignment tool depending on if the putative location originates from
unspliced or spliced alignment, respectively, to ensure that splicing informa-
tion is retained in recovered reads.

We have applied Scavenger on simulated datasets with varying degrees
of complexity and showed that Scavenger is able to recover unaligned reads
across all complexity levels with a reasonably high degree of accuracy. In
particular, Scavenger is able to recover the most amount of reads in datasets
that exhibit a high degree of complexity where read sequence is more diver-
gent compared to the reference genome. We further show that although
alignment of reads with optimised parameters are able produce a higher
number of aligned reads compared to after recovery with Scavenger, the
reads recovered by Scavenger have high degree of overlap to reads recov-
ered with parameter optimisation. The lower number of reads recovered
by after Scavenger is a result of Scavenger using information from aligned
reads to find putative locations for unaligned reads, meaning that Scav-
enger is unable to recover reads from region with no alignment – unlike
parameter optimisation which does not have the same limitation. Given the
non-trivial difficulty of performing parameter optimisation on real datasets,
we recommend the use of Scavenger as an alternative to help with recovering
incorrectly unaligned reads.

There are a number of possible factors which may contribute to the
false-negative non-alignment problem. One such factor is the divergence be-
tween the reference genome and the personal genome, leading to higher mis-
matches during alignment of sequenced reads against the reference genome.
In order to validate that divergence of genomic sequences result in incor-
rectly unaligned reads, we devised an experiment whereby RNA-seq datasets
from non-reference mouse strains were aligned against the reference mouse
strain. We then analysed the reads which were aligned in the source ex-
ecution against those recovered by Scavenger and showed that Scavenger
is able to significantly recover more reads which have a higher number of
reported strain-specific SNPs. This result both confirms that divergence of
sequences between the reference genome and the personal genome does af-
fect the false-negative non-alignment problems and that Scavenger is able
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to recover reads which are incorrectly unaligned due to a higher degree of
sequence divergence.

As alignment of reads is only the first step in an RNA-seq data analysis,
we also investigated the effect of the false-negative non-alignment problem
on downstream analyses, in particular on gene expression analysis. After
recovery of reads with Scavenger, we show that ∼14 genes have more than 1
fold change in expression compared to the source alignment and that these
genes are typically genes with low expression. Interestingly, the majority
of genes with >1 expression difference belong to the pseudogenes category,
indicating that the expression of pseudogenes are likely to be under-reported
due to reads from pseudogenes being incorrectly unaligned by the alignment
tool.

Given the ability of Scavenger to recover gene expression in normal (bulk)
RNA-seq datasets, we then investigated the ability of Scavenger in recov-
ering reads from scRNA-seq dataset as scRNA-seq datasets have the char-
acteristics of having low reads counts and high degree of technical noise.
Scavenger recovery affected the expression of 12% of the expressed genes,
with ∼12 genes having more than 1 fold change in expression. Unlike the
bulk RNA-seq dataset, the genes with >1 change in expression range from
lowly expressed genes up to highly expressed genes, with the genes belonging
primarily to the protein coding category.

The current version of Scavenger supports STAR as the alignment tool
for source execution and re-alignment of spliced reads. However, the user
can choose to modify the alignment tool utilised by Scavenger with the align-
ment tool of their choice. Ideally the tool should satisfy the three properties
underlying the read recovery pipeline – deterministic alignment, realignabil-
ity of mapped reads, and non-realignability of unmapped reads – to ensure
that the recovered reads are deterministic. To show the extensibility of
Scavenger, we have tested Subread, another RNA-seq alignment tool, as
a replacement for STAR within the Scavenger pipeline and demonstrated
that Scavenger is still able to recover incorrectly unaligned reads with sim-
ilar performance to STAR (Table 7 and 8). It should be noted that the
recovery performance of Subread is different compared to STAR due to the
different algorithm employed by Subread for alignment and, potentially, due
to Subread violating the deterministic alignment property.
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Table 7: Alignment statistics for simulated datasets before and after recovery of reads with Scavenger using default
parameters for Subread.

Dataset Source execution Scavenger pipeline Unaligned % recovered % recovered
Aligned
correctly

Aligned
incor-
rectly

Unaligned Aligned
correctly

Aligned
incor-
rectly

Unaligned reads recov-
ered

reads correct reads incor-
rect

T1 9,305,067 74,497 620,436 9,332,335 79,653 588,012 32,424 84.1% 15.9%
T2 8,985,799 87,576 926,625 9,107,130 92,296 800,574 126,051 96.3% 3.7%
T3 4,802,130 106,487 5,091,384 4,984,817 108,947 4,906,235 185,148 98.7% 1.3%

The result shown is an average from 3 samples.

Table 8: Alignment statistics for simulated datasets before and after recovery of reads with Scavenger using
optimised parameters for Subread.

Dataset Source execution Scavenger pipeline Unaligned % recovered % recovered
Aligned
correctly

Aligned
incor-
rectly

Unaligned Aligned
correctly

Aligned
incor-
rectly

Unaligned reads recov-
ered

reads correct reads incor-
rect

T1 9,416,480 262,926 320,594 9,419,057 264,906 316,037 4,557 56.5% 43.5%
T2 9,283,792 397,323 318,885 9,287,022 398,775 314,203 4,682 69.0% 31.0%
T3 7,111,603 2,251,068 637,330 7,122,864 2,251,625 625,512 11,818 95.3% 4.7%

The result shown is an average from 3 samples.
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