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Abstract

A set of sub-cortical nuclei called basal ganglia is critical for learning the values of

actions. The basal ganglia include two pathways, which have been associated with

approach and avoid behavior respectively, and are differentially modulated by dopamine

projections from the midbrain. According to the influential opponent actor learning

model, these pathways represent learned estimates of the positive and negative

consequences (payoffs and costs) of actions. The level of dopamine release controls to

what extent payoffs and costs enter the overall evaluation of actions. How the

knowledge about payoff and cost is acquired is still an open question, even though many

theories describe learning from feedback in the basal ganglia. We examine whether a set

of plasticity rules proposed to model reinforcement learning in the pathways of the basal

ganglia is suitable to extract payoffs and costs from a reward prediction error signal.

First, we determine the result of such learning, both analytically and via simulations,

for different reward schedules that feature payoffs and costs. Then, we combine the

plasticity rules with a decision rule to examine the emerging effect of dopaminergic

modulation on the willingness to work for reward. We find that the plasticity rules are

suitable to infer the mean payoffs and costs of actions, if those occur at different

moments in time. Successful learning requires differential effects of positive and

negative reward prediction errors on the two pathways, and a weak decay of synaptic
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weights over trials. We also confirm that dopaminergic modulation produces effects on

the willingness to work for reward similar to those observed in classical experiments.

Author summary

The basal ganglia are structures underneath the surface of the vertebrate brain,

associated with error driven learning. Much is known about the anatomical and

biological features of the basal ganglia; scientists now try to understand the algorithms

implemented by these structures. Numerous models aspire to capture the learning

functionality, but many of them only cover some specific aspect of the algorithm.

Instead of further adding to that pool of partial models, we unify two existing ones -

one which captures what the basal ganglia learns, and one that describes the learning

mechanism itself. The first model suggests that the basal ganglia keeps track of both

positive and negative consequences of frequent opportunities, and weighs these by the

motivational state in decisions. It explains how payoff and cost are represented, but not

how those representations arise. The other model consists of biologically plausible

plasticity rules, which describe how learning takes place, but not how the brain makes

use of what is learned. We show that the two theories are compatible. Together, they

form a model of learning and decision making that integrates the motivational state as

well as the learned payoffs and costs of opportunities.

Introduction 1

What guides rational behavior in a complex environment? Certainly, knowledge of the 2

typical payoffs and costs of available actions is critical for successful action selection. If 3

those payoffs and costs are represented separately in the animal’s brain, they can be 4

weighted depending of animal’s motivational state. For example, consider the action 5

‘harvesting a fruit from a tree’. It has a payoff connected with the nutrients in the fruit, 6

but also costs related to the effort and risks associated with climbing a tree. The 7

nutrients in the fruit are only valuable for the animal if its hungry. So, when it is 8

hungry, the payoffs should be weighted more than the costs, to ensure that the animal 9

searches for food. By contrast when the animal is not hungry at all, the costs should be 10
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weighted more, to make sure that it does not climb the tree without necessity. 11

In all vertebrates, an important role in this process of action evaluation and selection 12

is played by a set of subcortical structures called the basal ganglia [1]. The basal 13

ganglia is organized into two main pathways shown schematically in green and red in 14

Fig 1. The Go or direct pathway is related to the initiation of movements, while the 15

No-Go or indirect pathway is related to the inhibition of movements [2]. These two 16

pathways include two separate populations of striatal neurons expressing different 17

dopaminergic receptors [3]. The striatal Go neurons express D1 receptors and are 18

excited by dopamine, while the striatal No-Go neurons express D2 receptors and are 19

inhibited by dopamine [4]. Thus dopamine changes the balance between the two 20

pathways and promotes action initiation over inhibition. 21

DDopamine

Output

Thalamus

STN

GPe

D2D1

Cortex

G N

Fig 1. The organization of the basal ganglia. Circles denote neural populations
in the areas indicated by labels next to them, where D1 and D2 corresponds to striatal
neurons expressing D1 and D2 receptors respectively, STN stands for the subthalamic
nucleus, GPe for the external segment of globus pallidus, and Output for the output
nuclei of the basal ganglia, i.e. internal segment of globus pallidus and substantia nigra
pars reticulata. Arrows and lines ending with circles denote excitatory and inhibitory
connections respectively.

The competition between Go and No-Go pathways during action selection and the 22

role of dopaminergic modulation are subject of many interpretations and models, 23

e.g. [5–7]. In particular, the Opponent Actor Learning (OpAL) hypothesis suggests that 24
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the Go and No-Go neurons encode the positive and negative consequences of actions 25

respectively [8]. As the dopaminergic neurons modulate the Go and No-Go neurons in 26

opposite ways, dopamine controls the extent to which positive and negative 27

consequences affect the activity in the thalamus, through the output of the basal 28

ganglia [8]. For example, when motivation is high, the dopaminergic neurons will excite 29

the Go neurons and inhibit the No-Go neurons. Consequently, the payoffs will be 30

weighted stronger than the costs. By contrast, when the motivation is low, the Go 31

neurons will not be excited, but the No-Go neurons will be released from inhibition, 32

such that the costs are weighted stronger. 33

Much research has also focused on how the synapses of Go and No-Go neurons are 34

modified by experience. Systematic investigation revealed that bursts of activity of 35

dopaminergic neurons encode reward prediction errors, which measure the difference 36

between reward obtained and expected [9, 10]. Such dopaminergic activity produces 37

distinct changes in the synaptic weights of Go and No-Go neurons [11]. Several 38

computational models have attempted to describe the learning process of the synapses 39

of Go and No-Go neurons [12–15]. Among these models, the OpAL model provided 40

simple and analytically tractable rules describing the changes in weights of Go and 41

No-Go neurons as a function of reward prediction errors [8]. 42

However, no-one so far examined how the basal ganglia might estimate payoff and 43

cost if they are both associated with the same action. The novel contribution of this 44

work is to demonstrate that a set of recently proposed learning rules [16] allows the Go 45

and No-Go neurons to estimate both payoffs and costs associated with single actions. 46

We thus merge the interpretation of the striatal pathways of Collins and Frank with the 47

striatal learning rules of Mikhael and Bogacz, to ultimately obtain a consistent theory 48

of learning the payoffs and costs of actions. 49

According to the experimental and modelling work mentioned above, dopaminergic 50

activity encodes both information about motivational state and the reward prediction 51

error. However, if the dopaminergic neurons carried both signals, the striatal neurons 52

would need a way to decode each signal and react appropriately, i.e. change their 53

activity according to the motivation signal, and change the synaptic weights according 54

to the prediction error. The prominent suggestion that motivation might be encoded in 55

the average or tonic dopamine level, and reward prediction errors in the burst or phasic 56
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activity [17] has recently been questioned; it seems to be contradicted by the 57

observation of fast-changing dopaminergic activity that encodes motivation [18–20]. 58

Nevertheless, the motivation and teaching signals could both be provided by other 59

means. For example, the activity of striatal cholinergic neurons may inform what the 60

dopaminergic neurons encode at the moment. Such a role of acetylcholine is consistent 61

with the observation that the cholinergic interneurons pause when feedback is 62

provided [21], with the models of intreacellular pathways suggesting that the reduced 63

concentration of acetylcholine is necessary for the striatal plasticity [22], and with other 64

data reviewed elsewhere [20]. In this paper we assume that striatal neurons can read 65

out both motivational and teaching signals encoded by dopaminergic neurons, and we 66

leave the details of the mechanisms by which they can be distinguished to future work. 67

Results 68

Following the OpAL model [8], we assume that the positive consequences of actions are 69

encoded by synaptic weights within the Go pathway. More precisely, we claim that the 70

typical payoff of a particular action in a particular situation is encoded in the strength 71

of the connections from the cortical neurons selective for the situation to the striatal Go 72

neurons selective for the action. We denote these weights by G (see Fig 1), and propose 73

that after learning, the weights G represent the mean payoff for an action. 74

Mathematically, the collective strength of the weights G corresponds to a single, 75

non-negative number. The negative consequences, on the other hand, are encoded in the 76

synaptic connections of striatal No-Go neurons. We denote their weights by N , and 77

propose that after learning, they represent the mean cost of an action. Just as with G, 78

we mathematically represent the collective strength of the weights N by a single, 79

non-negative number. 80

To learn the positive and negative consequences of actions respectively, the striatal 81

neurons can take advantage of the fact that these consequences typically occur in 82

different moments in time. Let us consider a situation in which an animal performs an 83

action that involves an effort in order to obtain a reward: Fig 2a sketches a task in 84

which a rat is given the opportunity to press a lever in order to obtain a food pellet. 85

Due to the effort, the instantaneous reinforcement during the course of this action is 86
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negative at first, while pressing the lever. Then, it turns positive at the time the payoff 87

is received. Fig 2b sketches the resulting changes in the synaptic weights. The leftmost 88

display shows the initial weights. While making an effort to perform an action, the 89

reward prediction error is negative. Similarly as in previous models [8, 12], we assume 90

that the negative prediction error results in a strengthening of N (compare the red 91

arrows in the middle and the left displays in Fig 2b). This allows the weights N to 92

encode negative consequences. Later, reception of the payoff causes a positive prediction 93

error, which strengthens G. This leads the weights G to encode the positive 94

consequences. So if an experience involves both positive and negative consequences, 95

both weights are increased during the experience (compare the right and the left 96

displays in Fig 2b). 97

... for pellet
Press... 

a

b Cortex

Striatum

Fig 2. Qualitative description of learning payoffs and costs. (a) Operant
conditioning chamber setup: a rat obtains a food pellet by pressing a lever. (b)
Diagrams of changes in the weights G and N associated with lever pressing at each
stage of the experience presented in panel (a). In all diagrams, the black circles
represent the cortical neurons selective for the state (being in the operant box), and the
green and red circles represent the Go and No-Go populations of striatal neurons,
respectively, selective for the action (pressing lever). The thickness of the arrows linking
the circles represents the connection strength between the respective neuron
populations. The blue shading in the background indicates the strength of the
immediate reinforcement, with color intensity proportional to the magnitude of reward.

To mathematically implement these ideas, we need to model the weighs of the Go 98

pathway G, the weighs of the No-Go pathway N , and the prediction error. The reward 99

prediction error, which we denote by δ, quantifies the difference between the expected 100

reward and the received reward r. If r is negative, we shall speak of cost, and when r is 101
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positive, we shall speak of payoff. Payoff creates positive reinforcement, and thus 102

attraction, whilst cost creates negative reinforcement, and thus avoidance. The expected 103

reward, on the other hand, directly corresponds to the expected payoffs and costs, 104

which - according to our theory - are represented by the synaptic weights G and N . We 105

take the expected reward to be the average over the expected payoff and the expected 106

cost. All together, we model the reward prediction error as 107

δ = r − 1

2
(G−N) . (1)

Equipped with the quantities δ, G and N , we can formulate our theory of learning 108

payoff and cost. To do so, we simply describe how the collective connection strengths G 109

and N change when a prediction error δ is received; we use ∆G and ∆N to denote the 110

changes in connection strengths. Note that any update only applies if the resulting 111

weights are still positive - if an update would render any one weight negative, that 112

weight is set to zero instead. In all other cases, we follow Mikhael and Bogacz [16] in 113

prescribing 114

∆G = αfε (δ)− λG (2)

∆N = αfε (−δ)− λN, (3)

where α is the learning rate, ε is the slope parameter and λ the decay rate. The 115

slope parameter ε controls the strength of the nonlinearity exhibited by the function fε, 116

which we introduce in Fig 3d - e. The contribution of this article is to point out that if 117

G and N change according to these rules, they will eventually represent payoff and cost. 118

There is an intuition for each term in the rules 2 and 3. These intuitions are most 119

easily gained by constructing the rules from scratch; therefore we will now retrace the 120

three steps of that construction. Several models of learning in Go and No-Go neurons 121

assume that the effect of the prediction error on G is opposite to its effect on N [7, 8]. 122

We thus start by proposing that ∆G and ∆N might simply be proportional to the 123

prediction error and its negative, respectively. To see whether this proposal works, we 124

formulate it mathematically and simulate the learning of an alternating sequence of 125
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                 �δ   for   δ < 0
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{

Fig 3. The incremental construction of the learning rules. (a) - (c) The
different stages in the construction of the learning rules. All panels feature a
mathematical formulation of the rules at the given stage, and a simulation of these rules.
The rewards in those simulations, indicated by black dots, alternate between a fixed
payoff of magnitude 20 and a fixed cost of −20. The Go weights G are depicted in
green, the negative No-Go weights −N are depicted in red. The parameters used in the
simulations were α = 0.300, ε = 0.443 and λ = 0.093. (d) - (f) Definition, visualization
and properties of the nonlinear function fε.

costs −n and payoffs p. Fig 3a shows both the mathematical formulation and the 126

simulation. There is a problem: the strengthening of N due to negative prediction error, 127

caused by the cost, is always immediately reversed by the following positive prediction 128

error caused by the payoff. The same is true for the changes in G. As illustrated by the 129

simulation, there is no net effect of learning. 130

To overcome this problem, we proceed by damping the impact of negative prediction 131

errors (which are usually caused by costs) on G, and the impact of positive prediction 132

errors on N . This is logical, since costs should not alter the estimate G of the payoffs, 133

and vice versa. Such damping can be achieved by replacing the simple proportionality 134

to δ in the first proposal by a nonlinear dependence, mediated by the functions depicted 135

in Fig 3e. We update our mathematical formulation accordingly, and again simulate the 136

effects of the previously used reward sequence - both these steps are illustrated in Fig 137
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3b. The simulation shows that, while producing the appropriate tendencies, these rules 138

cause unconstrained, ongoing strengthening of both connections. Such dynamics are 139

neither biologically plausible, nor useful to infer the actual payoff and cost. 140

Finally, to stop unconstrained strengthening and stabilize the weighs, we balance 141

growth with decay. Adding decay terms to the mathematical formulation of the rules 142

yields their final form 2 and 3. The simulation in Fig 3c suggests that the construction 143

was successful: the final version of the rules allows the weights to converge to p and n 144

respectively. 145

Mathematical analysis 146

After providing an intuitive understanding of the learning rules and their mathematical 147

formulation, we proceed to a more rigorous analytical treatment. We saw the potential 148

of Mikhael and Bogacz’ [16] rules to learn payoffs and costs. Appropriate choice of 149

parameters is key to unlock that potential, and we shall now investigate how that choice 150

must be made. In particular, we will derive certain relations between parameters that 151

must be satisfied for payoff and cost to be learned. 152

Originally, the rules 2 and 3 were meant to describe learning of reward statistics. 153

Mikhael and Bogacz [16] showed that after learning, particular combinations of G and 154

N will encode the mean ER and the mean spread E |R− ER| of the received rewards. 155

For further reference, we denote these important statistics by q := ER and 156

s := E |R− q|. How are the mean and the mean spread of received rewards related to 157

payoff and cost? Consider the reward statistics of an action that reliably requires effort 158

to produce a payoff. Repeat that action multiple times, and record all received rewards, 159

the costs as well as the payoffs. Finally, analyze how all these received rewards are 160

distributed. If effort was required to earn the payoff, the distribution of rewards will 161

turn out bimodal, as schematically shown in Fig 4. It features two peaks, one centered 162

around the mean payoff p, and one centered around the mean cost −n, respectively. Fig 163

4 also shows the mean q and the mean spread s of that distribution. We observe that 164

payoffs and costs are both exactly one mean spread s away from the center q of the 165

distribution - the payoff above, and the cost below. This implies that there is, at least 166

in this representative case, a strong connection between payoffs and costs and the 167
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reward statistics: 168

p = q + s (4)

−n = q − s (5)

This connection allows us to set up conditions for the result of learning: if G and N 169

are to represent payoff and cost, they must approach q + s and −q + s respectively. 170

Equivalently, we can ask for 1/2 (G−N) and 1/2 (G+N) to approach q and s in the 171

course of learning. 172

0
p-n

q

ss

r

P(r)

Fig 4. The relation of reward statistics to payoff and cost. The graph shows a
representative reward distribution over the magnitude r of all received rewards. The
parts of the distribution that indicate negative rewards (costs) are colored red, while the
parts that indicate positive rewards (payoffs) are colored green. The mean q and the
mean spread s are indicated above the distribution, the mean cost −n and the mean
payoff p are indicated below the distribution.

After revealing the link between reward statistics and payoff and cost, we are ready 173

to derive the relations necessary to learn the latter. To that end, we first determine the 174

connection strengths G and N that result from training on stochastic rewards. Such 175

uncertain rewards are sampled at random from a fixed distribution. Then, we 176

implement the newly identified conditions, demanding for 1/2 (G−N) to approximate 177

q and 1/2 (G+N) to approximate s after training is finished. From these conditions, 178

we will be able to derive the desired parameter relations. 179

Working through these steps is simpler after changing variables from G and N to 180

Q := 1/2 (G−N) and S := 1/2 (G+N) right away. We saw that the new variables Q 181

and S have a clear computational interpretation: if learning goes as planned, Q and S 182

track the mean q and the mean spread s of the experienced reward. To determine how 183

Q and S change due to prediction errors δ, we simply add and subtract the update rules 184
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2 and 3. Certain convenient properties of the nonlinear functions fε help to further 185

simplify the resulting equations: Fig 3f shows that subtracting and adding functions 186

depicted in Fig 3e give functions proportional to identity and absolute value, 187

respectively. 1 Exploiting these properties, we obtain 188

∆Q = αQδ − λQ (6)

∆S = αS |δ| − λS. (7)

Here, for brevity of notation, we introduced the effective learning rates 189

αQ = α (1 + ε) /2 and αS = α (1− ε) /2. Note that the changes of Q and S are 190

proportional either to the prediction error itself or to its absolute value, in contrast to 191

the changes of G and N . 192

Now, let us determine the strengths of the weights G and N , or equivalently of the 193

variables Q and S, after many encounters with an action. When learning the rewards of 194

a previously unknown action, Q and S typically change a lot during the first trials. 195

These changes then get smaller and smaller as more experience is integrated - the 196

learning curve plateaus. After enough trials, Q and S stop changing systematically, and 197

start to merely fluctuate about some constant values, which we denote by Q∗ and S∗
198

and refer to as equilibrium points. In mathematical terms, directed learning stops when 199

we may expect Q and S to remain unchanged by another trial, i.e. when 200

E(∆Q) = E(∆S) = 0. If that stage is reached, the equilibrium points can be inferred by 201

computing the mean value of the fluctuating variables: Q∗ = EQ and S∗ = ES. With 202

these identities and the learning rules 6 and 7, we can determine the equilibrium points 203

Q∗ and S∗: 204

0 = E∆Q = E [αQ (R−Q)− λQ] = αQ (q −Q∗)− λQ∗ (8)

0 = E∆S = E [αS |R−Q| − λS] = αSE |R−Q| − λS∗. (9)

To solve these equations, we shall make the additional assumption that the 205

1Explicitely, one easily verifies that fε (x)− fε (−x) = (1 + ε)x and fε (x) + fε (−x) = (1− ε) |x|.
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fluctuations of Q about Q∗ are small. This assumption is justified whenever α is 206

sufficiently small, and allows us to approximate E |R−Q| ≈ E |R−Q∗|. Collecting all 207

those intermediate results, we may solve 8 and 9 for the equilibrium points. The 208

solutions read 209

Q∗ = cQ q (10)

S∗ ≈ cS E |R− cQq| , (11)

with cQ = aQ/ (αQ + λ) and 1/cS = αS/λ. Those are the approximate values of Q 210

and S after learning. 211

Next, we need to implement the conditions we inferred from Fig 4. Thanks to our 212

choice of variables, this simply amounts to requiring that Q converge to the mean 213

reward q, and S to the mean spread s, i.e. requiring Q∗ = q and S∗ = s. Inserting the 214

approximate values 10 and 11 produced by the learning rules, we obtain 215

cQ q = q (12)

cS E |R− cQq| = s (13)

These equations are central to this publication. Their left hand side represents the 216

result of learning according to Mikhael and Bogacz’ [16] rules. Their right hand side 217

specifies what needs to be learned if G and N really represented payoffs and costs, as 218

Collins and Frank hypothesized [8]. Equating the left and the right hand side amounts 219

to merging both theories. It allows us to determine how the parameters would be 220

related if both theories were exactly true: for 12 and 13 to hold, α, β and ε must take 221

values such that cQ = 1 and cS = 1. 222

This result evokes several questions: Is it at all possible to satisfy the derived 223

conditions? What do the conditions mean with respect to the parameters α, λ and ε? 224

And finally, is there a practical way to determine sets of parameters α, λ and ε which - 225

at least approximately - satisfy the conditions? We discuss each of these questions in 226

the following paragraphs. 227
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Firstly, is it possible to satisfy cQ = 1 and cS = 1 exactly? Examining the definition 228

cQ = αQ/ (αQ + λ) quickly reveals that letting cQ → 1 would amount to letting λ→ 0 229

2. Now, we derived above that after learning, S will fluctuate about its equilibrium 230

point S∗ ≈ cS E |R− cQq| with cS = αS/λ. In order to keep the equilibrium point S∗
231

finite as λ→ 0, we would therefore be forced to have αS → 0 also. This, though, would 232

pose a real problem: αS is the effective learning rate for S - having it vanish would 233

imply stopping learning in S all together. We must conclude that strict satisfaction of 234

the constraints cQ = 1 and cS = 1 is not compatible with non-vanishing learning rates 235

that lead to a finite equilibrium. Specifically, cQ = 1 can only ever hold approximately 236

if the spread s is to be learned in finite time. Nevertheless, no such problem arises when 237

cS is set to 1 exactly. 238

Now, what do the constraints cQ ≈ 1 and cS = 1 mean in terms of the parameters α, 239

λ and ε ? In the previous paragraph, we saw that cQ ≈ 1 is equivalent to λ/αQ ≈ 0. 240

Since both λ (a decay constant) and αQ (an effective learning rate) are inherently 241

positive, we may rewrite this as λ/αQ � 1. Inserting the definition αQ = α (1− ε) /2 242

immediately yields 243

2λ� α (1 + ε) (14)

The other condition, cS = 1, is easily translated analogously. We need only use the 244

definitions cS = αS/λ and αS = α (1− ε) /2 to obtain 245

2λ = α (1− ε) . (15)

Equations 14 and 15 constitute the exact relations between the parameters α, γ and 246

ε that need to hold for payoffs and costs to be estimated accurately. They cannot be 247

further simplified, but we may use them to gain some more insight into the required 248

magnitudes of the individual parameters: by substituting 2λ according to Eq 15 on the 249

right hand side of Eq 14, one quickly reaches the conclusion that ε ≈ 1. Reinserting this 250

into Eq 14 yields λ� α. In conclusion, we found that it is necessary (though not 251

sufficient) for accurate learning of payoffs and costs to maintain a small, but non 252

2Technically, it amounts to λ/αQ → 0. However, αQ is an effective learning rate, and so must take
values smaller then one. Thus, we really need to let λ→ 0
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vanishing nonlinearity ε in the transmission of the prediction error signal, as well as a 253

non vanishing decay rate λ, which is much smaller than the learning rate α. 254

Finally, how can such parameters α, λ and ε practically be determined? To 255

implement the conditions cQ ≈ 1 and cS = 1, one can for instance express λ and ε in 256

terms of α, cQ and cS . It is straight forward to invert the definitions of cQ and cS in 257

order to yield ε = (1− cS(1/cQ − 1))/(1 + cS(1/cQ − 1)) and λ = α(1− ε)/(2cS). Then, 258

one chooses α freely at one’s convenience, and cQ and cS close (or, in case of cS , equal) 259

to one. Importantly, cQ must be chosen smaller then one to result in a positive λ. From 260

these choices, one finally obtains ε and λ to work with the chosen α. Our simulations 261

suggest that even values such as cQ = 0.7 and cS = 0.9, in combination with a learning 262

rate of, say α = 0.3, are close enough to one to allow reasonably accurate estimations of 263

payoff and cost. This can be seen in Fig 3: the simulations shown in there used those 264

exact settings, which equivalently means that ε = 0.443 and λ = 0.093. 265

In summary, we used a statistical argument - the connection between payoffs and 266

costs and the reward statistics - to determine conditions under which payoffs and costs 267

can be learned with the update rules 2 and 3. 268

Deterministic reward sequences 269

In the preceding section, we derived relations that are necessary for successful learning 270

of payoff and cost. If rewards are awarded stochastically, those relations are also 271

sufficient for successful learning. But what happens to the weighs G and N if the 272

received rewards follow a strong pattern? Assume, for instance, that an action reliably 273

yields a fixed cost −n followed by a fixed payoff p. Under which additional conditions 274

do G and N then still reflect the magnitudes of payoff and cost after learning? 275

To answer that question, we must again determine the connection strengths that 276

result from experiencing the action time and again. Now, we do not have to rely on a 277

probabilistic treatment - when the pattern of the rewards is fully known, it is possible to 278

determine the evolution of G and N exactly. As in the previous section, we will 279

concentrate on the result of learning rather than on its dynamics. Here, this amounts to 280

determine the fixed points of the learning rules. These fixed points are simply those 281

values of G and N (or equivalently of the alternative variables Q and S we defined 282
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above) that are invariant under the updates caused by the action. We denote the fixed 283

points by G∗ and N∗, or Q∗ and S∗. During learning, the variables converge to their 284

respective fixed points, and cease to change notably once they arrive in their vicinity. 285

First, we focus on determining the fixed point of Q. Note that each encounter with 286

the action yields two updates of Q: one due to the cost and one due to the payoff. 287

Mathematically, we can formulate this as 288

Qafter action = Qbefore action + (∆Q)cost + (∆Q)payoff. (16)

To find Q∗, demand that these successive updates have no net effect on Q: If 289

Qafter action equals Qbefore action, then Qbefore action can rightfully be called fixed point. 290

If this is so, the two updates must have canceled each other: 291

(∆Q)cost + (∆Q)payoff = 0

This condition, in combination with the update rules 2 and 3, allows to determine 292

Q∗ in terms of p, n and the parameters α, ε and λ. One substitutes (∆Q)cost and 293

(∆Q)payoff according to the update rules (note that the Q entering the second update 294

had already been changed by the first update), and then solves the equation for Q. A 295

straight forward calculation yields 296

Q∗ =
1

2− αQ − λ
(n(αQ + λ− 1) + p) (17)

where αQ = α (1 + ε) /2. Now, recall that the definition of Q in terms of G and N is 297

Q = 1/2 (G−N), and that true payoffs and costs of in this model are p and n. If G 298

and N represented the true payoffs and costs after learning, it must be true that G∗ ≈ p 299

and N∗ ≈ n, and thereby 300

1

2− αQ − λ
(n(αQ + λ− 1) + p) ≈ 1

2
(p− n) . (18)

Just as equations 12 and 13, this equation is an interface between the results of 301

Mikhael and Bogacz’ [16] update rules on the left hand side, and Collins and Frank’s 302

hypothesis [8] on the right hand side. For both sides to agree, we must have 303
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αQ + λ ≈ 0. (19)

This is a novel condition for learning the correct magnitudes of payoffs and costs 304

from a deterministic reward pattern. The definition of αQ and the previously derived 305

conditions 14 and 15 may be used to transform this novel condition into the simpler 306

form α� 1. 307

Next, we repeat the same analysis for S. Since we search for additional conditions on 308

the parameters, we are free to use the original conditions 14 and 15 to simplify our 309

calculations. The only complication we encounter is the appearance of Q in the update 310

rules of S, which we resolve by substituting Q with Q∗, acknowledging that the fixed 311

points of S and Q depend on each other. We arrive at 312

S∗ ≈ 1

2
(p+ n) . (20)

Again, using the definition S = 1/2(G+N) allows to compare the result of learning 313

with the the strengths required to represent payoffs and costs. We immediately find 314

that G∗ ≈ p and N∗ ≈ n already hold. Thus, 19 is the only additional condition for 315

successful learning of payoff and cost from rewards that follow a strong pattern. 316

From the results presented in this section, we conclude that the learning rules 2 and 317

3 facilitate learning of the magnitudes of fixed payoffs and costs that occur reliably one 318

after the other. However, we also saw that this is only true if 19 holds in addition to the 319

conditions that we derived in the previous section. 320

Summary of analytic results 321

The analysis above revealed the conditions under which the striatal plasticity rules 2 and 322

3, put forward by Mikhael and Bogacz [16], could serve the hypothetical function of the 323

striatum proposed by Collins and Frank [8]: to represent the magnitudes of the payoffs 324

and costs of actions. We identified the conditions in two different paradigms: first, we 325

investigated learning from purely stochastic rewards sampled from a fixed distribution. 326

Then, we considered a deterministic pattern of rewards. We obtained two key results: 327

� Consider a reward distribution - obtained from multiple encounters with an action 328
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- that is shaped by payoffs and cost, as the one shown in Fig 4. If trained on 329

rewards sampled from that distribution, the plasticity rules 2 and 3 will enable 330

learning of the mean payoffs and costs if 331

2λ� α (1 + ε) (21)

2λ = α (1− ε) (22)

hold. These conditions imply, but do not follow from, a non-vanishing but small 332

nonlinearity in the transmission of the prediction error, and a non-vanishing but 333

small3 decay of the connection weights. 334

� If trained on a pattern of rewards that alternates between payoffs of magnitude p 335

and costs of magnitude n, the plasticity rules 2 and 3 will capture the those exact 336

payoffs and costs if, in addition to 21 and 22, 337

α� 1 (23)

holds. In words, unbiased learning of payoffs and costs in deterministic scenarios 338

explicitly requires a small learning rate α. 339

Simulations of learning 340

The previous sections revealed what to expect from training the learning rules 2 and 3 341

on certain types of reward. Specifically, we investigated the connection strengths G and 342

N after many experiences of either totally predictable or totally random rewards. In 343

this section, we aim to confirm and extend those results using numerical simulations 344

rather then analytic methods. 345

Fig 5 shows the results of simulating the gradual change of connection weights in 346

four different tasks. In all those simulations, G and N change according to the learning 347

rules 2 and 3. The parameters we used roughly fulfill the conditions 12 and 13 for 348

learning of the correct magnitudes of payoffs and costs 4. 349

3A small decay is characterized by a decay rate λ which is small compared to the learning rate α.
4The parameters are also chosen to facilitate quick convergence. The values presented in Fig 5a
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α = 0.3

ε = 0.22

λ = 0.12

a

b

c

d

Fig 5. Simulations of learning. In all graphs, the collective strength G of the Go
weights is depicted in green, while the negative collective strength −N of the No-Go
weights is depicted in red. The received rewards are indicated by black dots in the
panels on the left, while the underlying reward distributions are represented by gray
background shadings in the panels on the right. Each simulation shows how G and N
change due to the reception of 30 prediction errors. Panel (a) contains a simulation
based on predictable, alternating rewards. It also contains the parameter values used for
the simulations. Panels (b) to (d) show both single and averaged simulations of
stochastic rewards. The shaded areas around the averages of G and N in the right
column indicate one standard deviation. The bars behind the averaged simulations
indicate the mean and mean spreads of the respective reward distributions.

mirror that compromise.
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The simulation in Fig 5a is based on a repeating an action that reliably results in a 350

cost −n, followed by a payoff p. An analytic treatment of that case can be found in the 351

previous sections. Both weights constantly oscillate due to the alternation of payoff and 352

costs. This oscillating behavior is superimposed with learning curves that take the 353

weights from their initial values towards the magnitudes of the payoffs and costs 354

respectively. After 30 trials, G and N represent good approximations of p and n. 355

Fig 5b is similar to Fig 5a, with a slight variation: Just as in Fig 5a, payoffs and 356

costs alternate reliably. But while the cost is again held constant at −n, this time the 357

payoff P is sampled from a fixed distribution in each trial. Thus, the task includes both 358

stochastic and deterministic components: each repetition of an action results in a fixed 359

cost, which is followed by an uncertain reward. The depicted simulations show that 360

under such conditions, N eventually represents the cost n, while G converges towards 361

the mean payoff EP . 362

Finally, panels 5c and 5d contain simulations of repeated actions with rewards drawn 363

at random from fixed distributions. We simulate the experience resulting from such 364

actions by sampling rewards from a fixed distribution on each trial. The stochastic 365

nature of this procedure causes the evolution of the weights G and N to be different 366

each time the simulation is run. To overcome that effect and segregate random 367

fluctuations from reproducible effects, we collect and average a large number of runs. 368

Each row in Fig 5b - d contains both a single run of the simulation and an average over 369

500 successive runs. In the above sections, we proved that in purely stochastic tasks, the 370

weights would approximate key statistics of the reward distribution after convergence. 371

Those statistics are indeed approximated in the simulations, confirming the results of 372

the analytic treatment above. 373

Simulations of the effect of dopamine depletion 374

In the previous sections, we focused on the change of the synaptic weights associated 375

with a single action during the accumulation of experience. In this section, we redirect 376

our attention. Instead of considering one action during learning, we now consider 377

multiple actions after learning, and ask: can effects of dopamine depletion on choice 378

behavior be explained in terms of payoffs versus costs? 379
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In a classic experiment illustrated in Fig 6a, rats were given a choice between 380

pressing a lever in order to obtain a nutricious pellet, and freely available lab chow [23]. 381

Normal animals were willing to work for pellets, but after dopamine depletion they were 382

not any more willing to make an effort and preferred a less valuable but free option. 383

Collins and Frank [8] provided a mechanical explanation for this surprising effect. The 384

theory proposed in this paper accounts for it in a conceptually similar but slightly 385

simpler way. Here, we explain our modeling of the experiment, and then describe the 386

simulations - the differences to the account of OpAL model are presented in Discussion. 387

To model the experiment, we need to specify how the striatal weights G and N and 388

the motivation signal affect the output of the basal ganglia system, and how that output 389

then affects choice. We refer to the output of the basal ganglia as the thalamic activity, 390

denoted by T . T depends on the cortico-striatal weights G and N , and dopaminergic 391

motivation signal denoted by D. Even though this relationship might admittedly be 392

complex, we restrict ourselves to just capture the signs of the dependencies by using a 393

linear approximation: 394

T = DG− (1−D)N (24)

In the above equation, the first term DG corresponds to input from the striatal Go 395

neurons. This term is positive, because the projection from striatal Go neurons to the 396

thalamus involves double inhibitory connections (see Fig 1) resulting in an overall 397

excitatory effect. The activity of the Go neurons depends on synaptic weights G. We 398

assume that their gain is modulated by the dopaminergic input D, based on the 399

observation of an increased slope of the firing-input relationship in the presence of 400

dopamine [24]. The second term −(1−D)N corresponds to input from the striatal 401

No-Go neurons. It has a negative sign because the projection form the No-Go neurons 402

to the thalamus includes three inhibitory connections. The activity of the striatal No-Go 403

neurons depends on their synaptic weights N , and we assume that their gain is reduced 404

by dopamine, so the synaptic input is scaled by (1−D). In Eq (24), we assume that 405

D ∈ [0, 1], and that the value of D = 0.5 corresponds to a baseline level of dopamine for 406

which both striatal populations equally affect the thalamic activity. Although arising 407

from a slightly different induction, the action value defined by Eq 24 is directly 408
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a

Press for pellet
Free lab chow

Pellet Chow

Cortex

Striatum
Dopamine

Dopamine

0.500

0.302

b

c

9.3 3.24.4 0.2

Fig 6. Effects of dopamine depletion on the willingness to exert effort. (a)
Schematic illustration of the experimental setup. (b) Action selection in dopamine intact
state. Green and red circles on the left denote striatal Go and No-Go neurons associated
with pressing the lever, while the green and red circles on the right denote the neurons
associated with approaching free food. The strength of the synaptic connections, which
result from simulated learning, are indicated by the thickness of the arrows, and labels.
The parameters used for the simulations were obtained through a fit of the model to the
experimental data. The blue circle represents a population of dopaminergic neurons,
and its shading indicates the level of activity. (c) Action selection in dopamine depleted
state. The notation is the same as in panel B, but additionally the light green color of
the connection of the Go neurons indicates that their gain has been reduced, while the
dark red color of the connections of the No-Go neurons symbolizes an increased gain.

proportional to the action value proposed by Collins and Frank, which is defined by Eq 4 409

of their publication [8]: Q ∝ βGG− βNN . One easily verifies the direct proportionality 410

PLOS 21/41

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346114doi: bioRxiv preprint 

https://doi.org/10.1101/346114
http://creativecommons.org/licenses/by/4.0/


of the two expressions by rewriting D = 1/2 (1 + (βG − βN ) / (βG − βN )). 411

How does thalamic activity affect choice? Again, we use a very simple dependency 412

to capture the key aspects of that relationship: In our model of the experiment, we 413

calculate the thalamic activity for each option. Then, we add some random noise 414

independently to each option. Finally, all options with negative noisy thalamic activity 415

are discarded, and the option with the highest noisy thalamic activity is chosen. If the 416

noisy thalamic activity is negative for all available options, no choice will be made; the 417

model defaults to staying inactive. 418

Often in similar situations, the softmax rule is the preferred choice procedure. 419

According to that rule, one should first transform the set of different action values (or 420

thalamic activities in this case) into a probability distribution over the available actions, 421

by use of the softmax function. Then, one should sample an action from that 422

distribution, and declare it the choice of that trial. Collins and Frank’s OpAL model [8] 423

exemplifies the use of the softmax rule. 424

We deliberately decided against this conventional approach and in favor of the above 425

described procedure to accommodate a certain feature of the data presented in [23]: 426

The dopamine depleted group of rats differed from the control group not only in their 427

willingness to work for food, but also in their overall food consumption. The dopamine 428

depleted rats consumed less food in total (see Fig 7c). We can hope to capture this 429

effect with our model, since it allows for the possibility to make no choice at all, and 430

thus consume neither of the food items. A softmax decision rule, on the other hand, 431

forces a choice on each trial, and must therefore always lead to the same number of 432

consumed food items. 433

Fig 6b illustrates how the model can account for the behaviour when the dopamine 434

level has a normal baseline value. In the figure, the strength of the cortico-striatal 435

connections is denoted by the labels and the thickness of arrows. Pressing the lever 436

gives a high payoff, so the weights of Go neurons selective for this action are strong, but 437

it also has a substantial cost, so the No-Go weights are also present. On the other hand, 438

the free food is not particularly nutritious so the Go weights are weak, and there is no 439

cost, so the No-Go weight is negligible. When the dopamine level is at baseline, the 440

positive and negative consequences are weighted equally, so the thalamic neurons 441

selective for pressing the lever have overall higher activity, which ultimately leads to a 442
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high likelihood for this action to be chosen over the free option. By contrast, Fig 6c 443

shows that when the dopamine level is reduced, costs are weighted more than payoffs, 444

and the thalamic activity associated with pressing the lever drastically decreases. 445

Approaching free food has only negligible cost; therefore, the activity of thalamic 446

neurons selective for this option is now higher, and this action is overall more likely to 447

be chosen. 448

A quantitative fit of our model to Salamone et al.’s experimental results [23] is 449

illustrated in Fig 7. The panels on the left side in Fig 7 summarize experimental data: 450

the top-left display corresponds to a condition in which both high-valued pellets and the 451

low-valued lab chow were freely available. In this case, the animals preferred pellets 452

irrespectively from dopamine level. The bottom-left panel corresponds to the condition 453

in which the animal had to press a lever in order to obtain a pellet, and as mentioned 454

before, after injections of a dopamine antagonist they started to prefer the lab chow. 455

control depleted
0

10

In
ta

k
e
 [
g
]

a

Pellets

Chow

control depleted
0

100

C
h
o
ic

e
s
 [
#
]
b

control depleted
0

10

In
ta

k
e
 [
g
]

c

control depleted
0

100

C
h
o
ic

e
s
 [
#
]

d

Experiment Simulation

Fig 7. Frequency of choosing pellets and lab chow in dopamine intact (dark
blue) and dopamine depleted (light blue) states. The top displays (a) and (b)
correspond to a condition with free pellets, while the bottom displays (c) and (d)
correspond to a condition where pressing a lever was required to obtain a pellet. The
left displays (a) and (c) re-plot experimental data. The values in those displays were
taken from Figures 1 and 4 respectively in the paper by Salamone et al. [23]. The right
displays (b) and (d) show the results of simulations. The parameters used to simulate
learning were α = 0.1, ε = 0.6327 and λ = 0.0204.
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In our model of the experiment, we run through a sequence of trials mimicking those 456

illustrated in Fig 6: on each trial, the model makes a choice between two actions - 457

pressing a lever or approaching lab chow - or remains inactive. Before the main 458

experiments, the animals were trained to press lever to obtain reward and were exposed 459

to the lab chow [23]. To parallel this in simulations, the model was first trained such 460

that it experienced each action a number of times, received corresponding payoffs and 461

costs, and updated its weights according to equations 2 and 3. The weights resulting 462

from that learning are reported in Fig 6b and Fig 6c. Then, the model was tested with 463

baseline and reduced dopaminergic motivation signal. As described in Materials and 464

Methods, the parameters of the model were optimized to match experimentally 465

observed behavior. As shown in the right displays in Fig 7, the model was able to 466

reproduce the observed pattern of behavior. This illustrates model’s ability to capture 467

both learning about payoffs and costs associated with individual actions and the effects 468

of the dopamine level on choices. 469

An actor-critic variation 470

So far, we assumed that the reward prediction is computed by the same striatal neurons 471

that encode the payoffs and costs of actions. Only one network was involved: that 472

which is responsible for the choice of action. We refer to such a network as ‘actor’ in the 473

remainder of this exposition. In this section, we look at how the theory described above 474

generalizes to the actor-critic framework [26]. That framework assumes that the reward 475

prediction is not computed by the actor, but by a separate group of striatal patch 476

neurons called the ‘critic’. More formally, the purpose of that critic is to learn the value 477

V of the current state. 478

One way to generalize our theory in this direction is to keep the actor network 479

unaltered, while substituting it with a similar critic network that learns by the very 480

same rules 2 and 3: 481

∆Gcritic = αfε (δ)− λGcritic (25)

∆Ncritic = αfε (−δ)− λNcritic (26)
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The crucial difference between the actor and the critic is that the critic network is 482

not selective for the action, but only for the state. It thus learns the value of a state 483

irrespective of the actions chosen. Importantly, the critic is in charge of suppling the 484

reward predictions. Those predictions are compared to the actual outcomes to produce 485

the reward prediction errors δ from which both networks learn. 486

We take the state value to be encoded in the difference of Gcritic and Ncritic: 487

Vcritic = 1/2 (Gcritic −Ncritic). The change of the state value on each trial can be 488

obtained by subtracting equations 25 and 26: 489

∆Vcritic = α
(1 + ε)

2
δ − λVcritic (27)

The prediction error δ - which teaches the actor as well - is the difference between 490

the obtained reward r and the reward prediction by the critic: 491

δ = r − Vcritic (28)

What would be learned with that architecture? If the same action is selected on each 492

trial, the actor will learn in exactly the same way as the critic. Then, the prediction 493

error in the actor-critic model is the same as in the actor-only model described above, 494

and the weights of the actor in the actor-critic model converge to exactly the same 495

values as for the actor-only model. However, this reasoning does not seem to apply if 496

more than one action is available: empirically, animals then select the actions that 497

maximize their rewards in their own perception. In the process of learning, they will 498

likely sample all available actions. 499

If such behavior generates input for an actor-critic model, the critic will integrate 500

the experience of all those trials, and will thus represent a mixture of the expected 501

rewards associated with the available actions. This generally interferes with correct 502

learning of the payoffs and costs of the different actions. However, there is a caveat: one 503

of the available actions will eventually proof most useful; as soon as the animal has 504

determined that best action, it will select it in the majority of cases. That, in turn, 505

forces the critic into mainly representing the expected reward of this best action. As a 506

final consequence, also payoff and cost of that best action are inferred correctly. 507

We confirmed the conclusions of this discussion empirically for the model specified 508
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above: in Fig 8, we present simulations of a task in which the subject must choose 509

between two actions. Both actions reliably yield a constant cost followed by a constant 510

payoff each time they are selected. One of the actions is unambiguously superior to the 511

other: its payoff is larger and the its cost is lower. 512
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Fig 8. Actor-only in comparison with actor-critic learning. The columns
labeled with ‘action value 1’ and ‘action value 2’ show the simulated evolution of the
collective synaptic weights G and N of the actor network over 30 successive trials. The
weights G are drawn as solid green lines, the negative weights N are drawn as solid red
lines. The rewards obtained by choosing the respective actions are indicated by black
dots. For the actor-critic simulations (second row), we additionally provide the
evolution of the state value in panel c. There, the state value Vcritic is represented by a
solid purple line. The expected rewards of both actions are indicated by dashed
horizontal lines. The parameter settings used in these simulations were α = 0.4,
ε = 0.519, λ = 0.1013 and β = 0.9. The same set of parameters was used for both the
actor-only and the actor-critic model.

Both an actor-only model and an actor-critic model interacted with that task. On 513

each trial, an action was selected by sampling from a softmax distribution over all 514

available actions: the probability of choosing action a was proportional to exp (βQa), 515

where Qa = 1/2 (Ga −Na) was the action value, and β was the softmax temperature. 516

Fig 8 shows the temporal evolution of the involved synaptic weights over the course of 517

learning. Panels 8a and 8b depict the actor-only evolution of the weights G and N that 518

encode the payoffs and costs of of actions 1 and 2, respectively. For both actions, 519

payoffs and costs are learned correctly. Learning is notably slower for action 1. This is 520
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easily explained: action 1 is the worse of the two options, and thus chosen much less 521

frequent. In contrast, the actor-critic driven evolution of the same weights presented in 522

panels 8d and 8e leads to a correct estimate of the payoff and cost only for the superior 523

action 1. Learning is impaired for the inferior action 2, as anticipated in the qualitative 524

discussion above. The state value, presented in panel 8c, provides further confidence in 525

the validity of that discussion: Instead of encoding a mixture of the values of all 526

available actions, it converges to the value of the superior action, indicated by the 527

higher of the two dashed lines. 528

Discussion 529

This article describes how the positive and negative consequences of actions can be 530

separately learned on the basis of a single teaching signal encoding reward prediction 531

error. In this section we relate the theory with data and other models, state 532

experimental predictions, and highlight the directions in which the theory needs to be 533

developed further. 534

Relationship to experimental data 535

The model described in this paper was shown in simulations to avoid action requiring 536

effort when the motivational signal was reduced. The unwillingness to make an effort 537

for reward in dopamine depleted state has also been observed in other paradigms: 538

During a choice in a T-maze, dopamine depleted animals were less likely to go to an 539

arm with more pellets behind the barrier, but rather chose the arm with easily 540

accessible but fewer pellets [27]. Parkinson’s patients were not willing to exert as much 541

physical effort by squeezing a handle in order to obtain reward as healthy controls, 542

especially if they were off medications [28]. These effects can be explained in an 543

analogous way [8] by assuming that in the dopamine depleted state the effort of crossing 544

the barrier or squeezing a handle is weighted more, resulting in lower activity of 545

thalamic neurons selective for this option. Both in OpAL and the model proposed here, 546

reducing the dopamine level reduces the tendency to choose actions involving costs, and 547

thus changes preferences. 548

Let us now consider how the weight changes in our model relate to known data on 549
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Fig 9. Relationship of learning rules to synaptic plasticity and receptor
properties. (a) Instantaneous reinforcement r when an action with effort n is selected
to obtain payoff p. (b) Cortico-striatal weights before the action, after performing the
action, and after obtaining the payoff. Red and green circles correspond to striatal Go
and No-Go neurons, and the thickness of the lines indicates the strength of synaptic
connections. The intensity of the blue background indicates the dopaminergic teaching
signal at different moments of time. (c) The average excitatory post-synaptic potential
(EPSP) in striatal neurons produced by cortical stimulation as a function of time in the
experiment by [11]. The vertical black lines indicate the time when the synaptic
plasticity was induced by successive stimulation of cortical and striatal neurons. The
amplitude of EPSPs is normalized to the baseline before the stimulation indicated by
horizontal dashed lines. The green and red dots indicate the EPSPs of Go and No-Go
neurons respectively. Displays with white background show the data from experiments
with rat models of Parkinson’s disease, while the displays with blue background show
the data from experiments in the presence of corresponding dopamine receptor agonists.
The four displays re-plot the data from Figures 3E, 3B, 3F and 1H in the paper by [11].
(d) Changes in dopamine receptor occupancy. The green and red curves show the
probabilities of D1 and D2 receptor occupancies in a biophysical model of [29]. The two
dashed blue lines in each panel indicate the levels of dopamine in dorsal (60 nM) and
ventral (85 nM) striatum estimated on the basis of spontaneous firing of dopaminergic
neurons using the biophysical model [30]. Displays with white and blue backgrounds
illustrate changes in receptor occupancy when the level of dopamine is reduced or
increased respectively.
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synaptic plasticity in the striatum. Fig 9b illustrates the weight changes when an animal 550

performs an action involving a cost n in order to obtain a payoff p (Fig 9a), e.g. pressing 551

a lever in order to obtain a pellet. The direction of changes in G and N depending on 552

the sign of δ are consistent with the changes of synaptic weights of Go and No-Go 553

neurons observed at different dopamine concentrations. Fig 9c shows experimentally 554

observed changes in synaptic strengths when the level of dopamine is low (displays with 555

white background) and in the presence of agonists (blue background) [11]. Note that 556

the directions of change match those in the corresponding displays above, in Fig 9b. 557

These directions of changes in striatal weights are also consistent with other models 558

of the basal ganglia [8,12], but the unique prediction of the rules described in this paper 559

is that the increase in dopaminergic teaching signal should mainly affect changes in G, 560

while the decrease in dopamine should primarily affect N . Thus, the dopamine 561

receptors on the Go and No-Go neurons should be most sensitive to increases and 562

decreases in dopamine level respectively. This matches with the properties of these 563

receptors. The D2 receptors on No-Go neurons have a higher affinity and therefore are 564

sensitive to low levels of dopamine compared to D1 receptors on Go neurons [31]. This 565

property is illustrated in Fig 9d where the green and red curves show the probabilities 566

of D1 and D2 receptors being occupied as a function of dopamine concentration. The 567

blue dashed lines indicate the levels of dopamine in the striatum predicted to result 568

from spontaneous firing of dopaminergic neurons [30]. At these levels most D1 receptors 569

are deactivated. Thus the D1 receptor activation will change when the dopamine goes 570

up, but not when it goes down, as indicated by the black arrows. This is consistent with 571

the stronger impact of positive prediction errors on the weight changes of the Go 572

neurons implemented in Equation 2. By contrast, the D2 receptors are activated at 573

baseline dopamine levels, so their activation is affected by the decreases in dopamine 574

level but little by increases, in agreement with stronger impact of positive prediction 575

errors on the No-Go neurons implemented in Equation 3. In summary, the plasticity 576

rules allowing learning positive and negative consequences are consistent with the 577

observed plasticity and the receptor properties. 578

Recently, there has been a debate concerning the fundamental concept of basal 579

ganglia function, i.e. the relationship between the Go and No-Go neurons: on one hand 580

they have the opposite effects on a tendency to make movements [2], but on the other 581
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hand they are co-activated during action selection [33]. The presented theory is 582

consistent with both observations: It assumes that Go and No-Go neurons have 583

opposite effects on movement initiation. But during action selection the basal ganglia 584

need to calculate the utility which combines information encoded by both populations, 585

so may require their co-activation. 586

The proposed model assumes that while an animal makes an effort, the reward 587

prediction error should be negative, thus the dopamine level should decrease. However, 588

at the time of lever pressing the system needs to be energized to perform a movement, 589

so one could expect increased level of dopamine. Furthermore, voltametry studies 590

measuring dopamine concentration in striatum did not observe decrease in dopamine 591

level during lever pressing [32]. Nevertheless a recent study recording activity of single 592

dopaminergic neurons that provided a better temporal resolution reported that 593

dopaminergic neurons increased the activity before movement, and then decreased it 594

below baseline during movement [30]. The increase before movement may be related 595

with energizing system for movement, while the decrease during movement may be 596

related with representing effort. 597

Another study [34] directly tested whether dopaminergic signals encode expected 598

efforts alongside expected payoffs. It reports dopaminergic bursts in the nucleus 599

accumbens of rats, triggered by unexpected opportunities. According to the theory of 600

temporal difference learning, such bursts encode reward prediction errors. These 601

prediction errors occur whenever a reward or the anticipation of a reward is 602

unexpectedly encountered. If, for instance, an unexpected cue signals an opportunity to 603

gain reward, a prediction error equal to the value of the opportunity will arise. In our 604

theory, the value of opportunities or actions is assembled from payoffs, costs and 605

motivation. Does the dopaminergic signal investigated in [34] signal the value of 606

opportunities according to our theory? Three different opportunities featured in the 607

investigation of Hollon et al.: an opportunity that yielded a small payoff for little effort 608

served as a reference, and was compared with two high-payoff opportunities. Those 609

options required different levels of effort, chosen such that the rats would prefer one of 610

them over the reference, while rejecting the other one. In economic terms, one 611

opportunity had a higher utility than the reference option, while the other one had a 612

lower utility. The dopamine measurements obtained by Hollon et al. did not reflect the 613
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value of actions - they were much better explained by the mere payoff of the 614

opportunities. Dopamine concentrations were uniformly higher for the high-payoff 615

opportunities than for the reference option, even though their values (expressed through 616

the choices of the rats) were spread around the value of the reference option. The 617

different efforts showed strongly in the choice, but only negligibly in the dopamine 618

bursts. This poses a challenge to our theory, which assumes that both payoffs and costs 619

of actions are encoded in the basal ganglia. However, from the results of the study by 620

Hollon et al. it is not clear if effort is not represented in the basal ganglia at all, or 621

simply does not affect the value signalled by dopaminergic neurons. Distinction between 622

these hypotheses will require further experiments, as discussed below. 623

Experimental predictions 624

A direct test of the proposed model could involve recording of activity of Go and No-Go 625

neurons (e.g. with photometry) during a task in which an animal learns the payoffs and 626

costs associated with an action. Assuming that G and N are reflected in the activity of 627

the Go and No-Go neurons while the animal evaluates an action (i.e. just before its 628

selection), one could analyze the changes in the activity of Go and No-Go neurons across 629

trials. One could compare if they follow the pattern predicted by the rules given in this 630

paper, or rather by other rules proposed to describe learning in striatal neurons [7,8, 14]. 631

Similarly as the OpAL model [8], the theory proposes that the positive and negative 632

consequences are separately encoded by the Go and No-Go neurons which are 633

differentially modulated by dopamine. The theory predicts that agonists specific to just 634

one of the striatal populations (e.g. a D2 agonist), should decrease the effect of 635

consequences encoded by this population (e.g. negative) without changing the impact of 636

the other population. This prediction could be tested in an experiment involving choice 637

between options with both payoff and cost. In particular, the theory predicts that the 638

degree of preference of a neutral option (p = 1, n = 1) over a high cost option 639

(p = 1, n = 2) should increase with D2-agonist, while the preference of a high payoff 640

option (p = 2, n = 1) over a neutral option (p = 1, n = 1) should not be affected by the 641

D2-agonist. 642

It could also be worthwhile to investigate whether changing the influence of positive 643
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and negative consequences on choice can not only be achieved by pharmacological 644

manipulations, but also by changing a behavioral context such as hunger, or reward rate 645

which has been shown to affect the average dopamine level [19]. If such an experiment 646

was done in humans (or non-human primates), an eye-tracker could be used to 647

investigate whether participants spend more time on a part of the stimulus informing 648

about payoff in blocks with high hunger or reward rate. 649

The theory assumes that the synaptic plasticity rules include a decay term 650

proportional to the value of the synaptic weights themselves. Decay terms are also 651

present in other models of learning in basal ganglia [15,35,37]. This class of models 652

predicts that the synaptic weights of striatal neurons which are already high increase 653

less during potentiation than the smaller weights (an opposite prediction is made by the 654

OpAL model [8], where the weights scale the prediction error in the update rule). This 655

prediction could be tested by observing the Excitatory Post-Synaptic Currents (EPSCs) 656

evoked at individual spines. The class of model including decay predicts that the spines 657

with smaller evoked EPSCs before inducing plasticity should be more likely to 658

potentiate. 659

Relationship to other theories 660

The proposed model builds on the seminal work of Collins and Frank [8], who proposed 661

that the Go and No-Go neurons learn the tendency to execute and inhibit movements, 662

and how the level of dopamine changes the influence of the Go and No-Go pathways on 663

choice. The key new feature of the present model is the ability to learn both payoffs and 664

costs associated with a single action. We demonstrated above that when the model 665

repeatedly selects an action resulting first in a cost and then in the payoff, G and N - 666

under certain conditions that we specified - converge to the magnitudes of that payoff 667

and cost. This is not so in the original OpAL model, as we shall show in a brief analysis. 668

Collins and Frank [8] demonstrated that when the environment is stationary and 669

prediction error δ converges to zero, then the weights G and N in the OpAL model 670

converge to bounded values. However, we will show that Go and No-Go weights 671

converge to zero when an action that results first in a cost and then in the payoff is 672

repeatedly selected. 673
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The OpAL model is based on the actor critic framework; hence, the prediction error 674

is defined as in Eq (28). The weights of the critic are modified simply as ∆V = αδ. The 675

weights of the actor are modified according to the following equations [8]: 676

∆G = αGδ (29)

∆N = −αNδ (30)

Fig 10 shows how the weights change in a simulation of the OpAL model. The 677

weights of the critic approach a value close to the average of payoff and cost. Let us 678

consider what happens in the model once the critic weight stops changing between trials 679

(i.e. from ∼ 10th trial onward in Fig 10). The weight of the critic still changes within a 680

trial, i.e. decreases when cost is incurred and increases after a payoff. This happens 681

because the prediction error oscillates around 0, i.e. it is equal to δ = −d while 682

incurring a cost and δ = d while receiving a payoff, where d is a constant. If so, let us 683

consider how a Go weight changes within a trial. According to Eq (29) the weight 684

changes as follows: 685

Gafter cost = Gbefore action − αGbefore actiond (31)

Gafter payoff = Gafter cost + αGafter costd (32)

Substituting Eq (31) into Eq (32) we obtain: 686

Gafter payoff = Gbefore action − αGbefore actiond+ α(Gbefore action − αGbefore actiond)d

= Gbefore action − α2Gbefore actiond
2 (33)

We see that within a trial a Go weight decays proportionally to is value, resulting in 687

an exponential decay across trials seen in Fig 10. Analogous calculations show that the 688

No-Go weight decays in the same way. We conclude that the OpAL model is unable to 689

estimate positive and negative consequences for actions which result in both payoffs and 690
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Fig 10. Changes in the weight G of Go neurons, N of No-Go neurons and
V of the critic in the OpAL model over the course of simulations. (a) The
purple line represents the evolving critic weight. The experienced rewards are indicated
by black dots. (b) The actor weights, represented by a green and a red line respectively,
were initialized to G = N = 1. Again, the black dots indicate the received rewards. The
simulation was run with learning rate α = 0.3.

costs. It is worth noting that the decay of actor weights to zero demonstrated above is 691

specific to the version of basal ganglia model proposed by Collins and Frank [8], but 692

would not be present in another version of the model [35] where the learning rules 693

include a special term preventing the weights from approaching zero. 694

The model described in this paper has been shown to account for the effects of 695

dopamine depletion on willingness to make effort, which have also been simulated with 696

the OpAL model. To simulate the effects of dopamine depletion on choice between an 697

arm of a T-maze with more pellets behind a barrier and an arm with with fewer 698

pellets, [8] trained a model on three separate actions: eating in the left arm, eating in 699

the right arm, and crossing a barrier. In this way it was ensured that each action had 700

just payoff or just cost, and the model could learn them. Subsequently, during choice the 701

model was deciding between a combination of two actions (e.g. crossing a barrier and 702

eating in the left arm) and the other action. By contrast, the model proposed in this 703

paper was choosing just between the two options available to an animal in an analogous 704

task (Fig 6), because it was able to learn both payoffs and costs associated with each 705

PLOS 34/41

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346114doi: bioRxiv preprint 

https://doi.org/10.1101/346114
http://creativecommons.org/licenses/by/4.0/


option. This is a useful ability, as most real world actions have both payoffs and costs. 706

In the original paper introducing the plasticity rules [16], it was proposed that the 707

rules allow the Go and No-Go neurons to encode reward variability, because when an 708

action results in variable rewards, both G and N increase during learning. It was 709

further proposed that the tonic level of dopamine controls the tendency to make risky 710

choices, as observed in experiments [36], because it leads to emphasizing potential gains, 711

and under-weighting potential losses. However, here it is proposed that the striatal 712

learning rules primarily sub-serve a function more fundamental for survival, i.e. learning 713

payoffs and costs of actions. From this perspective, the influence of dopamine level on 714

tendency to make risky choices arises as a by-product of a system primarily optimized 715

to weight payoffs and costs according to the current motivational state. 716

Directions for the future work 717

There are multiple directions in which the presented theory could be extended. For 718

example, the theory has to be integrated with the models of action selection in the basal 719

ganglia to describe how the circuit selects the action with the best trade-off of payoffs 720

and costs. Furthermore, the theory may be extended to describe the dependence of the 721

dopaminergic teaching signal on the motivational state [38]. 722

It is intriguing to ask whether the evaluation of actions combining separately 723

encoded positive and negative consequences is also performed by areas beyond the basal 724

ganglia. Indeed, positive and negative associations are encoded by different populations 725

of neurons in the amygdala [39]. Moreover, an imaging study [40] suggests that costs 726

and payoffs are predicted by the amygdala and the ventral striatum respectively, and 727

ultimately compared in the prefrontal cortex. Furthermore, different cortical regions 728

preferentially project to Go or No-Go neurons [41], raising the possibility that the 729

positive and negative consequences are also encoded separately in the cortex. Therefore, 730

it seems promising to investigate if similar plasticity rules could also describe learning 731

beyond the basal ganglia. 732
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Materials and methods 733

During simulations of an experiment by Salamone et al. [23], the model received payoff 734

ppellet = 10 for choosing a pellet, and payoff pchow for approaching the lab chow. The 735

model was simulated in two conditions differing in the cost of choosing a pellet which 736

was equal to npellet = 0 in the free-pellet condition, and to npellet = nlever in a condition 737

requiring lever pressing to obtain a pellet. There was no cost of choosing lab chow 738

(nchow = 0). For each condition, the model was simulated in two dopamine states: in 739

the intact state the dopaminergic motivation signal was equal to a baseline value during 740

choice D = 0.5 while in the state corresponding to the presence of dopamine antagonist 741

it was set to a lower value D = Danta. 742

For each condition and state, the behavior of Nrats was simulated. Each simulation 743

consisted of 180 training and 180 testing trials (as each animal in the experiment of [23] 744

was tested for 30 minutes, so 180 trials corresponds to an assumption that a single trial 745

took 10s). At the start of each simulation, the weights were initialized to 746

Gpellet = Npellet = Gpellet = Npellet = 0.1. During each training trial, the model 747

experienced choosing a pellet as well as approaching the lab chow. In detail, it received 748

the cost npellet, modified the weights Gpellet and Npellet, then received the payoff ppellet 749

and modified the weight again, and analogously for the lab chow. During each testing 750

trial, the thalamic activity for each option was calculated from Eq 24), and Gaussian 751

noise with standard deviation σ was added. An option with the highest thalamic 752

activity was selected, and if this activity was positive, the action was executed, resulting 753

in the corresponding cost and payoff and weight modification. If thalamic activity for 754

both options was negative, no action was executed and no weights were updated. 755

The values of model parameters: pchow, nlever, Danta, σ were optimized to match the 756

choices made by the animals. In particular, for each set of parameters, the model was 757

simulated Nrats = 100 times, and the average number of choices csimi,j,k of option i in 758

dopamine state j and experimental condition k was computed. The mismatch with 759

corresponding consumption in experiment cexpi,j,k was quantified by a normalized summed 760

squared error: 761

Cost =
2∑
k=1

2∑
j=1

2∑
i=1

(
csimi,j,k
Zsimk

−
cexpi,j,k

Zexpk

)2

(34)
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In the above equation Zdatasetk is a normalization term equal to the total number of 762

choices or consumption in a particular condition: 763

Zdatasetk =
2∑
j=1

2∑
i=1

cdataseti,j,k (35)

The values of parameters minimizing the cost function were sought using the 764

Simplex optimization algorithm implemented in Matlab, and the following values were 765

found: pchow = 3.64, nlever = 4.57, Danta = 0.30 and σ = 1.10. Subsequently, the model 766

with these optimized parameters was simulated with Nrats = 6, which was the number 767

of animals tested by [23]. The resulting mean number of choices across animals are 768

shown in Fig 7. 769
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