Abstract
S-adenosylmethionine (SAM) is the methyl donor that modifies proteins such as histones, nucleic acids and produces phosphatidylcholine. Thus variations in SAM levels could affect processes from lipogenesis to epigenetic gene regulation. SAM is hypothesized to link metabolism and chromatin modification, however, its role in acute gene regulation is poorly understood. We recently found that Caenorhabditis elegans with reduced SAM had deficiencies in bacterial-induced H3K4 trimethylation at selected pathogen-response genes, decreasing their expression and limiting survival on the pathogen Pseudomonas aeruginosa. This led us to the hypothesis that SAM may be generally required stress-responsive transcription. Here we show that C. elegans with low SAM fail to activate genome-wide transcriptional programs when exposed to bacterial or xenotoxic stress. However, heat shock responses were unaffected. We also investigated the role of two H3K4 methyltransferases that use SAM, set-2/SET1, and set-16/MLL and found that set-2/SET1 has a specific requirement in bacterial stress responses, whereas set-16/MLL was required for survival in all three stresses. These results define a role for SAM and H3K4 methyltransferases in the acute genome-wide remodeling of gene expression in response to stress. Finally, we find that the ability to modify metabolic gene expression correlates with enhanced survival in stress conditions.