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Abstract— Synthetic biology is an emerging engineering dis-
cipline that aims at synthesising logical circuits into cells to
accomplish new functions. Despite a thriving community and
some notable successes, the basic task of assembling predictable
gene circuits is still a key challenge. Mathematical models are
uniquely suited to help solve this issue. Yet in biology they are
perceived as expensive and laborious to obtain because low-
information experiments have often been used to infer model
parameters. How much additional information can be gained
using optimally designed experiments? To tackle this question
we consider a building block in Synthetic Biology, an inducible
promoter in yeast S. cerevisiae. Using in vivo data we re-fit
a mathematical model for such a system; we then compare
in silico the quality of the parameter estimates when model
calibration is done using typical (e.g. step inputs) and optimally
designed experiments. We find that Optimal Experimental
Design leads to ∼70% improvement in the predictive ability
of the inferred models. We conclude providing suggestions on
how optimally designed experiments can be implemented in
vivo.

I. INTRODUCTION

Synthetic Biology is an emerging discipline that seeks
to implement de novo tasks in cells. Despite a booming
community and the opportunities that Synthetic Biology
offers [1], the assembly of synthetic circuits with predictable
functions remains a challenge. If Synthetic Biology is to
advance towards application, it is necessary to increase
the predictability of gene network dynamics. Mathematical
models offer a means to achieve this goal, yet their use in
Synthetic Biology has so far only been limited [2].
The reason for the low adoption of models largely lies in the
limitations of traditional experimental platforms in biology
(e.g. microplate readers). “Pulses” or “steps” of chemicals
are the de facto standard stimuli to probe cell behaviour. Such
designs, however, often allow for poorly-informative exper-
iments. Indeed, chemical “steps” and “pulses” are low-pass
filtered by molecular diffusion, which limits their frequency
content. Furthermore, the inherent non-linearity of biological
networks prevents the adoption of results on persistent exci-
tation developed for the identification of linear models [3].
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These facts raise the questions of whether it is possible to
design informative experiments for the identification of gene
networks and how to do so.
Model-based Optimal Experimental Design (MBOED) al-
lows the design of maximally informative experiments and
has recently been adopted in the identification of biological
systems. For example, Bandara et al. showed that optimally
designed (yet technologically constrained) experiments lead
to a 60-fold reduction in the mean variance of parameter esti-
mates over experience-based schemes [4]. Similarly, Ruess et
al. emphasised the improvement of optimised dynamic inputs
over random stimulation patterns in the characterisation of a
light-inducible promoter [5].
The adoption of MBOED in (Synthetic) Biology generally
faces a large amount of inertia: optimally designed experi-
ments are difficult to implement with traditional experimental
platforms and the skills to design them are not widespread
in wet laboratories. Technological developments (e.g. mi-
crofluidics) and computational tools (e.g. AMIGO2 [6]) allow
this limitation to be overcome but they have steep learning
curves. The question is then: does the gain in information
OED offers justify the efforts of adopting it?
To address this question, here we consider the identification
of a mathematical model of a building block in Synthetic
Biology: an inducible promoter. Many synthetic promoters
are available, but since they generally use DNA sequences
from the same organisms they are engineered for, they suffer
from unwanted regulation from other genes in the genome.
This makes disentangling and modelling promoter activity
a non-trivial task. To overcome this issue, we focus on an
orthogonal promoter [7], i.e. a promoter built in a species (S.
cerevisiae) using DNA sequences from a different one (E.
coli). This promoter, designed by Gnügge et al. [7] (Fig. 1),
drives the expression of a fluorescent reporter, Citrine, when
cells are exposed to the chemical IPTG. IPTG enters the
cell through the permease Lac12 and binds the LacI protein,
thereby relieving its repression on the promoter activity.
Binding of the constitutively expressed tTA to the tetO2 site
results in expression of Citrine.
Based on published characterisation data [7], we first refine
a mathematical model of the inducible promoter (MPLac),
obtaining MPLac,r. We then define a reduced model struc-
ture,M3D, able to mimic the dynamics of MPLac,r (MIP,r).
We hence simulate the response of MIP,r to both optimal
and intuition-driven inputs and compare the amount of in-
formation provided by each input class using the posterior
distributions of the inferred parameters.
Not only do our results suggest that MBOED allows the
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Fig. 1: Schematic of the inducible promoter implemented in [7].
A native S. cerevisiae promoter was engineered by cloning the
(tetO)2 and (lacO)2 operator sequences upstream and down-
stream of the TATA box respectively. The construct was integrated
into the genome of a budding yeast strain constitutively expressing
the heterologous transcription factors - tetracycline responsive
transactivator (tTA) and LacI repressor, and the lactose permease
(Lac12). The activity of the resulting promoter, regulated by the
exogenous, non-metabolizable inducer β − D − 1 thiogalactopy-
ranoside (IPTG), is reported by the expression of the Citrine
fluorescent reporter.

design of more informative experiments for the characterisa-
tion of synthetic promoters, they also provide a conservative
estimate of the improvement in parameter accuracy that can
be achieved via MBOED.

The manuscript is organised as follows: Section II dis-
cusses how we recalibrate a model of the inducible promoter,
define a lower-order model and use it to compare the infor-
mativeness of different input classes. Section III elaborates
on the importance of OED for the design of more informative
experiments in Synthetic Biology. Section IV details our
in silico experiments, the comparison of informativeness of
different input classes and the design of optimal experiments.
Finally, Section V presents our conclusions and future direc-
tions.

II. RESULTS
A. Refitting Gnügge et al.’s Model

As starting point of our analysis we consider MPLac, the
model proposed by Gnügge and colleagues [7]. We first
seek to independently assess the ability of this model to
capture the experimental data reported in the original paper
[7], comprising several IPTG dose-response curves sampled
at five equidistant time points after induction. We note that
at intermediate concentrations model predictions appear to
systematically underestimate the measured steady states by
20-30% (Fig. 2, grey line).
Reasoning that this discrepancy would offer an opportunity
to refine MPLac, we re-calibrate the model using enhanced
Scatter Search (eSS) and obtain a new model, MPLac,r (Fig.
2a, cyan), that generally better fits the available experimental
data (Fig. 2b). MPLac,r offers a 56% improvement in fit, as
quantified by the sum of squared errors of predictions (SSE)
(Fig. 2c).

B. A reduced-order model captures the dynamics of the
inducible promoter

To constrain the number of parameters to be identified and
the computational cost associated to optimal experimental
design, we develop a lower-order model structure (M3D).
The model structure reads as follows:

M3D =



dR

dt
= α+ v IPTGh

Kh
r +IPTGh − γR

dPf

dt = kpR− (γf + kf )Pf

dPm

dt = kfPf − γfPm,

where R, Pf and Pm are the concentrations of Citrine
mRNA, immature folded protein and matured (fluorescent)
protein, respectively. The model features 8 parameters: α and
v are the basal and maximal transcriptional rate respectively;
h, the Hill coefficient; Kr, the Michaelis-Menten coefficient;
kp, the translation rate and the rate of maturation of the
folded protein, kf . All biochemical species are subject to
linear degradation, occurring at rates γ for mRNA and γf for
protein. This model structure builds on the assumption that
the expression of LacI and Lac12, as well as the binding of
LacI-dimer to the operator sites and to IPTG, occurs on faster
time scales than Citrine expression. Fitting all parameters of
M3D to the time-series data in [7], we obtain MIP .
When compared with MPLac and MPLac,r, we find that
MIP best fits the measured steady-states, i.e. the dose-
response curve (Fig. 2a), as well as the experimental data
acquired at time-points different from 24 hours (see Fig.
2b for an example). Despite its lower order, MIP achieves
predictive capabilities comparable to MPLac,r. To show this,
we calculate the SSE over the whole set of experimental data
(Fig. 2c). It is interesting to note that MIP is characterised
by a smaller rise time (1.8 hours) than both MPLac and
MPLac,r (7.9 hours) (Fig. 2b). Here, the rise time is defined
as the time required for the output to rise from 10% to
90% of the steady-state. We also note that the long sampling
intervals used in the original study [7] does not allow further
constraining the characteristic time-scale of the system.
As we aim to compare the informative content of different
input classes (II, section C), we need our reduced model to
mimic as closely as possible the dynamics of the genetic
system of interest. We therefore consider MPLac,r as our
nominal model and generate a set of pseudo-experimental
data to re-calibrate MIP ; in so doing we obtain MIP,r.
It is worth noting that we could use MIP for MBOED,
however the ability to generate additional datasets and further
constrain parameter calibration made us prefer MLac,r as
our reference. Considering the limited complexity of the
underlying biological system, we decided to use stepwise,
pulses, ramp wise and stepwise random inputs in the pseudo-
data generation. The results of MIP,r identification show that
this model recapitulates the dynamics of MPLac,r (Fig. 3).
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(a) (b)

(c)

Fig. 2: Comparison between MPLac, MPLac,r and MIP model structures. (a) Dose-response curve after 24 hours of incubation with the
specified IPTG concentrations. Experimental data, median (filled squares) and inter-quartile range (errorbars) of Citrine distributions,
were retrieved from [7]. Solid lines show the in-silico dose-response curve for MPLac (grey), MPLac,r (cyan) and MIP (purple). (b)
The full data includes the dynamics of Citrine. An example is shown for the induction with 5 µM of IPTG. (c) Barplot of the sum of
squared errors of predictions (SSE), quantifying the predicted deviations from empirical data.

C. Intuition-driven inputs are equally (poorly) informative

We first seek to compare the informative yield of intuition-
driven stimuli (step, pulse and random) for the calibration
of M3D. With this aim, we generated Nj = 100 input
profiles for each of the three classes (Methods, section IV-
B). By simulating the output of MIP,r for each input, we
obtain pseudo-experimental data we use for the calibration
ofM3D. We formulate parameter estimation as a non-linear
optimisation problem and use eSS to solve it. As the posterior
distributions of parameter estimates are not Gaussian, we
cannot use standard metrics (e.g. z-score) to assess the

(a)

(b)

(c)

(d)

Fig. 3: Pseudo-experiments for the identification of MIP,r . Step (a),
pulse (b), ramp (c) and random (d) inputs (red line) were applied to
MPLac,r to simulate Citrine dynamics and to obtain pseudo-data
(green circles). The response of the calibrated MIP,r is shown as
a green, solid line.

statistical significance of the distance between nominal and
estimated parameter value. To overcome this limitation, we
compute the relative error (ε(j)i ) between each parameter
estimate (p(j)i ) and its nominal value (p∗i ):

ε
(j)
i =

∣∣∣∣∣log2

(
p
(j)
i

p∗i

)∣∣∣∣∣ . (1)

where i identifies the ith entry in the parameter vector and
j is the index of the input profile yielding the parameter
estimate p(j)i . Notably, ε(j)i = 0 when the parameter estimate
equals its nominal value, while the absolute value ensures
that under and over estimates are treated equally.
The distributions of relative error (εi) for the 100 input
profiles highlight a differential sensitivity of the output to
the parameters (Fig. 4b-d). It is worth noting that the high
variability in the estimates of α, v and γ agrees with a prelim-
inary identifiability analysis (results not shown), suggesting
high correlation between these parameters. Practical identifi-
ability issues have indeed the potential to hinder our ability
to identify the affected parameters with high confidence.
Overall, the εi distributions suggest that the intuition-driven
inputs convey a similar amount of information (Fig. 4b-d).
This is further confirmed by the absence of a statistically
significant difference in the average relative error (ε̄) metric
(Fig. 4f), defined as:

ε̄ =
1

NpNj

Np∑
i=1

Nj∑
j=1

ε
(j)
i (2)

where Np is the number of parameters in the model structure.
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Fig. 4: Comparison of the informative content of different input classes for model identification. (a) Example of an optimally designed
input (red line) applied to MIP,r to simulate Citrine dynamics (green circles). The output of the system, upon calibration to the Citrine
dynamic data, is shown as a green solid line. Box plots, overlaid with swarmplots, of the relative error (ε) of parameter estimates for
step (b), pulse (c), random (d) and optimised (e) inputs. (f) Bar plot of the average relative error (ε̄) provided by each input class.

D. Optimal Input Design (OID) enhances model calibration

We next test the improvement in the accuracy of param-
eter inference enabled by optimally designed experimental
schemes. Having fixed the duration of the experiment, the
sampling frequency and the switching times in the stepwise
optimised input (Methods, section IV-D), we cast OID as
a constrained optimisation problem that searches for the
IPTG concentrations, (i.e. steps amplitude) that maximise the
experimental information. We quantify information as the
determinant of the Fisher Information Matrix (F) [3], [8].
This corresponds to the adoption of the highly popular D-
optimality criterion [9]. To compare with the intuition-driven
classes of input, we design Nj = 100 optimised stimulation
profiles (see Fig. 4a for an example), apply them to MIP,r to
obtain pseudo-data and solve the parameter estimation prob-
lem. The results show that the use of optimised inputs leads
to a marked reduction in ε when compared to experience-
based stimulation patterns (Fig. 4a-e). The improvement in
the accuracy of parameter estimates, noticeable for the poorly
identifiable parameters α, v and γ, translates in a 69%
reduction in ε̄ for the optimally designed input over the

intuition-driven counterparts.

III. DISCUSSIONS

Streamlining the inference of predictive mathematical
models would foster their systematic use in Synthetic Biol-
ogy. Here, by comparing the informative content of different
input classes, we highlight optimal experimental design as a
key strategy towards accurate and efficient model calibration.
This conclusion was drawn considering the calibration of a
deterministic model for the orthogonal, inducible promoter
designed by Gnügge et al. [7]. We choose to focus on
an inducible promoter for the key role these parts play in
Synthetic Biology. Furthermore, it is commonly believed that
the low complexity of synthetic promoters helps the exper-
imentalist with the definition of informative experimental
schemes based on intuition only. Our analysis clearly shows
that this is not the case (Fig. 4f).
To compare the informativeness of the different input classes,
we first retrieve the model structure (MPLac) proposed by the
authors in [7]. The observed gap between the numerical and
empirical transition-region of the dose-response curve en-
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couraged us to attempt a model refinement by re-calibrating
MPLac. We frame model inference as a multi-experimental
fitting problem and, unlike Gnügge and colleagues, address
it using cross validation. While MPLac,r yields a 56%
improvement in the fitting over MPLac (Fig. 2c), only
speculations can be made on the cause of this difference.
Coherent with the tenet that the informative content of
stimulation patterns depends on the (a priori unknown)
dynamic properties of the system under investigation [5], we
included step, pulse, ramp and random inputs in the pseudo-
experiments. The match between model predictions from
MIP,r and pseudo-experimental data from MPLac,r suggests
that the dynamics of the latter can be fully recapitulated by
the former (Fig. 3). This further supports using MIP,r as
a representative model of the true biological system when
comparing the informativeness of different classes of inputs
for model calibration.
We find that experiments with optimised inputs provide more
accurate parameter estimates than intuition-driven inputs
(Fig. 4f). However, it is important to note that the lower
average error provided by the optimised input does not imply
that all parameter estimates improve. This is evident in our
results; for example, pulse inputs allow attaining a narrower
ε distribution for kp (Fig. 4b-d). Nevertheless, optimally
designed inputs help tackling practically identifiability issues
affecting some of the parameters (Fig. 4b-d).
We remark that the a posteriori analysis of the convergence
curves of the input optimisation (results not shown) suggests
that the ε we report should be considered an upper bound
for the attainable improvement due to OED, rather than a
precise estimate.
Taken together, these results suggest that a combination of in
silico and experimental tools has the potential to significantly
improve our ability to identify reliable and predictive models
of biological systems and eventually enable the development
of a Model-Based Biosystems Engineering framework in
Synthetic Biology.

IV. METHODS

A. Generating Pseudo Experimental Data for the identifica-
tion of MIP,r

To re-calibrate parameter values in MIP , and obtain
MIP,r, we choose to simulate the response of MPLac,r to
step, pulse, ramp and random inputs over 3000-minute long
experiments. For each of these 4 input classes we define a
generating function; we then design 3 inputs for each class.
Step inputs are obtained using:

ustep(t) =

{
a, if c ≤ (t mod 2c) < 2c

b, if 0 ≤ (t mod 2c) < c

where a, b and c are set to [5 µM, 0 µM, 250 min]
respectively for the first of the three time-profiles
(Fig. 3A), [10 µM, 0 µM, 500 min] for the second and
[1000 µM, 10 µM, 500 min] for the third.

To obtain pulse inputs we use the following definition:

upulse(t) =

{
a, if 50 min ≤ (t mod 60 min) < 60 min

b, if 0 min ≤ (t mod 60 min) < 50 min

where a, b are set to [10 µM, 5 µM] for the first time-
profile, [100 µM, 10 µM] for the second input (Fig. 3B) and
[1000 µM, 600 µM] for the third.
As generating function of the ramp input we use:

uramp(t) =

{
a t
1500 , if 0 min ≤ t < 1500 min

a− a t
1500 , otherwise

where a is set to 10 µM, 100 µM (Fig. 3C) and 1000 µM
for each of the three inputs generated for this class. It should
also be noted that a Zero Order Holder filter with a window
of 60, 150 and 250 min was applied to the first, second and
third input respectively.
Finally, the pseudo-random inputs are defined as:

urandom(t) =
{
a, if 0 min ≤ (t mod c) < c

where a, c are set to [U(0 µM, 10 µM), 60 min] for the first
time-profile (Fig. 3D), [U(0 µM, 90 µM), 150 min] for the
second and [U(0 µM, 900 µM), 250 min] for the third.
In all simulations, we add a 5% Gaussian noise and assign
the initial conditions of the system to the steady state
values derived from a 24 hour simulation of MPLac,r with
0 µM IPTG as the input. All experiments are simulated in
AMIGO2 [6] and Citrine is sampled every 5 minutes. For
more details on these procedures we refer the reader to our
GitHub repository [10].

B. Generating Pseudo Experimental Data for the compari-
son of input classes

The inputs we used to compare the informative content of
different stimuli were defined as follows:

ustep(t) =

{
a, if 0 min ≤ (t mod 200) < 100 min

b, if 100 min ≤ (t mod 200) < 200 min

where, for each of the Nj inputs, a and b are two random
values extracted from U(0 µM, 1000 µM).

upulse(t) =

{
0, if 10 min ≤ (t mod 60min) < 60 min

a, 0 min ≤ (t mod 60min) < 10 min

where a is drawn from U(0 µM, 1000 µM).

urandom(t) =
{
a, if 0 min ≤ (t mod 80min) < 80 min

where a is drawn from U(0 µM, 1000 µM).
In all simulations, we add a 5% Gaussian noise and set the
initial conditions of the system to the analytical steady-state
of MIP,r with IPTG equal to 0 µM; all experiments are
simulated in AMIGO2 [6] and Citrine is sampled every 5
minutes. For more details on these procedures we refer the
reader to our GitHub repository here [10].
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C. Parameter Estimation

Parameter estimation was formulated as a non-linear opti-
misation problem, whose objective is to identify the param-
eter values that minimise a scalar measure of the distance
between model predictions and (pseudo) experimental data.
We use the weighted least squares as a cost function, with
weights set to the inverse of the experimental noise. To solve
the optimisation problem, we rely on eSS [11]: a hybrid
method that combines a global and a local search to speed
up convergence to optimal solutions. In the initial phase,
eSS explores the space of solutions, then, as local search,
the algorithm employs the nonlinear least squares solver.
To strengthen the predictive capabilities of the calibrated
models, we use cross validation in the identification of
MPLac,r and MIP,r. In both cases, the available experi-
mental datasets are randomised and split into training (66%)
and test (33%) sets. Parameter estimation is run on the
training set starting from 100 initial guesses for the parameter
vector. The latter are obtained as latin hypercube samples
within the allowed boundaries for the parameters. Among
the optimal solutions, the one that minimises the SSE on
the test set is selected as the vector of parameter estimates.
It is worth noting that, when comparing the informative
content of different input classes, parameter estimation was
not performed using cross validation. Details on the allowed
bounds for the parameters and the scripts used for parameter
estimation are provided in the GitHub repository [10].

D. Optimal Experimental Design

To reflect wet-lab experimental constraints, we fix the sam-
pling times (1 every 5 minutes) and the experiment duration
(3000 minutes). We further set the initial condition to the
steady-state in absence of induction. As a result, we restrict
the optimisation to identifying the input (IPTG) time profile
that maximises the information yield of the experiment. Here,
information is quantified as a metric defined on the Fisher
Information Matrix (F) [3], [8]:

F =
N∑
i=1

1

σ2
i

[∇θy]T [∇θy] (3)

where y is the observable (Citrine) and σ2
i represents the

variance of the signal at the ith sampling instant.
The F sets a lower bound on the variance of the parameter
estimates through the Cramér-Rao inequality:

C ≥ F−1 (4)

where C is the covariance matrix. Intuitively, as the eigen-
values of the F are related to the inverse of parametric
variances, attempting to maximise the determinant of F (D-
optimality) corresponds to minimising the product of the
parametric variances.
In order to find the most informative input (u∗), we formulate
MBOED as an optimal control problem and search for:

u∗ = arg max
u

|F(MIP,r(p, u))| (5)

where p is the parameter vector. We use Differential Evolu-
tion (DE) [12], a global optimisation method featuring good
convergence properties and suitable for parallelisation, to
solve the optimisation problem. We empirically [13] set the
population size, crossover threshold and differential weight
to 150, 0.3 and 0.5, respectively and adopt the strategy rand-
to-best/1/exp.

V. CONCLUSIONS AND FUTURE WORK

In this study we highlight MBOED as a key strategy for
the accurate calibration of mathematical models of biological
parts in Synthetic Biology. Our in-silico results suggest
that optimally designed input profiles substantially improve
the predictive ability of the inferred models, outperforming
intuition-driven stimuli. While further studies are needed to
explore the scalability of the computational cost for systems
of higher complexity, we propose that combining flexible
experimental platforms (e.g. microfludics) and MBOED will
enable the widespread adoption of mathematical models in
Synthetic Biology. Beyond the required in vivo validation,
our results encourage efforts towards the implementation of
platforms to automate model calibration, in which MBOED
and in vivo experiments are combined in an identification
loop.
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