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Abstract 
Motivation: Knowledge of the models of evolutionary rate variation in a phylogeny is of fundamental 

importance in molecular phylogenetics and systematics, not only to inform about the relationship among 

molecular, biological, and life history traits, but also for reliable estimation of divergence times among 

species and genes. Correlated and independent branch rates have emerged as two major competing 

models. The independent branch rate (IBR) model posits that evolutionary rates vary randomly through-

out a phylogeny, in contrast to the alternative that these rates are correlated (CBR). However, currently 

available statistical tests lack sufficient power to reject the IBR model, which has caused many contro-

versies because very different biological inferences are produced by the use of these models. 

Results: We have developed a new method (CorrTest) to accurately detect the correlation of branch 

rates in large phylogenies. CorrTest is computationally efficient, and it performs better than the available 

state-of-the-art methods. CorrTest’s application to multigene and genome-scale sequence alignments 

from mammals, birds, insects, metazoans, plants, fungi, and prokaryotes, suggests that DNA and amino 

acid sequence evolutionary rates are correlated throughout the tree of life. These findings suggest con-

cordance between molecular and non-molecular evolutionary patterns and will foster unbiased and pre-

cise dating of the tree of life. 

Availability and Implementation: The R source code of CorrTest is freely available for download at 

https://github.com/cathyqqtao/CorrTest.     

Contact: s.kumar@temple.edu 

Supplementary information: All empirical datasets, results, and source code for generating each fig-

ure are available at https://github.com/cathyqqtao/CorrTest. All simulated datasets are available on re-

quest. 

 

1 Introduction 

Phylogenomics has revolutionized our understanding of the patterns and 

timescale of the tree of life (Hedges et al., 2015; Marin et al., 2017). Ge-

nome-scale data has revealed that rates of molecular sequence change vary 

extensively among species (Kumar and Hedges, 2016; dos Reis et al., 

2016; Ho and Duchêne, 2014). The causes and consequences of evolution-

ary rate variation are of fundamental importance in molecular phylogenet-

ics and systematics (Lanfear et al., 2010; Lynch, 2010; Kimura, 1983), not 

only to inform about the relationship among molecular, biological, and life 

history traits, but also as a prerequisite for reliable estimation of diver-

gence times among species and genes (Kumar and Hedges, 2016; Ho and 

Duchêne, 2014). 

Three decades ago, Gillespie (1984) proposed that molecular evolution-

ary rates within a phylogeny will be correlated due to similarities in ge-

nomes, biology and environments between ancestral species and their im-

mediate progeny. This idea led to statistical modelling of the variability of 

evolutionary rates among branches and formed the basis of the earliest 

relaxed clock methods for estimating divergence times without assuming 

a strict molecular clock (Kumar and Hedges, 2016; Kumar, 2005; Ho and 

Duchêne, 2014; Sanderson, 1997; Thorne et al., 1998). However, the in-

dependent branch rate (IBR) model has emerged as a strong alternative to 

the correlated branch rate (CBR) model. In the IBR model, rates vary ran-

domly throughout the tree such that the evolutionary rate similarity be-

tween an ancestor and its descendant is, on average, no more than that 

between more distantly-related branches in a phylogeny (Drummond et 

al., 2006; Ho and Duchêne, 2014).  
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The IBR model is now widely used in estimating divergence times from 

molecular data for diverse groups of species, including mammals (Drum-

mond et al., 2006), birds (Brown et al., 2008; Prum et al., 2015; Claramunt 

and Cracraft, 2015), amphibians (Feng et al., 2017), plants (Moore and 

Donoghue, 2007; Linder et al., 2011; Lu et al., 2014; Barreda et al., 2015; 

Smith et al., 2010; Bell et al., 2010; Barba-Montoya et al., 2018), and vi-

ruses (Drummond et al., 2006; Metsky et al., 2017; Buck et al., 2016). If 

the IBR model best explains the variability of evolutionary rates, then we 

must infer a decoupling of molecular and biological evolution, because 

morphology, behavior, and other life history traits are more similar be-

tween closely-related species (Sargis and Dagosto, 2008; Cox and Hautier, 

2015; Lanfear et al., 2010) and are correlated with taxonomic or geo-

graphic distance (Wyles et al., 1983; Shao et al., 2016).   

Alternatively, the widespread use of the IBR model (Drummond et al., 

2006; Metsky et al., 2017; Brown et al., 2008; Prum et al., 2015; Clara-

munt and Cracraft, 2015; Linder et al., 2011; Bell et al., 2010; Smith et 

al., 2010; Lu et al., 2014; Moore and Donoghue, 2007; Feng et al., 2017; 

Buck et al., 2016) may be explained by the fact that the currently available 

statistical tests lack sufficient power to reject the IBR model (Ho et al., 

2015). This may also explain why some studies report finding extensive 

branch rate correlation in many datasets (e.g., Lepage et al. (2007)), but 

others cannot confirm this using the same tests (e.g., Linder et al. (2011)). 

Consequently, many researchers use both CBR and IBR models for the 

same species groups (Erwin et al., 2011; dos Reis et al., 2015; Drummond 

et al., 2006; Meredith et al., 2011; dos Reis et al., 2012; Foster et al., 2016; 

Magallón et al., 2013; Bell et al., 2010; Wikstrӧm et al., 2001; Hertweck 

et al., 2015; Jarvis et al., 2014; Liu et al., 2017; dos Reis et al., 2018), a 

practice that often generates controversy via widely differing time esti-

mates (Battistuzzi et al., 2010; dos Reis et al., 2014; Christin et al., 2014; 

Foster et al., 2016; dos Reis et al., 2015; Liu et al., 2017). 

Therefore, a powerful method is needed to accurately test whether evo-

lutionary rates are correlated among branches. Here, we introduce a new 

machine learning approach (CorrTest) with high power to detect correla-

tion between molecular rates. CorrTest is computationally efficient, and 

its application to a large number of datasets enables an assessment of the 

presence of rate correlation in the tree of life. 

In the following, we present a detailed description of CorrTest method 

and its performance on synthetic datasets, which is followed by a compar-

ison with the Bayes factor method. We then present results from empirical 

analyses and discuss the pervasiveness of rate correlation throughout the 

tree of life.  

2 Methods 

2.1 The new CorrTest method 

We employed a supervised machine learning (McL) framework (Bzdok et 

al., 2018) to build a predictive model to distinguish between CBR and IBR 

models. In our McL approach, the input is a molecular phylogeny with 

branch lengths (often derived from a multiple sequence alignment), and 

the output is a classification that corresponds to whether or not the evolu-

tionary rates are correlated (CBR or IBR, respectively). We used a logistic 

regression to build a predictive model. An overview of our McL approach 

is presented in Figure 1.  

To build a predictive model, we need measurable properties (features, 

Fig. 1g and h) that are derived from the input data. The output is ultimately 

the assignment of input data as most consistent with either CBR or IBR 

models. The selection of informative and discriminating features is critical 

for the success of McL. In CorrTest, we derive relative lineage rates using 

a given molecular phylogeny with branch (“edge”) lengths (Tamura et al., 

2018) (Fig. 1e and f) and use these lineage rates to generate informative 

features. One cannot use branch rates as features, because their computa-

tion requires the knowledge of node times in the phylogeny. In fact, IBR 

vs. CBR model selection is an early step in molecular dating by using 

Bayesian analyses. The use of relative lineage rates does not require the 

knowledge of divergence times, because an evolutionary lineage includes 

all the branches in the descendant subtree and the relative rate between 

lineages is simply the ratio of the evolutionary depths (sequence diver-

gence) of the two descendants of a node (Tamura et al., 2018). 

Feature selection and acquisition. We selected many possible features 

for use in our McL predictive model. These included, the correlation be-

tween ancestral and descendant lineage rates (ρad), the correlation between 

the sister lineages (ρs), and the decay in ρad when one and two intervening 

branches are skipped (d1 and d2, respectively). For the given phylogeny, 

lineage-specific rate estimates (ri’s) were obtained using equations [28] - 

[31] and [34] - [39] in Tamura et al. (2018). We then extracted the relative 

rates of ancestral clade (ra) and two direct descendant clades (r1 and r2) of 

Figure 1: A flowchart showing an over-

view of the machine learning (McL) 

approach applied to develop the pre-

dictive model (CorrTest). We generated 

(a) 1,000 synthetic datasets that were 

evolved using an IBR model and (b) 

1,000 synthetic datasets that were 

evolved using a CBR model. The numer-

ical label (c) for all IBR datasets was 0 

and (d) for all CBR datasets was 1. For 

each dataset, we estimated a molecular 

phylogeny with branch lengths (e and f) 

and computed ρs, ρad, d1, and d2 (g and h) 

that served as features during the super-

vised machine learning. (i) Supervised 

machine learning was used to develop a 

predictive relationship between the input 

features and labels. (j) The predictive 

model produces a CorrScore for an input 

phylogeny with branch lengths. The pre-

dictive model was (k) validated with 10-

fold and 2-fold cross-validation tests, (l) 

tested using external simulated data, and 

then (m) applied to real data to examine 

the prevalence of rate correlation in the 

tree of life. 
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every node in the phylogeny. The correlation between ancestral lineage 

and its direct descendant lineage rate to obtain estimates of ancestor-de-

scendant rate correlation (ρad). To avoid the assumption of linear correla-

tion between lineages, we used Spearman rank correlation because it can 

capture both linear and non-linear correlation between two vectors. We 

selected ρad as a feature because our analyses of simulated data showed 

that ρad was much higher for phylogenetic trees in which molecular se-

quences evolved under CBR model (0.96) than the IBR model (0.54, Fig. 

2a). While “independent rates” should imply a lack of correlation, ρad is 

not zero for sequences evolved under the IBR model because the evolu-

tionary rate of an ancestral lineage is necessarily related to the evolution-

ary rates of its descendant lineages (Tamura et al., 2018). While ρad is 

greater than zero, this feature shows distinct patterns for both CBR and 

IBR models and is thus a good candidate feature for McL.  

As our second feature, we selected the correlation between the sister 

lineages (ρs), which is the Spearman rank correlation between r1 and r2 for 

all the nodes, because ρs was higher for the CBR model (0.89) than the 

IBR model (0.00, Fig. 2b). Although our extensive simulations produced 

some scenarios in which ρs was greater than 0.4 for datasets that evolved 

with the IBR model (because ancestral lineage rates include descendant 

evolutionary rates), ρs was a highly discriminating feature for McL. For 

estimating ρs, we labeled sister pairs randomly, a strategy that has a very 

small impact on ρs when the number of sequences in the phylogeny is not 

too small (>50). For smaller datasets, we found that it is best to generate 

multiple ρs estimates, each using randomly labelled sister pairs, in order to 

eliminate any bias that may result from the arbitrary designation of sister 

pairs during the correlation process. In this case, we use the mean ρs from 

multiple replicates in the CorrTest analysis.  

Two additional features included in McL measure the decay in ρad when 

one and two intervening branches are skipped (d1 and d2), respectively, in 

ρad calculations. We first estimated ρad_skip1 as the correlation between rates 

where the ancestor and descendant were separated by one intervening 

branch, and ρad_skip2 as the correlation between rates where the ancestor and 

descendant were separated by two intervening branches. This skipping re-

duces ancestor-descendant correlation, which we then used to derive the 

decay of correlation values by using equations d1 = (ρad - ρad_skip1)/ρad and 

d2 = (ρad - ρad_skip2)/ρad. We expect that ρad will decay slower under CBR 

than IBR, which was consistent with our observations (Fig. 2c). The in-

clusion of d1 and d2 improved the accuracy of our model slightly. 

Training dataset. The selected set of candidate features (ρs, ρad, d1, and 

d2) can be measured for any phylogeny with branch lengths (e.g., derived 

from multispecies sequence alignments) and used to train the machine 

learning classifier (Fig. 1i). For this purpose, we need a large set of phy-

logenies in which branch rates are correlated (CBR = 1, Fig. 1d) and phy-

logenies in which the branch rates are independent (IBR = 0, Fig. 1c). By 

using the four selected features for each phylogeny and the associated nu-

merical output state (0 or 1), we built a logistic regression that serves as 

the predictive model (Fig. 1j). However, there is a paucity of empirical 

data for which CBR and IBR rates are firmly established. We therefore 

trained our McL model on a simulated dataset, a practice that is now 

widely used in applications when there is a paucity of reliable real world 

training datasets (Ekbatani et al., 2017; Le et al., 2017).  

We used computer simulations to generate 1,000 phylogenies that 

evolved with CBR models and 1,000 phylogenies that evolved with IBR 

models (Fig. 1a and b). To ensure the general utility of our model for 

analyses of diverse data, we sampled phylogenies with varying numbers 

of species, degrees of rate correlation, and degrees of independent rate 

variation. Specifically, we simulated nucleotide alignments under IBR and 

CBR models using the NELSI package (Ho et al., 2015).  

In IBR, branch-specific rates were drawn from a lognormal distribution 

with a mean gene rate and a standard deviation (in log-scale) that varied 

from 0.1 to 0.4, previously used in a study simulating independent rates 

with different levels of variation (Ho et al., 2015). In CBR, branch-specific 

rates were simulated under an autocorrelated process (Kishino et al., 2001) 

with an initial rate set as the mean rate derived from an empirical gene and 

an autocorrelated parameter, ν, that was randomly chosen from 0.01 to 0.3, 

previously used in a study simulating low, moderate and high degrees of 

autocorrelated rates (Ho et al., 2015). We used SeqGen (Grassly et al., 

1997) to generate alignments under Hasegawa-Kishino-Yano (HKY) 

model (Hasegawa et al., 1985) with 4 discrete gamma categories by using 

Figure 2: The relationship of (a) ancestral and di-

rect descendent lineage rates and (b) sister line-

age rates when the simulated evolutionary rates 

were correlated with each other (red) or varied in-

dependently (blue). The correlation coefficients 

are shown. (c) The decay of correlation between 

ancestral and descendant lineages when we skip 

one intervening branch (1st decay, d1) and when 

we skip two intervening branches (2nd decay, d2). 

Percent decay values are shown. (d) Receiver Op-

erator Characteristic (ROC) and Precision Recall 

(PR) curves (inset) of the CorrTest for detecting 

branch rate model by using only ancestor-de-

scendant lineage rates (ρad, green), only sister lin-

eage rates (ρs, orange), and all four features (all, 

black). The area under the curve is provided. (e) 

The relationship between the CorrScore produced 

by the machine learning model and the P-value. 

The null hypothesis of rate independence can be 

rejected when the CorrScore is greater than 0.83 

at a significant level of P < 0.01, or when the 

CorrScore is greater than 0.5 at P < 0.05. 
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a master phylogeny, consisting of 60-400 ingroup taxa randomly sampled 

from the bony-vertebrate clade in the Timetree of Life (Hedges and Ku-

mar, 2009). Mean evolutionary rates, G+C contents, transition/transver-

sion ratios and numbers of sites for simulation were derived from empiri-

cal distributions (Rosenberg and Kumar, 2003). These 2,000 simulated 

datasets were used as training data in building the machine learning model. 

Developing the predictive model. We trained a logistic regression model 

using the skit-learn module (Pedregosa et al., 2011), which is a python 

toolbox for data mining and data analysis using machine learning algo-

rithms, with only ρad, only ρs or all four features (ρad, ρs, d1 and d2) using 

2,000 simulated training datasets (1,000 with CBR model and 1,000 with 

IBR model). A response value of 1 was given to true positive cases (cor-

related rates) and 0 was assigned to true negative cases (independent 

rates). Thus, the prediction scores (CorrScore) were between 0 and 1. A 

high score representing a higher probability that the rates are correlated. 

Then the global thresholds at 5% and 1% significant levels can be deter-

mined.  

Cross-validation tests. We performed two cross-validation tests (Fig. 

1k). In 10-fold cross-validation, the predictive model was developed using 

90% of the synthetic datasets, and then its performance was tested on the 

remaining 10% of the datasets. The AUROC was greater than 0.99 and the 

accuracy was high (>94%). Even in the 2-fold cross-validation, where 

only half of the datasets were used for training the model and the remain-

ing half were used for testing, the AUROC was still greater than 0.99 with 

an accuracy greater than 92%. This indicates that the features we used in 

building the machine learning model are powerful and ensures high accu-

racy even when the training data are limited.   

Estimating CorrTest P-value. We developed a conventional statistical 

test (CorrTest) based on CorrScore (Fig. 2e) in order to generate a P-value 

for researchers to use when deciding whether they should reject a null hy-

pothesis that branch rates within a phylogeny are uncorrelated (independ-

ent). A high CorrScore translates into a higher probability that the branch 

rates are correlated. At a CorrScore greater than 0.5, the Type I error (re-

jecting the null hypothesis of IBR when it was true) was less than 5%. 

Type I error of 1% (P-value of 0.01) was achieved with a CorrScore 

greater than 0.83.  

2.2 Empirical datasets 

We applied CorrTest to 16 large datasets, which included nuclear, mito-

chondrial and plastid DNA, and protein sequences from mammals, birds, 

insects, metazoans, plants, fungi, and prokaryotes (Table 1). These data 

were selected because they did not contain too much missing data (<50%) 

and represented >80 sequences, as a large amount of missing data (>50%) 

can result in unreliable estimates of branch lengths and other phylogenetic 

errors (Filipski et al., 2014; Xi et al., 2015; Lemmon et al., 2009; Wiens 

and Moen, 2008; Marin and Hedges, 2018) and potentially result in a bi-

ased test of evolutionary rate correlation. When a phylogeny and branch 

lengths were available from the original study, we estimated relative rates 

directly using the phylogeny with branch lengths via the relative rate 

framework (Tamura et al., 2018) and computed selected features to con-

duct CorrTest. Otherwise, maximum likelihood estimates of branch 

lengths were obtained using the published phylogeny, sequence align-

ments, and the substitution model specified in the original article (Kumar 

et al., 2012, 2016). 

2.3 Software for data analysis  

CorrTest analyses. All the CorrTest analyses were conducted using a 

customized R code (available from https://github.com/cathyqqtao/CorrT-

est). We estimated branch lengths of a tree topology on sequence align-

ments using maximum likelihood method (or Neighbor-Joining method 

where we tested the robustness of our model to topological error) in 

MEGA (Kumar et al., 2012, 2016). Then we used those branch lengths to 

compute relative lineages rates (Tamura et al., 2018, 2012) and calculated 

the value of selected features (ρad, ρs, d1 and d2) to obtain the CorrScore. 

We conducted CorrTest on the CorrScore to estimate the P-value of re-

jecting the null hypothesis (IBR). No calibration was needed for CorrTest 

analyses. 

Bayes factor analyses.  We used stepping-stone sampling (BF-SS) (Xie 

et al., 2011) with n = 20 and a = 5 using mcmc3r package (dos Reis et al., 

2018). We chose BF-SS because the harmonic mean estimator has many 

statistical shortcomings (Xie et al., 2011; Baele et al., 2013; Lepage et al., 

2007) and thermodynamic integration (dos Reis et al., 2018; Silvestro et 

Table 1. Results from the CorrTest analyses of datasets from a diversity of species. 

Group Data type 

Taxa 

numbera 

Sequence 

length 

Substitution 

model 

CorrTest 

score P-value 1/νb Reference 

Mammals Nuclear 4-fold degenerate sites 138 1,671 GTR + Γ 0.98 < 0.001 3.21 Meredith et al. (2011) 

Mammals Nuclear 3rd codon 138 11,010 GTR + Γ 0.99 < 0.001 4.42 Meredith et al. (2011) 

Mammals Nuclear proteins 138 11,010 JTT + Γ 0.99 < 0.001 3.11 Meredith et al. (2011) 

Mammals Mitochondrial DNA 271 7,370 HKY + Γ 0.98 < 0.001 3.77 dos Reis et al. (2012) 

Birds Nuclear DNA 198 101,781 GTR + Γ 1.00 < 0.001 2.07 Prum et al. (2015) 

Birds Nuclear 3rd codon 222 1,364 GTR + Γ 1.00 < 0.001 2.11 Claramunt et al. (2015) 

Birds Nuclear 1st and 2nd codon 222 2,728 GTR + Γ 1.00 < 0.001 2.53 Claramunt er al. (2015) 

Insects Nuclear proteins 143 220,091 LG +  Γ 1.00 < 0.001 8.68 Misof et al. (2014) 

Metazoans Mitochondrial & nuclear proteins 113 2,049 LG + Γ 0.65 < 0.05 40.0 Erwin et al. (2011) 

Plants Plastid 3rd codon 335 19,449 GTR + Γ 1.00 < 0.001 2.28 Ruhfel et al. (2014) 

Plants Plastid proteins 335 19,449 JTT + Γ 1.00 < 0.001 2.46 Ruhfel et al. (2014)  

Plants Nuclear 1st and 2nd codon 99 220,091 GTR + Γ 1.00 < 0.001 5.50 Wickett et al. (2014) 

Plants Chloroplast and nuclear DNA 124 5,992 GTR + Γ 1.00 < 0.001 2.64 Beaulieu et al. (2015) 

Fungi Nuclear proteins 85 609,772 LG + Γ 0.97 < 0.001 3.78 Shen et al. (2016) 

Prokaryotes Nuclear proteins 197 6,884 JTT + Γ 0.79 < 0.05 2.54 Battistuzzi et al. (2009) 

Prokaryotes Nuclear proteins 126 3,145 JTT + Γ 0.83 < 0.05 1.23 Calteau et al. (2014) 

aTaxa number is the number of ingroup taxa only. 
b1/ν is the inverse of the autocorrelation parameter that is estimated by MCMCTree with the autocorrelated rate model in the time unit of 100My.  
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al., 2011) is less efficient than BF-SS. Still, BF-SS requires a long com-

putational time, we only finished analyses of 50% of synthetic datasets. 

For each dataset, we computed the log-likelihoods (lnK) of using IBR 

model and CBR model. The Bayes factor posterior probability for CBR 

was calculated as shown in dos Reis et al. (2018). We used only one cali-

bration point at the root (true age with a narrow uniform distribution) in 

all the Bayesian analyses, as it is the minimum number of calibrations re-

quired by MCMCTree. For other priors, we used diffused distributions of 

“rgene_gamma = 1 1”, “sigma2_gamma=1 1” and “BDparas = 1 1 0”. In 

all Bayes factor analyses, two independent runs of 5,000,000 generations 

each were conducted, and results were checked in Tracer for convergence. 

ESS values were higher than 200 after removing 10% burn-in samples for 

each run. 

3 Results and Discussion  

3.1 CorrTest performs well on simulated datasets 

We evaluated the sensitivity and specificity of our model using standard 

receiver operating characteristic (ROC) curves, which showed the perfor-

mance of CorrTest to detect rate correlation when it is present (True Pos-

itive Rate, TPR) and when it was not present (False Positive Rate, FPR) 

at different CorrScore thresholds. The ROC curve for McL using all four 

features was slightly better than the use of only two features, which led to 

the inclusion of all four features in the predictive model (Fig. 2d). The 

area under the ROC (AUROC) was 99%, with a 95% TPR (i.e., CBR de-

tection) achieved at the expense of only 5% FPR (Fig. 2d, black line). The 

area under the precision recall (AUPR) curve was also extremely high 

(0.99; Fig. 2d inset), which means that our predictive model detects cor-

relation among branch rates with very high accuracy and precision. 

In addition to the performance on the training dataset, we tested CorrT-

est on a large collection of simulated datasets from Tamura et al. (2012) 

in which different software and simulation schemes were used to generate 

a wide variety of large datasets (400 ingroup taxa). In these datasets, se-

quences evolved with different G+C contents, transition/transversion ra-

tios, and evolutionary rates. CorrTest showed an accuracy greater than 

94% in detecting rate autocorrelation for datasets that were simulated with 

low and high G+C contents (Fig. 3a), small and large substitution rate 

biases (Fig. 3b), and different levels of sequence conservation (Fig. 3c). 

As expected, CorrTest performed the best on datasets that contain more 

and longer sequences (Fig. 3d).  

In the above analyses, we used the correct tree topology and nucleotide 

substitution model along with all the data. We relaxed this requirement 

and randomly sampled 50, 100, 200, and 300 sequences from the full da-

tasets and conducted CorrTest by using phylogenies inferred using the 

Neighbor Joining method (Saitou and Nei, 1987) with an oversimplified 

substitution model (Kimura, 1980). Naturally, many inferred phylogenies 

contained topological errors, but we found that the accuracy of CorrTest 

is still high as long as the dataset contained >100 sequences of length 

>1,000 base pairs (Fig. 3e). CorrTest performed well even when 20% of 

the partitions were incorrect in the inferred phylogeny (Fig. 3f). Therefore, 

CorrTest will be most reliable for large datasets, but is relatively robust to 

errors in phylogenetic inference. 

We also evaluated if higher accuracy could be achieved by building pre-

dictive models that were trained separately by using data with ≤ 100 

(M100), 100 – 200 (M200), 200 – 300 (M300), and > 300 (M400) se-

quences. A specific threshold was determined for each training subset and 

then was tested using Tamura et al. (2012)’s data with the corresponding 

size. For example, we used the threshold determined by the model trained 

with small data (≤ 100 sequences) on the test data that contain less than 

100 sequences, and used the threshold determined by the model trained 

with large data (>300 sequences) on the large test data (400 sequences). 

We found that the accuracy of using the specific thresholds (Fig. S1a-c) 

is similar to the accuracy when we used a global threshold (Fig. 3d-f). 

This is because the machine learning algorithm has automatically incor-

porated the impact of the number of sequences when it determined the 

relationship of four selected features (ρad, ρs, d1 and d2). This suggests that 

our CorrTest model is appropriate for large and small datasets. 

Figure 3: The performance of CorrTest in detecting rate correlation in the analysis of datasets (Tamura et al., 2012) that were simulated with different (a) G+C contents, 

(b) transition/transversion rate ratios, and (c) average molecular evolutionary rates. Darker color indicates higher accuracy. The evolutionary rates are in the units of 10 -3 

substitutions per site per million years. (d – f) Patterns of CorrTest accuracy for datasets containing increasing number of sequences. The accuracy of CorrTest for different 

sequence length is shown when (d) the correct topology was assumed and (e) the topology was inferred. (f) The accuracy of CorrTest for datasets in which the inferred 

the topology contained small and large number of topological errors.  
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3.2 CorrTest versus Bayes factor analysis 

We compared the performance of CorrTest with that of the Bayes factor 

approach. Because the Bayes factor method is computationally demand-

ing, we limited our comparison to 100 datasets containing 100 sequences 

each. For these simulations, a master phylogeny of 100 taxa was randomly 

sampled from the bony-vertebrate clade in the Timetree of Life (Hedges 

and Kumar, 2009). The computer simulations were conducted as generat-

ing the training data, and the 200 datasets produced were subject to Cor-

rTest and Bayes factor analyses. 

We computed Bayes factors (BF) by using the stepping-stone sampling 

(SS) method. BF-SS analysis detected autocorrelation (P < 0.05) for 32% 

of the datasets that actually evolved with correlated rates (Fig. 4a, red 

curve in the CBR zone). This is because the marginal log-likelihoods un-

der the CBR model for 78% of these datasets were very similar to or lower 

than the IBR model. Therefore, BF was very conservative in rejecting the 

null hypothesis (see also in Ho et al. (2015)). In contrast, CorrTest cor-

rectly detected the CBR model for 88% of the datasets (P < 0.05; Fig. 4b, 

red curve in CBR zone). For datasets that evolved with IBR model, BF-

SS correctly detected the IBR model for 92% (Fig. 4a, blue curves in the 

IBR zone), whereas CorrTest correctly detected 86% (Fig. 4b, blue curve 

in the IBR zone). Therefore, Bayes Factor analyses generally perform well 

in correctly classifying phylogenies evolved under IBR, but fail to detect 

the influence of CBR. The power of CorrTest to correctly infer CBR is 

responsible for its higher overall accuracy (87%, vs. 62% for BF). Such a 

difference in accuracy was observed at all levels of statistical significance 

(Fig. 4c). In the future, faster and more advanced BF implementations may 

allow extensive comparison of traditional Bayesian and CorrTest ap-

proaches, as the Bayesian approaches are still evolving (dos Reis et al., 

2018) and currently require extensive computation time. Based on the lim-

ited comparisons presented here, we conclude that machine learning ena-

bles highly accurate detection of rate correlation in a given phylogeny and 

presents a computationally feasible alternative to Bayes Factor analyses 

for large datasets.  

3.3 Correlated rates are common in molecular evolution 

The high accuracy and fast computational speed of CorrTest enabled us to 

test the presence of autocorrelation in 16 large datasets from 12 published 

studies of eukaryotes and 2 published studies of prokaryotes encompass-

ing diverse groups across the tree life (Table 1). These data were selected 

because they did not contain too much missing data (<50%). As we know, 

a large amount of missing data (>50%) can result in unreliable estimates 

of branch lengths and other phylogenetic errors (Filipski et al., 2014; Xi 

et al., 2015; Lemmon et al., 2009; Wiens and Moen, 2008; Marin and 

Hedges, 2018) and potentially bias CorrTest result. CorrTest rejected the 

IBR model for all datasets (P < 0.05). In these analyses, we assumed a 

time-reversible process for base substitution. However, the violation of 

this assumption may produce biased results in phylogenetic analysis 

(Jayaswal et al., 2014). We, therefore, applied an unrestricted substitution 

model for analyzing all the nuclear datasets and confirmed that CorrTest 

rejected the IBR model in every case (P < 0.05). This robustness stems 

from the fact that the branch lengths estimated under the time-reversible 

and the unrestricted model show an excellent linear relationship for these 

data (r2 > 0.99). This is the reason why CorrTest produces reliable results 

even when an oversimplified model was used in computer simulations 

(Fig. 3e and f). 

These results suggest that the correlation of rates among lineages is the 

rule, rather than the exception in molecular phylogenies. This pattern con-

trasts starkly with those reported in many previous studies (Linder et al., 

2011; Brown et al., 2008; Drummond et al., 2006; Moore and Donoghue, 

2007; Claramunt and Cracraft, 2015; Jarvis et al., 2014; Prum et al., 2015; 

Feng et al., 2017; Lu et al., 2014; Barreda et al., 2015; Barba-Montoya et 

al., 2018; Smith et al., 2010; Bell et al., 2010). In fact, all but three datasets 

(Erwin et al., 2011; Calteau et al., 2014; Battistuzzi and Hedges, 2009) 

received very high prediction scores in CorrTest, resulting in extremely 

significant P-values (P < 0.001). The IBR model was also rejected for the 

other three datasets (P < 0.05), but their test scores were not as high, likely 

because they sparsely sample a large phylogenetic space. For example, the 

metazoan dataset (Erwin et al., 2011) contains sequences primarily from 

highly divergent species that shared common ancestors hundreds of mil-

lions of years ago. In this case, tip lineages in the phylogeny are long and 

their evolutionary rates are influenced by many un-sampled lineages. Such 

sampling effects weaken the rate correlation signal. We verified this be-

havior via analyses of simulated data and found that CorrTest’s prediction 

Figure 4: Comparisons of the performance of CorrTest and Bayes Factor 

analyses. (a) Distributions of 2 times the differences of marginal log-likeli-

hood (2lnK) estimated via stepping-stone sampling method for datasets that 

were simulated with correlated branch rates (CBR, red) and independent 

branch rates (IBR, blue). CBR is preferred (P < 0.05) when 2lnK is greater 

than 3.841 (CBR zone), and IBR is preferred when 2lnK is less than -3.841 

(IBR zone). When 2lnK is between -3.841 and 3.841, the fit of the two rate 

models is not significantly different (gray shade). (b) The distributions of 

CorrScores in analyses of CBR (red) and IBR (blue) datasets. Rates are pre-

dicted to be correlated if the CorrScore is greater than 0.5 (P < 0.05, CBR 

zone) and vary independently if the CorrScore is less than 0.5 (IBR zone). (c) 

The rate of detecting CBR model correctly (True Positive Rate) at different 

levels of statistical significance in Bayes factor (stepping-stone sampling) and 

CorrTest analyses. Posterior probabilities for CBR in BF-SS analysis are de-

rived using the log-likelihood patterns in panel a. CorrTest P-values are de-

rived using the CorrScore pattern in panel b. 
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scores decreased when taxon sampling and density were lowered (Fig. 

5a). Overall, CorrTest detected rate correlation in all the empirical da-

tasets. 

3.4 Magnitude of the rate correlation in molecular data 

CorrScore is influenced by the size of the dataset in addition to the degree 

of correlation, so it is not a direct measure of the degree of rate correlation 

(effect size) in a phylogeny. Instead, one should use a Bayesian approach 

to estimate the degree of rate correlation, for example, under the Kishino 

et al.’s autocorrelated rate model (Kishino et al., 2001). In this model, a 

single parameter (ν) captures the degree of autocorrelation among 

branches in a phylogenetic tree. MCMCTree (Yang, 2007) analyses of 

simulated datasets confirmed that the estimated v is linearly related to the 

true value (Fig. 5b).  

To obtain v in empirical data, we used the same input priors as the orig-

inal study and only one root calibration to avoid undue influence of cali-

bration uncertainty densities on the estimate of v. We used the root cali-

bration provided in the original article or selected the median age of the 

root node in the TimeTree database (Kumar et al., 2017; Hedges et al., 

2006) ± 50My (soft uniform distribution) as the root calibration. Because 

Bayesian analyses require long computational times, we used either the 

original alignments or randomly selected 20,000 sites from the original 

alignments (if the alignments were longer than 20,000 sites) in MCMC-

Tree analyses, except for Ruhfel et al. (2014). Ruhfel et al. (2014) con-

tained more than 300 ingroup species, such that even alignments of 20,000 

sites required prohibitive amounts of memory. In this case, we randomly 

selected 2,000 sites from the original alignments to estimate v (similar re-

sults were obtained with a different site subset). Two independent runs of 

5,000,000 generations each were conducted, and results were checked in 

Tracer (Rambaut et al., 2018) for convergence. ESS values were higher 

than 200 after removing 10% burn-in samples for each run.  

 Because a low value of ν indicates high autocorrelation, we use the 

inverse of v to represent the degree of rate autocorrelation. In empirical 

data analyses, we find that the inverse of v is high for all datasets exam-

ined, which suggests ubiquitous high rate correlation across the tree of life. 

Many other interesting patterns emerge from this analysis. First, rate cor-

relation is highly significant not only for mutational rates (= substitution 

rate at neutral positions), which are expected to be similar in sister species 

because they inherit cellular machinery from a common ancestor, but also 

amino acid substitution rates, which are more strongly influenced by nat-

ural selection (Table 1). For example, synonymous substitution rates in 

the third codon positions and the four-fold degenerate sites in mammals 

(Meredith et al., 2011), which are largely neutral and are the best reflection 

of mutation rates (Kumar and Subramanian, 2002), received high 

CorrScores of 0.99 and 0.98, respectively (P < 0.001). Second, our model 

also detected a strong signal of correlation for amino acid substitution rates 

in the same proteins (CorrScore = 0.99). Bayesian analyses showed that 

the degree of correlation is high in both cases: inverse of v was 3.21 in 4-

fold degenerate sites and 3.11 in amino acid sequences. Third, mutational 

and substitution rates in both nuclear and mitochondrial genomes are 

highly correlated (Table 1).  

The above results establish that molecular and non-molecular evolution-

ary patterns are concordant, because morphological characteristics are 

also found to be similar between closely-related species (Sargis and Da-

gosto, 2008; Cox and Hautier, 2015; Lanfear et al., 2010) and correlated 

with taxonomic or geographic distance (Wyles et al., 1983; Shao et al., 

2016). Therefore, we suggest the correlated rate model be the default in 

molecular dating analysis, and CorrTest can be used to test the independ-

ent rate model when sufficient numbers of sequences are available. Use of 

a correlated rate model is important because model selection has a strong 

influence on the posterior credible intervals of divergence times (Bat-

tistuzzi et al., 2010). For example, the use of IBR model produces esti-

mates of divergence time of two major groups of grasses that are 66% 

older (Christin et al., 2014) and origin of a major group of mammal (Eri-

naceidea) to be 30% older (Meredith et al., 2011) than estimates under 

CBR model. In fact, substantial differences between node age estimates 

under IBR and CBR models have been reported in many studies (Bat-

tistuzzi et al., 2010; Christin et al., 2014; Foster et al., 2016; dos Reis et 

al., 2015; Bell et al., 2010; Liu et al., 2017). Thus, the use of an incorrect 

rate model has a large impact on time estimates, which may not be allevi-

ated by adding calibrations (Battistuzzi et al., 2010). Knowledge that evo-

lutionary rates are generally correlated within lineages will foster unbiased 

and precise dating of the tree of life. 

Conclusions 

Excellent performance of CorrTest in detecting correlation among molec-

ular evolutionary rates in a phylogeny is an early indication that the ma-

chine learning approaches will be useful in molecular phylogenetics, in-

cluding model testing and pattern discovery. CorrTest is faster, scalable, 

and more accurate than the traditional Bayesian methods. CorrTest’s ap-

plication to a large number of biological datasets has successfully ad-

dressed an enduring question in evolutionary biology: are the molecular 

rates of change between species correlated or independent? Our data anal-

ysis suggests that the evolutionary rate correlation is universal, which will 

improve specification of correct rate models that are essential for molecu-

lar clock analyses to provide accurate estimates of evolutionary timing for 

use in studies of biodiversity, phylogeography, development, and genome 

evolution. 
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